透過您的圖書館登入
IP:3.21.100.34
  • 學位論文

以鐵磁共振法研究四氧化三鐵薄膜之維爾威轉換

Ferromagnetic resonance study on the Verwey transition of epitaxial Fe3O4 thin films.

指導教授 : 陳正弦
共同指導教授 : 林昭吟(Jauyn Grace Lin)

摘要


以一個最廣為科學家研究的材料而言,四氧化三鐵已經激勵了許多科學家及研究學者一段非常長的歲月。四氧化三鐵同時也是一個非常有開發潛能的材料,它可以廣泛的應用在磁儲存、磁異向性以及自旋子電子元件等方面。其晶格結構、電子傳導、磁化率以及比熱量測的結果都顯示該材料具有一個相轉換且溫度大約在123凱氏溫度。這些現象的解釋及理論模型依然在討論之中。因為在現在元件的應用中薄膜是最為大量採用的,為了成功的實現在自旋電子元件方面的應用,薄膜的成長技術是相當重要的關鍵。 本研究採用分子束磊晶技術成長高品質的四氧化三鐵薄膜,並且使用反射式高能電子繞射儀來監測薄膜的成長,再利用各樣的量測確認薄膜的品質,確認完之後採用最高品質的薄膜進行鐵磁共振的研究。本研究量測電性轉變及磁晶格異向性的關聯性,實驗的結果顯示了各個相轉變溫度並不一致。以拉曼光譜研究晶格振動膜式,以物理性質量測系統測量電子電阻率,以鐵磁共振量測樣品的磁晶格異向性。比較了以上的結果,顯示出維爾威的轉換應是一種楊-泰勒式的相轉換。較薄的樣品有較低的磁晶格相轉換溫度是由於楊-泰勒效應與應力效應相抗衡而產生的結果。本次研究提供了更多的資訊有關於在四氧化三鐵薄膜中,磁晶格異向性相轉換及應力作用所產生的影響。

並列摘要


Being one of the most studied materials, magnetite, Fe3O4, has inspired scientists and researchers for a very long time -- a long running mystery. It is also a potential material for the applications in magnetic storage, magnetic anisotropy and spin injection. A special phase transition (so called Verwey transition) in crystal structure, electric transport, magnetization and heat capacitance was observed at ~123K and the origin of this phenomenon is still under debates. Toward to the success of fabricating spintronic devices, the growth and characterization of Fe3O4 thin film is essential and extremely important. In our present work, a Molecule-Beam-Epitaxy is adopted to grow high quality Fe3O4 films with various thicknesses and the growth condition is monitored by a real-time Reflex High Energy Electron Diffraction. After the confirmation of the sample quality, the best samples are chosen for the ferromagnetic resonance (FMR) studies. Temperature dependent FMR spectra and magnetocrystalline anisotropy are studied at various temperatures. Experimental results show that the transitions of lattice vibration, electrical conductivity and magnetocrystalline anisotropy all occur at different temperatures. Therefore, the origin of Verwey transition is suggested to be a Jahn-Teller type distortion. Furthermore, a lower transition temperature of magnetocrystalline in thinner film is attributed to a competition between Jahn-Teller effect and strain. This study provides a better understanding on the magnetocrystalline transition as well as the influence of the strain effect for Fe3O4 film.

參考文獻


[32] A. Tanaka,1 C. F. Chang, M. Buchholz, C. Trabant, E. Schierle, J. Schlappa, D. Schmitz, H. Ott, P. Metcalf, L. H. Tjeng, and C. Schusler-Langeheine, Phys. Rev. B 88, 195110 (2013).
[44] D. J. Huang, C. F. Chang, J. Chen, L. H. Tjeng, A. D. Rata, W. P. Wu, S. C. Chung, H. J. Lin, T. Hibma, and C. T. Chen, J. Magn. Magn. Mater. 239, 261 (2002); S. A. Morton, G. D. Waddill, S. Kim, I. K. Schuller, S. A. Chambers, and J. G. Tobin, Surf. Sci. 513, L451 (2002); J. G. Tobin, S. A. Morton, S. W. Yu, G. D. Waddill, I. K. Schuller, and S. A. Chambers, J. Phys.: Condens. Matter 19, 315218 (2007); M. Fonin, Y. S. Dedkov, R. Pentcheva, U. Rudiger, and G. Guntherodt, J. Phys.: Condens. Matter 19, 315217 (2007).
[89] S. Kale, S. M. Bhagat, S. E. Lofland, T. Scabarozi, S. B. Ogale, A. Orozco, S. R. Shinde, T. Venkatesan, B. Hannoyer, B. Mercey, and W. Prellier, Phys. Rev. B 64, 205413 (2001).
[102] R. Gupta, A. K. Sood, P. Metcalf, and J. M. Honig, Phys. Rev. B 65, 104430 (2002).
[100] D. M. Phase, S. Tiwari, R. Prakash, A. Dubey, V. G. Sathe, and R. J. Choudhary, J. Appl. Phys. 100, 123703 (2006).

延伸閱讀