透過您的圖書館登入
IP:3.144.212.145
  • 學位論文

新穎三價鈰與兩價銪離子活化多矽酸鹽螢光體之製備、發光特性與能量轉移之研究

Synthesis, Luminescence and Energy Transfer of Ce3+- and Eu2+- Activated Novel Polysilicate Phosphors

指導教授 : 陳登銘

摘要


本論文利用固態合成法於氫氣的還原氣氛下,成功合成了Ce3+、Eu2+或Ce3+/Mn2+分別摻雜LiScSiO4、LiScSi2O6、NaScSi2O6、LiY9(SiO4)6O2、NaY9(SiO4)6O2、LiLa9(SiO4)6O2與NaLa9(SiO4)6O2等螢光體,並利用X光粉末繞射、螢光光譜與積分球、色度座標分析儀及漫反射光譜進行晶相結構、發光性質及色度學之鑑定,詴圖開發新穎且應用於白光發光二極體的螢光材料。 第一部分探討Ce3+摻雜LiScSiO4、LiScSi2O6、NaScSi2O6、LiY9(SiO4)6O2與NaY9(SiO4)6O2螢光體,本系列螢光體之激發波長分布在330~365 nm,放射波長在390~445 nm的藍光區域。由於Ce3+的寬帶吸收與放光源自於4f-5d躍遷,主體的共價性與結晶場效應對於Ce3+能階分裂有顯著的影響,故可藉此調變Ce3+的發光特性。 第二部分延伸討論NaY9(SiO4)6O2與LiY9(SiO4)6O2共摻Ce3+/Mn2+之能量轉移的機制,其中Ce3+為敏化劑而Mn2+為活化劑,藉由能量轉移的方式可使Mn2+的強度大幅提升,並得知NaY9(SiO4)6O2:Ce3+,Mn2+的能量轉移機制為偶極-四極的交互作用,而LiY9(SiO4)6O2:Ce3+,Mn2+則為偶極-偶極的交互作用;此外,Tb3+的額外摻雜可使兩者之CIE座標值分別達到(0.32,0.31)與(0.31,0.32)的白光區域。 第三部分則探討Eu2+摻雜NaScSi2O6、LiLa9(SiO4)6O2與NaLa9(SiO4)6O2螢光體,因Eu2+的電子躍遷為4f-5d型態,故激發與放光皆屬於寬帶的波峰,本系列螢光體之激發波長分布在346~378 nm,放射波長在511~537 nm的黃綠光區域。其中NaScSi2O6:Ce3+,Eu2+期望可藉由共激發Ce3+與Eu2+混成白光,但最終白光的色純度有偏綠光的跡象。而LiLa9(SiO4)6O2:Eu2+與NaLa9(SiO4)6O2:Eu2+之放光強度與量子效率皆不高,但具有激發波段較長的優點。 最後討論螢光粉之熱穩定度(thermal stability),由於溫度升高使晶格振動更加劇烈,使得ΔE(activation energy)愈小,因此當電子由基態躍遷至激發態時,較容易克服活化能並以放光的形式回到基態,故溫度的提升會造成螢光體發光強度的衰減。

並列摘要


The thesis attempts to investigate novel phosphors for the application in white light-emitting diode. Ce3+-, Eu2+- activated or Ce3+ and Mn2+ co-activated hosts with compositions of LiScSiO4, LiScSi2O6, NaScSi2O6, LiY9(SiO4)6O2, NaY9(SiO4)6O2, LiLa9(SiO4)6O2 and NaLa9(SiO4)6O2 were successfully synthesized by solid state method under reducing conditions, and characterized by X-ray powder diffraction, fluorescence, chromaticity and reflectance. The research is divided into four parts. The first part investigates Ce3+-activated phosphors of LiScSiO4, LiScSi2O6, NaScSi2O6, LiY9(SiO4)6O2 and NaY9(SiO4)6O2. The excitation spectral range of these phosphors range from 330 nm to 365 nm and the blue emissions range from 390 nm to 445nm region. With the unique features of the inherent d-f transition of Ce3+, the covalency effect and crystal field effect of host have great impact on the splitting of Ce3+ energy levels, and thus is tunable. The second part deals with the mechanism of energy transfer between Ce3+ and Mn2+ in Ce3+/Mn2+ co-activated NaY9(SiO4)6O2 and LiY9(SiO4)6O2, in which Ce3+ acts as a sensitizer and Mn2+ as an activator, and the PL intensity of Mn2+ can be extremely increased through energy transfer. Based on the analysis on the experimental results, the energy transfer mechanism has been determined to be a dipole-quadrupole type in NaY9(SiO4)6O2: Ce3+, Mn2+, and a dipole-dipole type in LiY9(SiO4)6O2: Ce3+, Mn2+, respectively. Furthermore, the extra doping of Tb3+ could enhance the contribution of green, and finally white light-emitting phosphors are formed. Eu2+-activated phosphors including NaScSi2O6:Eu2+, LiLa9(SiO4)6O2: Eu2+ and NaLa9(SiO4)6O2: Eu2+are described in the third part. Owing to d-f transition of Eu2+, the excitation and emission are both broad band. The excitation wavelength ranges from 346 nm to 378 nm in this series and the emission bands were found to situate in the yellow-green emitting region. NaScSi2O6: Ce3+, Eu2+ was expected to produce white light by coactivating Ce3+ and Eu2+, but found failed. Even though the luminescence and quantum efficiency of LiLa9(SiO4)6O2: Eu2+ and NaLa9(SiO4)6O2: Eu2+ are not superior, they has the advantage of excitation with longer wavelength. Finally, the investigation on thermal quenching of all phosphors reveals that the luminescence intensity of phosphors quenches dramatically as temperature rises, since the phonon energy will increase while the temperature rises, leading to smaller activation energy.

參考文獻


[1] M.V. Shankar et al., “White Light Emitting Diodes Opportunities, Bottlenecks and Challenges”, GE
[2] Y. Shimizu et al., United States Patent, US 5998925 (1999)
[3] R. B King, “Encyclopedia of Inorganic Chemistry”, 4, John Wiley& Sons(1994)
[4] W. T. Carnall et al. A Systematic Analysis of the Spectra of the Lanthanides Doped into Single Crystal LaF3 (Argonne National Laboratory, Argonne, IL 1988)
[7] F. M. Ryan, F. M. Vodoklys, J. Electrochem. Soc., 118,1814(1971)

被引用紀錄


李佳穎(2010)。台灣期貨市場與現貨市場間的資訊外溢效果〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2010.00770
鄭佩芳(2010)。基差與變幅波動之資訊內涵對於避險績效之影響〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2010.00432
楊經仕(2009)。台灣加權指數、台指期貨與台灣中型100指數之價格發現與傳遞功能比較〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2009.01225
葉愷原(2015)。稀土離子活化新穎螢光粉之發光特性探討及其應用〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201500394

延伸閱讀