透過您的圖書館登入
IP:18.118.226.105
  • 學位論文

具自旋軌道交互作用下量子環之自旋極化

Spin Polarization in Quantum Rings with Spin-Orbit Interaction

指導教授 : 薛文証
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文的主旨為探討二端及三端導線Aharonov-Cashser (AC) 量子環在不同自旋軌道交互作用(SOI)強度下的自旋傳輸特性。研究方法利用一維量子波導理論以及轉移矩陣來完成反射及穿透分析。在適當環半徑以及電場的選擇之下,二端環型結構在特定的導線夾角之下可以做為一系列的量子閘,包含相位偏移閘、泡立 閘、泡立 閘、泡立 閘以及阿達瑪閘。在創新的部分,本研究中會提出這些閘的完整解析解,並且構成量子閘所使用的環數比起以往的研究將會更為優化。三端AC環可以將輸入端的非極化電子,於輸出的兩端轉換為不同方向完全極化的自旋電子狀態,為本文研究的重點之一,同時也探討了三端AC環導線夾角對於自旋極化和無反射的影響。除此之外,在二、三端導線AC環的搭配之下,可以用於實現量子漫步,提供一種固態元件的實現方案。

並列摘要


The main purpose in this thesis is to investigate spin transport characteristics of two- and three-terminal Aharonov-Cashser (AC) quantum rings under different spin-orbit interaction (SOI) strength. Reflection and transmission analysis completed by using one-dimensional quantum waveguide theory and transfer matrix. Via selecting ap-propriate radius of ring and electric field, the two-terminal ring structure can be used as a series of quantum gates on specific angle of the leads, including phase-shift gate, Pau-li- gate, Pauli - gate, Pauli- gate, and Hadamard gate. In the innovative part, the complete analytical solution of these gates is proposed in this study, and amounts of rings applied in quantum gates are more optimized than previous studies. Three-terminal AC rings can make unpolarized incoming electrons become to fully polarized spin states with different directions at two output leads, which is the main key of this paper. At the same time, the influence of the three-terminal AC rings with different angle of leads on spin polarization and reflectionless is also discussed. In addition, the device can be used to realize quantum walk in the combination with the two- and three-terminal AC rings, providing a scheme of solid-state device.

參考文獻


[1] H. Akinaga and H. Ohno, “Semiconductor Spintronics,” IEEE Trans. Nanotechnol. 1, 19 (2002).
[2] Žutić, J. Fabian, and S. D. Sarma, “Spintronics: Fundamentals and applications, ” Rev. Mod. Phys. 76, 323 (2004).
[3] S. A. Wolf and D. D. Awschalom, “Spintronics: A spin-based electronics vision for the future,” Science. 294, 1488 (2001).
[4] Leslie L. Foldy and Siegfried A. Wouthuysen, “Mesoscopic Stern-Gerlach spin filter by nonuniform spin-orbit interaction,” Phys. Rev. 78, 29 (1950).
[5] J. Ohe and M. Yamamoto, “On the Dirac theory of spin 1/2 particles and its non-relativistic limit,” Phys. Rev. B. 72, 041308 (2005).

延伸閱讀