簡易檢索 / 詳目顯示

研究生: 賴勇達
Lai, Yong-Da
論文名稱: 碳支撐銅銀核殼奈米觸媒於電化學二氧化碳還原反應效能之研究
The Electrochemical CO2 Reduction Reaction on Carbon-Supported Cu-Ag Nanocatalysts with Core/Shell Structures
指導教授: 王禎翰
Wang, Jeng-Han
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 51
中文關鍵詞: 銅銀奈米觸媒二氧化碳電化學還原法拉第效率核殼奈米觸媒銅銀雙金屬效應
英文關鍵詞: CuAg nanocatalysts (CuAg NCs), CO2 reduction reaction (CO2RR), faraday efficiency (FE), core-shell nanocatalysts, CuAg bimetallic effect
DOI URL: http://doi.org/10.6345/NTNU202000557
論文種類: 學術論文
相關次數: 點閱:72下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電化學二氧化碳還原反應為二氧化碳排放與近年來的再生能源提供有效的解決方案,透過再生能源產生的能源將二氧化碳轉換成高價值的化學燃料,使大氣中碳循環能維持在定值中。目前已有許多對於不同催化材料的研究,其中金屬奈米觸媒已有豐富的研究對於其選擇性與效能。
    本研究探討使用油胺法進行合成銅銀合金觸媒,利用能量色散X射線光譜(EDX)、電感耦合電漿體原子發射光譜(ICP-OES)、粉末式X光繞射分析儀(XRD)、X光光電子光譜儀(XPS)和反應活性面積(ECSA)檢測晶體結構、金屬價態與觸媒金屬表面比例。電化學實驗以線性掃描伏安法(LSV)、一氧化碳脫附測試(CO stripping)和二氧化碳還原效能測試檢測對反應中的吸脫附機制和產物的選擇性。在ICP-OES與ECSA的測量中,可以得到觸媒的總金屬比例與表面金屬比例差異,確認觸媒為核殼結構。在電化學測試可以發現在-0.8 V (vs.RHE)時CuAg-180/C擁有84% CO選擇性,因在二氧化碳活原反應的觸媒中,Cu比Ag的還原性更好,但容易將二氧化碳進行深度還原,還原成碳氫產物和多碳產物,在Cu表面添加Ag可以降低Cu對CO的吸附能,使還原步驟在中間產物CO就脫附,來提高觸媒為CO的選擇性;而CuAg1.5-200/C在-0.9 V(vs. RHE)下有89% CO選擇性,從ECSA與XRD上可以看出此觸媒類似Ag奈米粒子,而Ag對CO本來就具有高選擇性。

    The electrochemical carbon dioxide reduction reaction (CO2RR) provides an effective solution to remove the problematic carbon dioxide and produce useful high-value chemical fuel. The present thesis focused on examining the core-shell structured Cu-Ag bimetals with the best CO2RR performance. The catalysts were synthesized by oleyamine method and optimized with synthetic temperatures (150, 180, 200 and 220oC) and Cu/Ag ratios (0.5, 1 and 1.5). The synthesized samples were characterized by energy dispersive X-ray spectroscopy (EDX), powder X-ray diffraction analyzer (XRD), X-ray photoelectron spectrometer (XPS) and Electrochemical Catalyst Surface Activity (ECSA); the electrochemical performance were examined by linear scanning voltammetry (LSV) and carbon monoxide desorption test (CO stripping); the products after electrochemical reactions were detected by gas chromatograph (GC) to analyze the Faradic Efficiency (FE) and CO2RR performance. In the electrochemical tests found that that the optimal synthetic temperature of Ag shell is at 180 oC with 84% CO FE at -0.8 V (vs. RHE) due mainly to the higher Ag ratio of Ag(110)/ Ag(111) on the surface and adding Ag on the surface of Cu can reduce the binding energy of Cu to CO, so Cu can desorb CO to improve the CO selectivity. Also, directly adding more Ag in the formation of CuAg1.5-200/C can further enhance the performance with 89% CO selectivity at -0.9 V (vs. RHE) from ECSA and XRD that CuAg1.5-200/C is similar to Ag nanoparticle has high CO selectivity. The results demonstrated that more surface Ag in the CuAg bimetals can effective enhance the CO2RR performance and provide the useful information for better design the optimal CO2RR catalysts.

