DOI QR코드

DOI QR Code

Performance Characteristics of a Combined Regenerative Ammonia-Water Based Power Generation Cycle Using LNG Cold Energy

LNG 냉열을 이용하는 암모니아-물 복합 재생 동력 사이클의 성능 특성

  • Kim, Kyounghoon (Department of Mechanical Engineering Kumoh National Institute of Technology) ;
  • Oh, Jaehyeong (Graduate School, Kumoh National Institute of Technology) ;
  • Jeong, Youngguan (Department of Mechanical Engineering Kumoh National Institute of Technology)
  • 김경훈 (금오공과대학교 기계공학과) ;
  • 오재형 (금오공과대학교 대학원) ;
  • 정영관 (금오공과대학교 기계공학과)
  • Received : 2013.09.30
  • Accepted : 2013.12.31
  • Published : 2013.12.31

Abstract

The ammonia-water based power generation cycle utilizing liquefied natural gas (LNG) as its heat sink has attracted much attention, since the ammonia-water cycle has many thermodynamic advantages in conversion of low-grade heat source in the form of sensible energy and LNG has a great cold energy. In this paper, we carry out thermodynamic performance analysis of a combined power generation cycle which is consisted of an ammonia-water regenerative Rankine cycle and LNG power generation cycle. LNG is able to condense the ammonia-water mixture at a very low condensing temperature in a heat exchanger, which leads to an increased power output. Based on the thermodynamic models, the effects of the key parameters such as source temperature, ammonia concentration and turbine inlet pressure on the characteristics of system are throughly investigated. The results show that the thermodynamic performance of the ammonia-water power generation cycle can be improved by the LNG cold energy and there exist an optimum ammonia concentration to reach the maximum system net work production.

