透過您的圖書館登入
IP:3.145.163.58
  • 學位論文

泵探技術量測氧化鋅/氧化鎂鋅量子井瞬態吸收光譜

Transient absorption spectroscopy of ZnO/ZnMgO quantum well by pump probe technique

指導教授 : 林家弘

摘要


這篇研究中,我們使用飛秒鈦藍寶石雷射為光源與時間解析量測技術,量測氧化鋅/氧化鎂鋅量子井的超快載子動力行為從導電帶至能帶尾部 (358-385 nm)。當激發光子能量大於量子井能隙時,雙光子吸收、能帶填滿和能隙重整的效應會依序發生並且後兩者彼此互相競爭。當激發光子能量低於能隙和靠近激子共振的位置時,只能得到正的穿透率變化,這是由於能帶填滿的結果所造成。最大的穿透率變化發生在激子共振的位置,原因在高強度激發下會導致激子吸收飽和的行為。從時間解析穿透率變化的特性可進一步得到激子的束縛能約為76 meV。由實驗結果證實和先前量測的氧化鋅薄膜比較,量子井的載子有比較長的輻射結合時間(200 ps),這是由於在異質結構量子井下所產生的內建電場導致的量子局限史塔克效應(QCSE)所造成。在激子能態位置改變激發密度時,可以觀察到激子隨激發密度提高自發幅射的時間縮短了主要是史塔克效應被屏壁所導致的現象。淺能帶尾部的載子行為與大於能隙的載子行為是類似的,同時存在雙光子吸收、能帶填滿和能隙重整的效應。並且在激發光子為376 nm的位置觀察到雙光子吸收的最大值。然而深層的能階位置對光子的吸收更微弱,其載子的鬆弛可能是透過聲子射散轉換到更深層的能階。

並列摘要


We have investigated the ultrafast carrier dynamics of ZnO/ZnMgO quantum wells by the time resolved measurement using the femtoscond Ti:sapphire oscillator from above band gap to band tail (358-385 nm). As the photo-excited energy above the band gap of the ZnO, the effect of the band filling (BF) and band gap renormalization (BGR) will occur sequentially and compete to each other. As excited photon energy within below band-gap and near exciton resonance, only positive transmission change can be seen that is due to band filling. The maximum transmission change will occur at the free exciton resonance and reveal the saturation behavior at higher exited intensity. In our estimation, exciton binding energy about 76 meV is obtained by the difference between the band gap and exciton resonance that is larger than the ZnO due to quantum confinement effect. In comparing with the ZnO thin films, the exciton dynamics of MQW have a longer radiation time (200ps) that can be explained by quantum confined stark effect (QCSE) by internal field in the hetero-structure. When we increase pumping density near exciton state, screening of QCSE will result in reduction of spontaneous emission lifetime. At shallow band tail states, both BF and BGR effects will exist after excitation of carriers that is similar to that at far above band gap. In our measurement, the two-photon absorption (TPA) is observed and the maximum value is located at excited state of 376 nm. Deep band tail has weak absorption and slow decay might due to phonon-assisted transferring to deeper states.

參考文獻


[30] H. C. Wang, C. C. Yang, S. W. Feng, B. P. Zhang, Y. Segawa, “Ultrafast Exciton Dynamics in a ZnO Thin Film”, Japanese Journal of Applied Physics, vol, 48, February 2009, pp. 022402
[22] M. Yanoa, K. Hashimotoa, K. Fujimotoa, K. Koikea, S. Sasaa, M. Inouea, Y. Uetsujib, T. Ohnishib, K. Inabac, “Polarization-induced two-dimensional electron gas at Zn1-xMgxO/ZnO heterointerface”, Journal of Crystal Growth, vol. 301-302, January 2007, pp. 353–357.
[15] C. K. Sun, S. Z. Sun, K. H. Lin, Y. J. Zhang, H. L. Liu, S. C. Liu, J. J. Wu, “Ultrafast carrier dynamics in ZnO nanorods”, APPLIED PHYSICS LETTERS, vol. 87, July 2005, pp. 023106.
[27] C. K. Sun, S. Z. Sun, K. H. Lin, K. Y. J. Zhang, H. L. Liu, S. C. Liu, J. J. Wu,” Ultrafast carrier dynamics in ZnO nanorods,” APPLIED PHYSICS LETTERS, vol, 87, July 2005, pp. 023106
[1] C. Klingshirn, “ZnO: From basics towards applications”, Physica Status Solidi B, vol. 244, July 2007, pp. 3027

被引用紀錄


古祐銓(2011)。利用時間解析量測技術進行掺氮化鋰氧化鋅薄膜的瞬態反射光譜研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2011.00304

延伸閱讀