数值差分格式及格点设置对土壤温度模拟结果的影响

郑辉, 刘树华. 数值差分格式及格点设置对土壤温度模拟结果的影响[J]. 地球物理学报, 2012, 55(08): 2514-2522, doi: 10.6038/j.issn.0001-5733.2012.08.004
引用本文: 郑辉, 刘树华. 数值差分格式及格点设置对土壤温度模拟结果的影响[J]. 地球物理学报, 2012, 55(08): 2514-2522, doi: 10.6038/j.issn.0001-5733.2012.08.004
ZHENG Hui, LIU Shu-Hua. Effects of difference and grid scheme in soil temperature simulation[J]. Chinese Journal of Geophysics (in Chinese), 2012, 55(08): 2514-2522, doi: 10.6038/j.issn.0001-5733.2012.08.004
Citation: ZHENG Hui, LIU Shu-Hua. Effects of difference and grid scheme in soil temperature simulation[J]. Chinese Journal of Geophysics (in Chinese), 2012, 55(08): 2514-2522, doi: 10.6038/j.issn.0001-5733.2012.08.004

数值差分格式及格点设置对土壤温度模拟结果的影响

详细信息
    通讯作者: 刘树华,教授,博士生导师,从事大气边界层物理和区域气候变化研究.E-mail:lshuhua@pku.edu.cn
  • 中图分类号: P467

Effects of difference and grid scheme in soil temperature simulation

More Information
  • 土壤温度是反映气候系统和生态系统能量循环的重要地球物理学参量,土壤温度的模拟精度直接影响着气候系统模式以及陆面物理过程模式的模拟结果.为了提高模式对土壤温度的模拟能力,本文利用土壤热扩散方程的傅里叶解析解定量研究了差分方案、格点设置以及时间步长对土壤温度模拟结果的影响;提出了一种优化的格点设置方案,并利用巴丹吉林沙漠观测数据检验了该方案的性能.研究结果表明:三种差分方案中,显式方案的模拟误差最小,Crank-Nicolson方案其次,隐式方案的模拟误差最大;每一种格点设置方案均存在一个使模拟结果误差最小的最优化时间步长;常用格点设置方案的最优化时间步长为5358 s,最小标准差为0.156 K,优化方案的最优化时间步长为1694 s,最小标准差为0.0465 K;取时间步长为1800 s时,采用常用格点设置方案,巴丹吉林沙漠10 cm深度土壤温度模拟结果的标准差为1.61 K,而采用优化方案,模拟结果的标准差降至0.21 K,改进效果明显.
  • 加载中
  • [1]

    张强, 王盛, 卫国安. 西北地区戈壁局地陆面物理参数的研究. 地球物理学报, 2003, 46(5): 616-623. Zhang Q, Wang S, Wei G A. A study on parameterization of local land surface physical processes on the Gobi of Northwest China. Chinese J. Geophys. (in Chinese), 2003, 46(5): 616-623.

    [2]

    刘树华. 环境物理学. 北京: 化学工业出版社, 2004. Liu S H. Environmental Physics (in Chinese). Beijing: Chemical Industry Press, 2004.

    [3]

    Pitman A J. The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology, 2003, 23(5): 479-510.

    [4]

    Sellers P J, Dickinson R E, Randall D A, et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 1997, 275(5299): 502-509.

    [5]

    Koster R D, Dirmeyer P A, Guo Z C, et al. Regions of strong coupling between soil moisture and precipitation. Science, 2004, 305(5687): 1138-1140.

    [6]

    Clark P A, Hopwood W P. One-dimensional site-specific forecasting of radiation fog. Part 1: Model formulation and idealised sensitivity studies. Meteorological Applications, 2001, 8(3): 279-286.

    [7]

    Wen L, Yu W, Lin C A, et al. The role of land surface schemes in short-range, high spatial resolution forecasts. Monthly Weather Review, 2000, 128(10): 3605-3617.

    [8]

    Schulz J P, Dümenil L, Polcher J, et al. Land surface energy and moisture fluxes: comparing three models. Journal of Applied Meteorology, 1998, 37(3): 288-307.

    [9]

    Liu S H, Yue X, Hu F, et al. Using a modified soil-plant-atmosphere scheme (MSPAS) to simulate the interaction between land surface processes and atmospheric boundary layer in semi-arid regions. Advances in Atmospheric Sciences, 2004, 21(2): 245-259.

    [10]

    Liu S H, Yue X, Liu H Z, et al. Using a modified soil-plant-atmosphere scheme (MSPAS) to study the sensitivity of land surface and boundary layer processes to soil and vegetation conditions. Advances in Atmospheric Sciences, 2004, 21(5): 717-729.

    [11]

    Deardorff J W. Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. Journal of Geophysical Research, 1978, 83(C4): 1889-1903.