Keywords

References

  1. O. M. Ibrahim, "Design considerations for ammoniawater Rankine cycle", Energy, Vol. 21, 1996, pp. 835-841. https://doi.org/10.1016/0360-5442(96)00046-1
  2. V. A. Prisyazhniuk, "Alternative trends in development of thermal power plant", Applied Thermal Engineering, Vol. 28, 2008, pp. 190-194. https://doi.org/10.1016/j.applthermaleng.2007.03.025
  3. B. Kiani, A. Akisawa, and T. Kashiwagi, "Thermodynamic analysis of load-leveling hyper energy converting and utilization system", Energy, Vol. 33, 2008, pp. 400-409. https://doi.org/10.1016/j.energy.2007.10.005
  4. W. Nowak, A. A. Stachel, and A. Borsukiewicz Gozdur, "Possibilities of implementation of absorption heat pump in realization of the Clausius-Rankine cycle in geothermal power station", Applied Thermal Engineering, Vol. 28, 2008, pp. 335-340. https://doi.org/10.1016/j.applthermaleng.2006.02.031
  5. O. M. Ibrahim, and S. A. Klein, "Absorption power cycles", Energy, Vol. 21, 1996, pp. 21-27. https://doi.org/10.1016/0360-5442(95)00083-6
  6. W. R. Wagar, C. Zamfirescu, and I. Dincer, "Thermodynamic performance assessment of an ammonia-water Rankine cycle for power and heat production", Energy Conversion and Management, Vol. 51, 2010, pp. 2501-2509. https://doi.org/10.1016/j.enconman.2010.05.014
  7. K. H. Kim, S. W. Kim, and H. J. Ko, "Study on the Rankine cycle using ammonia-water mixture as working fluid for use of low-temperature waste heat", Trans. of the Korean Hydrogen and New Energy Society, Vol. 21, No. 6, 2010, pp. 570-579.
  8. K. H. Kim, C. H. Han, and K. Kim, "Effects of ammonia concentration on the thermodynamic performances of ammonia-water based power cycles", Thermochimica Acta, Vol. 530, No. 20, 2012, pp. 7-16. https://doi.org/10.1016/j.tca.2011.11.028
  9. K. H. Kim, C. H. Han, and K. Kim, "Comparative exergy analysis of ammonia-water based Rankine cycles with and without regeneration", Int. J. Exergy, Vol. 12, No. 6, 2013, pp. 344-361. https://doi.org/10.1504/IJEX.2013.054117
  10. H. J. Song, "A study on the power generation technology utilizing LNG cold energy", Korea Electric Power Research Institute, 1985.
  11. C. W. Kim, "Performance analysis of power generation cycle using LNG cold energy", Ph.D. thesis, Seoul National University, Korea, 1993.
  12. G. S. Lee, Y. S. Chang, M. S. Kim, and S. T. Ro, "Thermodynamic analysis of extraction process for the utilization of the LNG cold energy", Cryogenics, Vol. 36, 1996, pp. 35-40. https://doi.org/10.1016/0011-2275(96)80767-3
  13. G. S. Lee, and S. T. Ro, "Analysis of the liquefaction process of exhaust gases from an underwater engine", Applied Thermal Engineering, Vol. 18, 1998, pp. 1243-1262. https://doi.org/10.1016/S1359-4311(98)00009-X
  14. T. S. Kim, S. T. Ro, W. I. Lee, and S. K. Kauh, "Performance enhancement of a gas turbine using LNG cold energy", Journal of KSME(B), Vol. 25, 1999, pp. 653-660.
  15. S. M. Deng, H. G. Jin, R. X. Cai, and R. M. Lin, "Novel cogeneration power system with liquefied natural gas (LNG) cryogenic exergy utilization", Energy, Vol. 29, 2004, pp. 497-512. https://doi.org/10.1016/j.energy.2003.11.001
  16. G. S. Lee, "Design and exergy analysis for a combined cycle using LNG cold/hot energy", Korean Journal of Air-conditioning and Refrigeration engineering, Vol. 17, No. 4, 2005, pp. 285-296.
  17. S. T. Kim, S. T. Ro, W. I. Lee, and M. S. Choi, "Improvement of Gas Turbine Performance Using LNG Cold Energy", Transactions of the Korean society of mechanical engineers. B, Vol. 23, No. 164, 1999, pp. 653-660.
  18. Q. Wang, Y. Z. Li, and J. Wang, "Analysis of power cycle based on cold energy of liquefied natural gas and low-grade heat source", Applied Thermal Engineering, Vol. 24, 2004, pp. 539-548. https://doi.org/10.1016/j.applthermaleng.2003.09.010
  19. T. Miyazaki, Y. T. Kang, A. Akisawa, and T. Kashiwagi, "A combined power cycle using refuse incineration and LNG cold energy", Energy, Vol. 25, 2000, pp. 639-655. https://doi.org/10.1016/S0360-5442(00)00002-5
  20. J. Wang, Z. Yan, and M. Wang, "Thermodynamic analysis and optimization of an ammonia-water power system with LNG (liquefied natural gas) as its heat sink", Energy, Vol. 50, 2013, pp. 513-522. https://doi.org/10.1016/j.energy.2012.11.034
  21. K. H. Kim, J. H. Oh, and H. J. Ko, "Performance Analysis of a Combined Power Cycle Utilizing Low-Temperature Heat Source and LNG Cold Energy", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 4, 2012, pp. 382-389. https://doi.org/10.7316/KHNES.2012.23.4.382
  22. F. Xu, and D. Y. Goswami, "Thermodynamic properties of ammonia-water mixtures for power cycle application", Energy, Vol. 24, 1999, pp. 525-536. https://doi.org/10.1016/S0360-5442(99)00007-9
  23. K. H. Kim, and C. H. Han, "Analysis of transcritical organic Rankine cycles for low-grade heat conversion", Advanced Science Letters, Vol. 8, No. 15, 2012, pp. 216-221. https://doi.org/10.1166/asl.2012.2404
  24. T. Yang, G. J. Chen, and T. M. Guo, "Extension of the Wong-Sandler mixing rule to the three-parameter Patel-Teja equation of state: Application up to the near-critical region", Chem. Eng. J, Vol. 67, 1997, pp. 27-36. https://doi.org/10.1016/S1385-8947(97)00012-0
  25. K. H. Kim, H. J. Ko, and K. Kim, "Assessment of pinch point characteristics in heat exchangers and condensers of ammonia-water based power cycles", Applied Energy, Vol. 113, 2014, pp. 970-981 https://doi.org/10.1016/j.apenergy.2013.08.055