透過您的圖書館登入
IP:3.131.13.37
  • 學位論文

無線生醫監測電路之晶片組

Chipset for Wireless Biotelemetry Circuits

指導教授 : 呂學士

摘要


近年來,隨著微電子技術的進步,有關可植入式無線監測的研究已經得到越來越多的關注。可植入式的系統前端是由許多的生醫感測器所組成,這些生醫感測器包括溫度感測器、溼度感測器和氣體感測器等等。這些生醫感測器的主要目的是將他們所測得的生醫訊號轉換成後端電路所可以處理的電訊號。根據不同生醫訊號,我們所要獲得的生醫參數也不一樣,所以後端的處理電路也要有所不同。為了達到可植入的目的,在身體裡的電路系統通常無法做大量的參數計算,一般的處理方式是用一個類比轉數位轉換器將所得到的生醫訊號轉換成數位形式,而此轉換後的數位訊號再藉由數位傳輸機傳送到外界做處理。由於要能正確的分析接收到的資料,一個好的傳輸機和接收機介面就變的非常重要,而這也是為什麼傳輸機和接收機是整個電路設計的瓶頸。因此,若傳送出來的訊號可以為外界所正確接收,這樣一來參數分析就簡單多了,所以此篇論文的內容就在探討傳輸機和接收機的電路實現。 在論文的第二章,我們會提出一個對於無線監測的類比解決方案。我們使用一個簡單的FM傳輸機傳送像心電圖這樣的生醫訊號,接著對接受到的心電圖做心律變異的分析。從這個實驗裡我們可以看到此傳輸機的大小和米粒差不多,因此此米粒形傳輸機非常適合可植入式的應用。這個解決方案的優點在於簡單和便宜,因為只要一個收音機即可接收訊號。然而,此系統可處理的生醫訊號有限,所以需要其他的解決方法。 論文的第三章,我們會介紹一個數位的微系統解決方法來處理生醫訊號。我們採用振幅位移指數位傳輸的調變方式,振幅位移指的好處在於易於實現、電路體積較小等。在這章裡,我們會設計兩個使用不同解調概念的振幅位移指接收機。另一個在此章所提到的電路是電源開重置電路,此電路的目的在產生一個處發訊號來喚醒系統其他的電路。 最後一個章節裡,我們會先介紹一般用於手機通訊的接收機架構,其中一個構成接收機架構的重要電路是電壓控制振盪器。許多對於電壓控制振盪器的設計問題像可變電容、電感和相位雜訊等都會在這章裡詳細討論。典型的相位雜訊模型是根據線性非時變和線性時變的分析而來,而另外一個相位雜訊的解釋是用非線性的模型來分析,這些解釋模型都可以在此章裡看到。接下來,我們設計了一個用於映像去除接收機的四相位電壓控制振盪器。一般來說高頻相位關係的量測複雜而且不精確,所以在這論文裡,我們提出一個相位量測的校正方法。最後,我們設計一個適用於802.11a/b/g多頻應用的電容切換電壓控制振盪器,此振盪器的振盪頻率從2.4 GHz到3.0 GHz。我們也列出不同時期的振盪器電路比較於論文的最後。

並列摘要


Recently, there has been a growing interest in implantable wireless biotelemetry for diagnosis as the advancement of microelectronic technologies. A lot of biosensors including temperature sensor, moisture sensor, and gas sensor and so forth have been proposed such that the front end of the implantable system can get the wanted signals. The characteristics of these sensors are to transfer the measured bio-signal into the electrical signal which is required by the succeeding circuits. According to the parameters imbedded in the signal, different systems may be designed to process different bio-signals. Since there is a limit processing ability for the system as far as implantation is concerned, general methods are then converting the signal into the digital form by the analog-to-digital converter (ADC) and then followed by a digital transceiver to transmit the digital signal to the outside world. Because of the signal quality required by the data processing, a good transceiver is therefore necessary. This is the reason why the transceiver is usually the bottleneck of the whole system. Thus, if the transmitted signal can be received correctly from the outside world, many analyses can be done easily. This thesis is then focused on the realization of the transmitter and the receiver interfaces. In the chapter 2 of this thesis, we will present an analog solution for wireless biotelemetry. We use a simple integrated FM (frequency modulation) transmitter for a specific bio-signal such as electrocardiograms (ECG) for heart rate variability (HRV) test. The size of this transmitter is comparable to that of a rice grain and thereby is suitable for implantation purpose. The advantages of this solution are simple and cheap because a radio only can be used as the receiver. However, the signals that can be processed by this system are limited, so another solution is needed. In the chapter 3 of this thesis, we introduce a digital microsystem solution for signal processing. The modulation mechanism of digital transceiver is by using amplitude-shift keying (ASK). The advantages of ASK are easy implantation and small size, etc.. In that chapter, we will design two ASK receivers by different demodulating concepts. The other circuit described in that chapter is the power-on reset (POR). This circuit is to generate a trigger signal to wake up the rest circuits of the system. In the final chapter, typical receiver architectures for cell phone communication are discussed. An important block in the receiver structure is the voltage-controlled oscillator (VCO). Many design issues such as varactors, inductors, and phase noise of the VCO are discussed in that chapter. Typical models for phase noise are based on linear-time invariant (LTI) and linear-time varying (LTV) analyses. Another explanation for phase noise is a non-linear closed-form model and can been seen in this thesis. Next, a quadrature VCO for image-reject receiver is designed. Usually, the measurement of phase relationship for high frequency is complex and inaccuracy. In this thesis, we introduced a calibration method for phase measurement. Finally, a switched-capacitor VCO designed from 2.4 GHz to 3.0 GHz is presented for wireless local area network (WLAN) 802.11a, b, and g multi-band application. A comparison between different works can be seen in the thesis.

參考文獻


[14] P. W. Lee, H. W. Chiu, T. L. Hsieh, C. H. Shen, G. W. Huang and S. S. Lu, “A SiGe low noise amplifier for 2.4/5.2/5.7 GHz WLAN applications,” in ISSCC Tech. Dig., pp. 364-465, Feb. 2003.
[28] T. H. Lee and A. Hajimiri, “Oscillator phase noise: A tutorial,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 326 - 336, March 2000.
[15] R. G. Meyer and W. D. Mack, “A 1-GHz BiCMOS RF front-end IC,” IEEE Journal of Solid-State Circuits, vol. 29, pp. 350-355, March 1994.
[1] Babak Ziaie, Khalil Najafi, and David J. Anderson, “A low-power miniature transmitter using a low-loss silicon platform for biotelemetry,” in Proc. 19th Int. Conf. , IEEE-EMBS, pp. 2221-2224, 1997.
[2] N. Ando, I. Shimoyama, and R. Kanzaki, “A dual channel FM transmitter for acquisition of flight muscle activities from the freely flying hawkmoth, Agrius Convolvuli,” Journal of Neuroscience Methods, vol. 115, pp. 181-187, April 2002.

被引用紀錄


Lin, S. H. (2008). 適用於寬頻無線通訊系統之CMOS鎖相迴路頻率合成器 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2008.10605
Yang, Y. C. (2007). CMOS 單晶片分數型鎖相迴路頻率合成器之設計與應用 [doctoral dissertation, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2007.00474

延伸閱讀