    [12]

    Xue Y, Sellers P J, Kinter J L, et al. A simplified biosphere model for global climate studies. Journal of Climate, 1991, 4(3): 345-364.

    [13]

    Sellers P J, Randal D A, Collatz G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. 1. Model formulation. Journal of Climate, 1996, 9(4): 676-705.

    [14]

    Bonan G B. A Land Surface Model (LSM Version 1. 0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User's Guide. Boulder: NCAR, 1996.

    [15]

    Bonan G B, Oleson K W, Vertenstein M, et al. The land surface climatology of the community land model coupled to the NCAR community climate model. Journal of Climate, 2002, 15(22): 3123-3149.

    [16]

    Oleson K W, Lawrence D M, Bonan G B, et al. Technical Description of version 4.0 of the Community Land Model (CLM). Boulder: NCAR, 2010.

    [17]

    IPCC. Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007.

    [18]

    周锁铨, 张翠, 王小宁等. 多层土壤温度模拟及其检验. 南京气象学院学报, 2004, 27(2): 200-209. Zhou S Q, Zhang C, Wang X N, et al. Simulation of soil temperature with a multi-layer model and its verification. Journal of Nanjing Institute of Meteorology (in Chinese), 2004, 27(2): 200-209.

    [19]

    房云龙, 孙菽芬, 李倩等. 干旱区陆面过程模式参数优化和地气相互作用特征的模拟研究. 大气科学, 2010, 34(2): 290-306. Fang Y L, Sun S F, Li Q, et al. The optimization of parameters of land surface model in arid region and the simulation of land-atmosphere interaction. Chinese Journal of Atmospheric Sciences (in Chinese), 2010, 34(2): 290-306.

    [20]

    Chen T H, Henderson-Sellers A, Milly P C D, et al. Cabauw experimental results from the Project for Intercomparison of Land-Surface Parameterization Schemes. Journal of Climate, 1997, 10(6): 1194-1215.

    [21]

    Mölders N. Plant- and soil-parameter-caused uncertainty of predicted surface fluxes. Monthly Weather Review, 2005, 133(12): 3498-3516.

    [22]

    Best M J. A model to predict surface temperatures. Boundary-Layer Meteorology, 1998, 88(2): 279-306.

    [23]

    Qu W Q, Henderson-Sellers A, Pitman A J, et al. Sensitivity of latent heat flux from PILPS land-surface schemes to perturbations of surface air temperature. Journal of the Atmospheric Sciences, 1998, 55(11): 1909-1927.

    [24]

    Best M J, Cox P M, Warrilow D. Determining the optimal soil temperature scheme for atmospheric modelling applications. Boundary-Layer Meteorology, 2005, 114(1): 111-142.

    [25]

    Bonan G B. A biophysical surface-energy budget analysis of soil-temperature in the boreal forests of interior Alaska. Water Resources Research, 1991, 27(5): 767-781.

    [26]

    Colello G D, Grivet C, Sellers P J, et al. Modeling of energy, water, and CO2 flux in a temperate grassland ecosystem with SiB2. Journal of the Atmospheric Sciences, 1998, 55(7): 1141-1169.

    [27]

    Heath M T. Scientific Computing: An Introductory Survey. New York: McGraw-Hill, 2002.

    [28]

    周锁铨, 代刊, 陈涛等. 陆面过程模式的改进及其检验. 气象学报, 2003, 61(3): 275-291. Zhou S Q, Dai K, Chen T, et al. The improvement and verification of land surface process model (BATS). Acta Meteorologica Sinica (in Chinese), 2003, 61(3): 275-291.

    [29]

    代成颖, 高志球, 王琳琳等. 两种土壤温度算法的对比分析. 大气科学, 2009, 33(1): 135-144. Dai C Y, Gao Z Q, Wang L L, et al. Intercomparison between two soil temperature algorithms. Chinese Journal of Atmospheric Sciences (in Chinese), 2009, 33(1): 135-144.

    [30]

    梁晓, 戴永久. 陆面模式中土壤和植被经验参数随机误差的传播研究. 大气科学, 2010, 34(2): 457-470. Liang X, Dai Y J. Soil and plant parameters related stochastic uncertainty propagation in the common land model. Chinese Journal of Atmospheric Sciences (in Chinese), 2010, 34(2): 457-470.

    [31]

    刘树华, 崔艳, 刘和平. 土壤热扩散系数的确定及其应用. 应用气象学报, 1991, 2(4): 337-345. Liu S H, Cui Y, Liu H P. Determination of thermal diffusivity of soil land and its application. Quarterly Journal of Applied Meteorology (in Chinese), 1991, 2(4): 337-345.

  • 加载中
计量
  • 文章访问数:  2554
  • PDF下载数:  1759
  • 施引文献:  0
出版历程
收稿日期:  2011-11-09
修回日期:  2012-07-12
上线日期:  2012-08-20

目录