透過您的圖書館登入
IP:18.119.107.161
  • 學位論文

改良孔洞型二氧化矽低介電係數薄膜機械性質

Improvement of Mechanical Strength of Porous Low-k Silica Thin Film

指導教授 : 萬本儒

摘要


隨著半導體元件尺寸不斷的縮小,導線間RC delay、訊號彼此間的干擾與能量的消耗越來越大,使用低介電係數材料作為導線間的阻障層已是刻不容緩的事情。孔洞型二氧化矽是一種有潛力的低介電係數材料,有與半導體現今使用材料相近、介電係數低於2、熱穩定性佳的優點,不過由於孔洞材料的關係,容易有機械強度不佳的缺點,本研究目的在改善孔洞型二氧化矽材料的機械強度。 本研究嘗試了靜置、70℃回流、非界面活性劑為模板與添加TPAOH來改善機械強度,利用顯微鏡觀測、介電係數、漏電流、機械強度、孔隙度和FTIR圖分析薄膜性質。本研究結果發現,採用乙醇加氨水靜置,會有膜厚減少、介電係數降低、機械強度增加與漏電流降低的現象;塗佈溶液經過70℃回流處理也能改善機械強度,不過回流時有無添加界面活性劑對薄膜性質會有很大的影響,回流時添加界面活性劑可以增進機械強度,不過形成的薄膜內部有大孔洞,回流時不加入界面活性劑會降低孔隙度,同時減少孔洞內部Si-OH量,可以增進機械強度、降低漏電流,且介電係數可維持在2左右;以非界面活性劑PEG1450為模板,介電係數比以Tween80為模板高,增加PEG1450量無法使孔隙度增加,所以介電常數不容易降至2以下,不過機械強度較高;回流時加入少量的TPAOH可以提升機械強度,且有低介電係數(k=2)的優點。 本研究發現孔隙度、孔洞大小和Si-OH量會影響薄膜性質,高孔隙度(porosity>0.5)可以降低介電係數,適當的孔洞大小(3~8nm)可使表面修飾容易進行且避免倒塌,較少的Si-OH代表縮合完整,所以會有較高的機械強度與較低的介電係數。本實驗室製備的薄膜介電係數為2,回流與添加TPAOH後,機械強度可由5.5GPa提升至10GPa,漏電流大小約10-8A/cm2。

並列摘要


As ultra-large-scale circuits (ULSIs) continue to shrink, chip performance becomes increasingly limited by back end of the line due to interconnect delay (RC delay), which cause the increase of power consumption. In order to meet the requirement for ULSIs in submicron region, development of low dielectric constant materials is inevitable. The incorporation of porosity into the films is a feasible method to reduce the dielectric constant. However, the introduction of pores reduces the mechanical strength. Low-k films with insufficient mechanical strength result in failure during CMP process. Improvement the mechanical strength of low-k film is essential. Several methods were attempted to improve the mechanical strength in this research: aging after spin coating and baking, 70℃ reflux of the precursor of coating solution, addition of TPAOH in the reflux solution, and use PEG1450 as a template. Microscope, dielectric constant, leakage current, mechanical strength, porosity and FTIR were used to analyze the films. It was found from this study that aging the films in the mixture of ammonium hydroxide and ethanol was able to enhance the gelation of the films, and increased the elastic modulus from 5.5GPa to 6.8Gpa. Moreover, the leakage current was reduced. The reflux of TEOS/ethanol solution at 70℃ is another method to improve the mechanical strength. Nevertheless, reflux with template (surfactant Tween80) would produce bigger pores in the film. Reflux without template would reduce the porosity and Si-OH groups in the film; therefore, the film possessed higher mechanical strength and less leakage current than that without reflux. There was no formation of bigger pores during refluxing without template. TPAOH in the reflux solution can improve the condensation of the Si-OH bonds. It was found that the addition of a little TPAOH was able further to increase the mechanical strength of the films. However, when using PEG1450 (a non-surfactant) as the template instead of a surfactant, the dielectric constant of the film was increased to 2.3~2.7, which is not expected in the future application of low k films. It can be summarized from the experimental results in this study, that the influences of the properties of the porous low-k film are porosity, pore size and the amount of Si-OH bonds in the film. The film with high porosity has low dielectric constant. Appropriate pore size (3~8nm) will help the surface modification and prevent collapsing. The film with less Si-OH bonds has high mechanical strength and low k value. The dielectric constant of the best film prepared in this research was 2.1. The elastic modulus and hardness of the film were 9.9GPa and 1.4Gpa respectively. The leakage current was 1.19E-07 A/cm2.

參考文獻


20.丁致遠, ”利用模版試劑製備低介電薄膜的研究”, 國立台灣大學化學工程學研究所碩士學位論文, 2000
4.S. Lin, C Jin, L. Lui, M. Tsai, M. Daniels, A Gonzalez, J. T. Wetzel, K. A. Monning, P. A. Winebarger, S. Jang, D. Yu, M. S. Liang, “Low-k dielectrics characterization for damascene integration”, Proc. 2001 Int. Interconnect Technology Conf., San Francisco, 2001(IEEE Press, new Jersey 2001), p146-148
1.R.D. Miller, R. Beyers, K.R. Carter, “Porous Organosilicates for On-chip Dielectric Applications”, Mat. Res. Soc. Symp. Proc. , p565, 3(1999)
3.Miller, R. D., “In Search of Low-k Dielectrics”, p421, 286(1999)
6.S.J. Martin, J.P. Godschalx, M.E. Mills, “Development of a Low-Dielectric-Constant Polymer for the Fabrication of Integrated Circuit Interconnect” Adv. Mater. , p1769, 23(2000)

被引用紀錄


陳翰儀(2016)。鑑定與製備微孔型非結晶二氧化矽低介電薄膜〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201602638
林冠燁(2015)。應用氧化矽奈米粒製備抗腐蝕膜及低介電薄膜〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.02747
張瓊云(2013)。以不同濃度的結構導向試劑TPAOH製備多孔型低介電薄膜〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2013.02648
龔建豪(2009)。鹼式單階段水熱製程製備結晶孔洞型二氧化矽低介電薄膜〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2009.02185
鄧志霖(2008)。探討製程對結晶性孔洞型二氧化矽薄膜性質的影響〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2008.02860

延伸閱讀