透過您的圖書館登入
IP:3.145.173.112
  • 學位論文

塑膠化之液相層析蛋白質與縮氨酸分析元件

Plastic Monolithic Liquid Chromatography Device for Protein and Peptide Separation with On-Chip Gradient Delivery

指導教授 : 張建成 朱錦洲

摘要


一種新式的以塑膠基底之高效能液相層積法(HPLC)技術元件,應用在蛋白質及縮氨酸之分離在這篇論文中被提出。這個以環烯烴聚合物(COC)為基底之元件包含兩個注入不同濃度洗滌液以產生梯度變化之流道,兩個為了注入蛋白質或是縮氨酸混合測試計與排放其廢液之微流道,在這四個流道之交接處並以一個”雙T字”結構之定量注入裝置連接一個分離用之迴旋流道。 這個元件結合了四個埋入在四個注入流道末端之不鏽鋼針型之介面裝置,以連接程式控制化之注射幫浦以及高阻抗壓力之閥門去控制待測樣品之注入以及洗滌分離。流道之成型是利用熱壓印之方式製造出元件內各部分之幾何結構設定,並利用環己烷在室溫下利用溶劑接合之方式達到接合之目的,這種接合方式有別於需要犧牲層或是其他複雜之製造步驟,可以避免產生污染或是降低元件製造之良率。 針型介面裝置是埋入在預先設定之適當大小儲水區域之中,再經由退火之步驟以消除其殘留應力與剪應力。針型介面裝置可以連接商業化之連接元件,進而達到簡單地與玻璃毛細管、幫浦與閥門相連接之功能。在承受壓力測試中得知,此針型介面裝置可以承受到達24.8Mpa之壓力,也就是相當於244.76大氣壓之壓力,而沒有任何裂痕產生破壞此元件。 製造元件完成之後,經由紫外光激發化學試劑反應在微流道表面,接著用光聚合的方式生成多孔之聚甲基丙烯酸丁酯-交鏈劑二甲基丙烯酸酯之多孔性整體式聚合物,隨著梯度洗滌之方式而達到蛋白質與縮氨酸分離之目的。 梯度洗滌是由同時注入低與高濃度之有機溶劑,在控制不同注入速度下經由在兩種溶劑交會處之奈升等級之溝槽結構微混合器混合所達成。 初步的分離測試展示在三十分鐘內,元件便可以將蛋白質與縮氨酸之混合劑達到良好之分離結果。這個聚合物基底之元件可以連續操作五天並且沒有任何分層或是裂痕等毀壞之現象產生。

並列摘要


A novel technique of polymer-based monolithic high performance liquid chromatography (HPLC) is proposed for peptides and proteins separation on chip. The cyclic olefin copolymer (COC) chip consists of the two injection channels for gradient elution delivery, two injection channels for sample injection and waste, and one spiral separation channel regulated with “double-T” cross-injector. This device is integrated with 4 embedded needles at reservoirs which are located at the end of injection channel for connecting programmable syringe pumps and shut-off valves to control sample injection and elution. After hot-embossed process to imprint channel geometric pattern, the chip is bonded by cyclohexane at room temperature without sacrificial material or other complicated processes which may cause contaminate or decrease yield production. The needles are inserted in suitable size reservoirs followed with annealing to eliminate residual stress and shear stress. The needle interface could connect with union which is easy to integrate with capillary, pump and valve. It could withstand of pressure as high as 24.8Mpa (244.76 atm) without crack observed on the chip. The UV-initiated grafting COC microfluidic chips followed by polymerization of porous poly(butyl methacrylate-co-ethylene dimethacrylate) monolith has achieved protein and peptide separation with gradient eluting. The gradient is generated by simultaneously injecting low and high concentration organic solvents with different injection velocities through a nanoliter mixer with optimized grooved structures located at the converging of 2 injection channels. Preliminary separation tests show that peptide and protein mixtures were well separated in 30mins. The polymer-based chip could operate 5 days for continuous separation test without delamination or cracks.

參考文獻


119 C. C. Chu, L. Y. Yao, C. C. Chang, S. C. Kuo and F. G. Tseng, “Surface Tension Driven Flow inside Top-Bottom Constrained Microchannels”, Bull. Am. Phys. Soc., 2000, 45, 186.
77 M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo and D. T. Burke, “An Integrated Nanoliter DNA Analysis Device”, Science, 1998, 282, 484–487.
1 L. M. Lazar, P. Trisiripisal and H. A. Sarvaiya, “Microfluidic Liquid Chromatography System for Proteomic Applications and Biomarker Screening”, Anal. Chem., 2006, 78, 5513-5524.
2 J. E. MacNair, K. C. Lewis and J. W. Jorgenson, “Ultrahigh-Pressure Reversed-Phase Liquid Chromatography in Packed Capillary Columns”, Anal. Chem., 1997, 69, 983-989.
3 J. Xie, Y. N. Miao, J. Shih, Y. C. Tai and T. D. Lee, “Microfluidic Platform for Liquid Chromatography-Tandem Mass Spectrometry Analyses of Complex Peptide Mixtures”, Anal. Chem., 2005, 77, 6947–6953.

延伸閱讀