    目錄 致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1前言 1 1-2二氧化碳還原反應機構 2 1-3金屬觸媒 5 1-4雙金屬觸媒 6 1-5核殼雙金屬奈米粒子 7 1-6研究動機 8 第二章 實驗方法 9 2-1製備觸媒 9 2-1-1製備觸媒Cu/C 9 2-1-2製備觸媒Ag/C 10 2-1-3製備觸媒CuAg-T/C ( T=150,180,200,220) 11 2-1-4製備觸媒CuAgn-200/C (n=0.5,1.5) 12 2-2觸媒鑑定 13 2-2-1能量色散X光光譜儀(Energy Dispersive X-ray Spectrometer, EDS) 13 2-2-2電感耦合電漿體原子發射光譜(Inductively Coupled plasma-optical emission spectroscopy, ICP-OES) 13 2-2-3粉末式X光繞射儀(Power X-ray Diffractometer, XRD) 13 2-2-4 X光光電子光譜儀(X-Ray Photoelectron Spectrometer, XPS) 14 2-2-5電化學活性反應面積(Electrochemically active surface area, ECSA) 14 2-3觸媒之電化學二氧化碳還原反應表現 16 2-3-1電化學二氧化碳還原反應效能 16 2-3-2氣相層析系統 18 2-3-3一氧化碳脫附測試 18 第三章 結果與討論 19 3-1不同合成溫度的觸媒測試CuAg-T/C (T=150,180,200,220) 19 3-1-1 EDS、ICP-OES與XPS 19 3-1-2 ECSA與XRD 26 3-1-3電化學二氧化碳還原反應效能 30 3-1-4總結 33 3-2不同銀比例合成的觸媒測試CuAgn-200/C (n=0.5,1.5) 35 3-2-1 EDS、ICP-OES與XPS 35 3-2-2 ECSA與XRD 40 3-2-3電化學二氧化碳還原反應效能 43 3-2-4總結 46 第四章 結論 47 參考資料 49

