DOI QR코드

DOI QR Code

Analysis of Commercial Bus Vehicle Collision Accidents

사업용 버스 차량 충돌사고 해석

  • Han, Inhwan (Department of Mechanical and Design Engineering, Hongik University)
  • 한인환 (홍익대학교 기계정보공학과)
  • Received : 2013.09.17
  • Accepted : 2013.12.26
  • Published : 2014.02.28

Abstract

In this paper, characteristics and types of vehicle accidents involving buses that differ from common passenger cars are analyzed. When heavy vehicles are involved in collision accidents, the external impulse conveyed through bus tire from road surface cannot be ignored, so the conventional rigid-body impact model cannot be applied. As a solution, an analysis model which directly considers the tire impulse or considers the bus as moving barrier has been proposed. Also, as there are many instances in which the location of contact point or coefficients related to rotational motion cannot be estimated, utilization of point-mass collision model has been sought. By applying the proposed analysis model to an actual accident case and comparing with the result of the conventional analysis which does not consider the tire impulse, it is shown that the velocity of bus and other values close to the actual amount can be obtained.

본 논문에서는 승용차와는 다른 버스 차량의 사고 관련 특징 및 버스가 개입된 교통사고의 특성과 유형들을 조사 분석하였다. 그런데, 충돌사고에 버스와 같은 대형 차량이 포함되어 있을 때에는 노면으로부터 버스 타이어를 통해 전달되는 외부 충격량을 무시할 수 없으므로 기존의 강체 충돌 모델을 그대로 적용할 수가 없게 된다. 따라서, 이에 대한 해결 방안으로서 타이어 충격량을 직접 고려하거나 혹은 버스 차량을 마치 이동 장벽처럼 고려하는 해석 모델을 작성하였다. 또한, 실제 사고에서 차량의 충돌 접촉점의 위치나 회전 운동과 관련한 계수들을 추정할 수 없는 경우가 많으므로 질점 충돌모델의 활용방안도 함께 모색하였다. 본 논문에서 제시하는 해석 모델을 실제 사고사례에 적용하여 기존의 타이어의 충격량을 고려하지 않는 해석 결과와 비교하여 버스 차량의 속도 등을 실제와 유사하게 구할 수 있음을 보여주었다.

Keywords

References

  1. Brach R. M., Brach R. M. (2007), Analysis of Collisions Involving Articulated Vehicles, SAE Paper 2007-01-0735.
  2. Brach R. M., Brach R. M. (2011), Vehicle Accident Analysis and Reconstruction Methods, 2nd ed., SAE International, United States.
  3. Han I. (1998), Impact Analysis for Vehicle Accident Reconstruction, Trans. of Korea Society of Automotive Engineers, 6(2), 178-190.
  4. Han I. (2007), Nonlinear Continuous Contact Force Model for Low-Speed Front-to-Rear Vehicle Impact, Journal of Automobile Engineering (Proceedings of the Institution of Mechanical Engineers Part D), 221(10), 1197-1208. https://doi.org/10.1243/09544070JAUTO515
  5. Han I. (2013), Impulse-Momentum Based Analysis of Vehicle Collision Accidents Using Monte Carlo Simulation Methods, International Journal of Automotive Technology, Submitted(under review).
  6. Hickman R. S., Hill P. F. (2000), Bus and Recreational Vehicle Accident Reconstruction and Litigation, Lawyers and Judges Publishing Company, Inc., United States.
  7. Hyundai Motor Co. (2013), Specification(http://www.hyundai.com).
  8. Ishikawa H. (1994), Impact Center and Restitution Coefficients for Accident Reconstruction, SAE Paper 940564.
  9. Korea Research Institute of Transportation Industries (2013), Basic Research Report (http://www.kriti.re.kr).
  10. Korean National Police Agency (2013), Road Traffic Accidents in Korea 2012, Korean National Police Agency.
  11. Mayrhofer E., Steffan H., Hoschopf H. (2005), Enhanced Coach and Bus Occupant Safety, Proceedings of the 19th International Technical Conference of the Enhanced Safety of Vehicles, Paper Number 05-0351.
  12. Oh J. (2012), Driving Behavior Analysis of Commercial Vehicles(Buses) Using a Risky Driving Judgment Device, International Journal of Highway Engineering, 14(1), 103-109. https://doi.org/10.7855/IJHE.2012.14.1.103
  13. Poirette N., Bayan F. P., Suway J., Cornetto A., Cipriani A., Wahba R. (2013), Stiffness Coefficients of Heavy Commercial Vehicles, SAE Paper 2013-01-0796.
  14. Varner R. W., Sutphen R. F. (2011), Commercial Vehicle Accident Reconstruction and Investigation, 2nd ed., Lawyers and Judges Publishing Company, Inc., United States.
  15. Wong J. Y. (2008), Theory of Ground Vehicles, 4th ed., John Wiley & Sons, Inc., United States.

Cited by

  1. 휠체어 탑승 개조버스의 안전도 연구 vol.11, pp.4, 2019, https://doi.org/10.22680/kasa2019.11.4.063