透過您的圖書館登入
IP:18.191.240.243
  • 學位論文

背通道蝕刻下閘極非晶氧化銦鎵鋅薄膜電晶體之研製

Fabrication of Back-Channel-Etched Bottom-Gate Amorphous-InGaZnO Thin Film Transistors

指導教授 : 吳忠幟

摘要


背通道蝕刻下閘極薄膜電晶體結構是日漸實用的非晶型金屬氧化物薄膜電晶體最為渴望達成的結構,因為它的製程簡單、成本較低、易於縮小元件尺寸、以及相容於目前主流的非晶矽薄膜電晶體製程。然而到目前為止,由於非晶型金屬氧化物相當容易受酸鹼侵蝕(即使是弱酸或是弱鹼),適於大面積製程的背通道蝕刻非晶型金屬氧化物薄膜電晶體的高蝕刻選擇比源極/汲極濕式蝕刻製程仍然尚未被真正落實。 本論文使用兩種弱鹼性蝕刻液,經過蝕刻測試,驗證出它們對於被工業界廣泛使用的鉬及銅相對於非晶氧化銦鎵鋅具有非常高的蝕刻選擇比(>100)。利用這兩種蝕刻液,成功製作出下閘極背通道蝕刻的非晶氧化銦鎵鋅薄膜電晶體。這套發展出的製程方式顯示出金屬氧化物薄膜電晶體具有可應用於大尺寸顯示產品的潛力。 接著本論文利用以鉬為源極/汲極的下閘極背通道蝕刻非晶氧化銦鎵鋅薄膜電晶體,對被薄膜電晶體中常使用的後退火製程作進一步的研究,探討後退火製程對元件載子遷移率、閥電壓、及串聯電阻的影響。進一步發現後退火製程應用於本論文所發展出的氧化物薄膜電晶體,在後退火的溫度大於240 oC時會使得閘極對電晶體的開關能力下降,且後退火的溫度增加也會使得串聯電阻增加。故我們接著研究另一種退火方式:在沉積完半導體後即對元件進行退火的處理。實驗顯示半導體沉積後即進行退火的製程方式所製作的電晶體在300 oC的退火溫度下仍能保有良好的電晶體開關能力。且在相同退火溫度(以200 oC做比較)的情況下與元件完成後退火的製程比較,這個退火方式具有更低的串聯電阻。並且,使用半導體沉積後退火製程具有提高電流開關比的效果,最高達到2.6×109(在退火溫度為250 oC時)。最後,我們將發展出來的濕式蝕刻製程及半導體沉積後退火製程應用於使用三層金屬鉬/銅/鉬作為源/汲極的非晶氧化銦鎵鋅薄膜電晶體,電流開關比最高達到4.1×109(退火溫度亦為250 oC時)。

並列摘要


The back-channel-etched (BCE)-type bottom-gate thin film transistor (TFT) structure is the most desired one for the rapidly growing oxide TFT technology due to merits such as simplicity, low cost, ease of device scaling, and compatibility with the existed main-stream a-Si TFT fabrication. Yet until now, the high-etching-selectivity S/D wet etching processes that is required for implementing the BCE-type oxide TFT for large areas has not been successfully demonstrated due to the susceptibility of the amorphous oxides to corrosion by various acids and bases. In this thesis, we have developed such high-selectivity (>100) wet etching processes for widely used TFT electrodes Mo and even Cu, and successfully demonstrated its use in implementing decent BCE bottom-gate amorphous InGaZnO (a-IGZO) TFTs. Such development shall facilitate advances of the oxide TFT technology into the large-area applications and production. In this thesis, we had also studied the effects of the post-annealing process, which is commonly used in TFT technologies, on using BCE bottom-gate a-IGZO TFTs using Mo S/D electrodes. It was found that as the high-temperature (>240 oC) post-annealing was applied to the TFTs developed in this thesis, the current modulation ability was degraded, and the series resistance increased. Thus we adopted a different annealing process: annealing right after the semiconductor was deposited. Experiment results reveal that TFTs using this annealing process can endure an annealing temperature up to 300 oC and still possess good current modulation ability. Compared to annealing after TFT fabrication at the same annealing temperature (200 oC), this annealing process gains smaller series resistance. Besides, this process yields higher on/off current ratio for TFTs (up to 2.6×109 by the 250 oC annealing process). Finally we applied the wet-etching process and the annealing process to the fabrication of a-IGZO TFTs with Mo/Cu/Mo tri-layer S/D electrodes. These devices show decent TFT performances and high on/off current ratio up to 4.1×109 (by the 250 oC annealing process).

並列關鍵字

oxide metal oxide InGaZnO IGZO GIZO BCE TFT wet-etching

參考文獻


10. C. J. Kim, J. Park, S. Kim, I. Song, S. Kim, Y. Park, E. Lee, B. Anass and J. S. Park, Electrochem Solid St 12 (4), H95-H97 (2009).
3. C. J. Kim, J. Park, S. Kim, I. Song, S. Kim, Y. Park, E. Lee, B. Anass and J. S. Park, Electrochem Solid St 12 (4), H95-H97 (2009).
5. M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo and H. D. Kim, Appl Phys Lett 90 (21), - (2007).
3. J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo and H. D. Kim, Appl Phys Lett 92 (7), - (2008).
1. J. E. Lilienfeld, US Pat. 1,900,018 (1933).

延伸閱讀