    1. Jacob Schneider, Hongfei Jia,b James T. Muckermana and Etsuko Fujita, Chem. Soc. Rev., 2012, 41, 2036–2051.
    2. Ruud Kortlever, Jing Shen, Klaas Jan P. Schouten, Federico Calle-Vallejo, and Marc T. M. Koper. J. Phys. Chem. Lett. 2015, 6, 4073−4082.
    3. Yoshio Hori, Katsuhei Kikuchi and Shin Suzuki, CHEMISTRY LETTERS, pp. 1695-1698, 1985.
    4. C.G. Vayenas, R.E. White, MODERN ASPECTS OF ELECTROCHEMISTRY No.42 ISBN: 978-0-387-49488-3
    5. John-Paul Jones, G. K. Surya Prakash, and George A. Olah, Isr. J. Chem. 2014, 54, 1451–1466.
    6. YOSHIO HORI, HIDETOSHI WAKEBE, TOSHIO TSUKAMOTO and OSAMU KOGA, Electrochimica Acta Vol.39,No.11/12, pp.1833-1839,1994.
    7. Emil Roduner, Chem. Soc. Rev., 2014,43, 8226.
    8. Dong Dong Zhu , Jin Long Liu , and Shi Zhang Qiao, Adv. Mater. 2016, 28, 3423–3452.
    9. Toru Hatsukade, Kendra P. Kuhl, Etosha R. Cave, David N. Abram and
    Thomas F. Jaramillo, Phys.Chem.Chem.Phys.,2014, 16, 13814.
    10. Jihui Choi, Myung Jun Kim, Sang Hyun Ahn, Insoo Choi, Jong Hyun Jang, Yu Seok Ham, Jae Jeong Kim, Soo-Kil Kim, Chemical Engineering Journal Volume 299,2016, pp. 37-44.
    11. Michael B. Cortie and Andrew M. McDonagh, Chem. Rev. 2011, 111, 3713–3735.
    12. Shao-Qing Liu,,§ Shu-Wen Wu, Min-Rui Gao, Mao-Shuai Li, Xian-Zhu Fu and Jing-Li Luo, ACS Sustainable Chem. Eng. 2019, 7,4443−14450.
    13. Jin Zhang,, Man Qiao,, Yafei Li, Qi Shao and Xiaoqing Huang, ACS Appl. Mater. Interfaces 2019, 11, 39722−39727.
    14. CHERYL K. ROFER-DEPOORTER, Chem. Rev, 1981, 81, 447-474.
    15. Simelys Hernández, M. Amin Farkhondehfal, a Francesc Sastre,
    Michiel Makkee, Guido Saracco and Nunzio Russo, Green Chem., 2017, 19,2326.
    16. Kendra P. Kuhl, Toru Hatsukade, Etosha R. Cave, David N. Abram, Jakob Kibsgaard,and Thomas F. Jaramillo, J. Am. Chem. Soc. 2014, 136, 14107−14113.
    17. Jonathan Rosen, Gregory S. Hutchings, Qi Lu, Sean Rivera, Yang Zhou, Dionisios G. Vlachos,and Feng Jiao, ACS Catal. 2015, 5, 4293−4299.
    18. Yu Seok Ham, Seunghoe Choe, Myung Jun Kim, Taeho Lim, Soo-Kil Kim, and Jae Jeong Kim, Applied Catalysis B: Environmental Volume 208, 2017, pp.35-43.
    19. Jonathan Rosen, Gregory S. Hutchings, Qi Lu, Sean Rivera, Yang Zhou, Dionisios G. Vlachos,and Feng Jiao, ACS Catal. 2015, 5, 4293−4299.
    20. Seoin Back, Min Sun Yeom, and Yousung Jung, ACS Catal. 2015, 5, 5089−5096.
    21. Jiaqi Wang, Zhe Li, Cunku Dong, Yi Feng, Jing Yang, Hui Liu, and Xiwen Du, ACS Appl. Mater. Interfaces 2019, 11, 2763−2767.
    22. Mark C. Biesinger, Leo W.M. Lau,, Andrea R. Gerson, Roger St.C. Smart, Applied Surface Science 257 (2010) 887–898.
    23. Ana Maria Ferraria, Ana Patrícia Carapeto, Ana Maria Botelho do Rego, Vacuum 86 (2012) 1988-1991.
    24. Ezra L. Clark, Stefan Ringe,,Michael Tang,Amber Walton, Christopher Hahn,Thomas F. Jaramillo, Karen Chan, and Alexis T. Bell, ACS Catal. 2019, 9, 4006−4014.
    25. Ezra L. Clark, Christopher Hahn, Thomas F. Jaramillo, and Alexis T. Bell, J. Am. Chem. Soc. 2017, 139, 15848-15857.
    26. Rosa M. Arán-Ais, Dunfeng Gao, and Beatriz Roldan Cuenya, Acc. Chem. Res. 2018, 51, 2906−2917.
    27. Jianfeng Huang, Mounir Mensi, Emad Oveisi, Valeria Mantella and Raffaella Buonsanti, J. Am. Chem. Soc. 2019, 141, 2490−2499.
    28. Tintula Kottakkat, Katharina Klingan, Shan Jiang, Zarko P. Jovanov, Veronica H. Davies, Gumaa A. M. El-Nagar, Holger Dau, and Christina Roth, ACS Appl. Mater. Interfaces 2019, 11, 14734−14744.
    29. Abhijit Dutta, Carina Elisabeth Morstein, Motiar Rahaman, Alena Cedeño López and Peter Broekmann, ACS Catal. 2018, 8, 8357−8368.
    30. Subiao Liu, Hongbiao Tao, Li Zeng, Qi Liu, Zhenghe Xu, Qingxia Liu and Jing-Li Luo, J. Am. Chem. Soc. 2017, 139, 2160−2163.
    31. Yu-Chi Hsieh, Sanjaya D. Senanayake, Yu Zhang, Wenqian Xu and Dmitry E. Polyansky, ACS Catal. 2015, 5, 5349−5356.
    32. Gar B. Hoflund, Jason F. Weaver, and William S. Epling, Surface Science Spectra 3, 163 (1994).
    33. Gar B. Hoflund and Zoltan F. Hazos, Ghaleb N. Salaita, Phys. Rev. B 62, 11126.

    下載圖示
    QR CODE