东秦岭晚白垩世恐龙多样性降低的气候因素

王学婷, 蒋凯, 梁耀, 苏柏, 李建刚, 郑博洋, 梁文天, 姜兆霞, 王强, 靳春胜. 2023. 东秦岭晚白垩世恐龙多样性降低的气候因素. 地球物理学报, 66(9): 3774-3788, doi: 10.6038/cjg2023R0032
引用本文: 王学婷, 蒋凯, 梁耀, 苏柏, 李建刚, 郑博洋, 梁文天, 姜兆霞, 王强, 靳春胜. 2023. 东秦岭晚白垩世恐龙多样性降低的气候因素. 地球物理学报, 66(9): 3774-3788, doi: 10.6038/cjg2023R0032
WANG XueTing, JIANG Kai, LIANG Yao, SU Bai, LI JianGang, ZHENG BoYang, LIANG WenTian, JIANG ZhaoXia, WANG Qiang, JIN ChunSheng. 2023. Late Cretaceous paleoclimatic effects on the decreased dinosaur biodiversity in East Qinling. Chinese Journal of Geophysics (in Chinese), 66(9): 3774-3788, doi: 10.6038/cjg2023R0032
Citation: WANG XueTing, JIANG Kai, LIANG Yao, SU Bai, LI JianGang, ZHENG BoYang, LIANG WenTian, JIANG ZhaoXia, WANG Qiang, JIN ChunSheng. 2023. Late Cretaceous paleoclimatic effects on the decreased dinosaur biodiversity in East Qinling. Chinese Journal of Geophysics (in Chinese), 66(9): 3774-3788, doi: 10.6038/cjg2023R0032

东秦岭晚白垩世恐龙多样性降低的气候因素

  • 基金项目:

    国家自然科学基金(42288201,41888101,41877452,42177434),国家重点研发计划(2022YFF0800800),中国科学院战略性先导科技专项(XDA20070202,XDB26000000)资助

详细信息
    作者简介:

    王学婷, 女, 1997年生, 硕士研究生, 主要从事大陆化学风化及古气候研究.E-mail: xtwang@mail.iggcas.ac.cn

    通讯作者: 靳春胜, 男, 1981年生, 副研究员, 主要从事青藏高原及邻区新生代古气候研究.E-mail: csjin@mail.iggcas.ac.cn
  • 中图分类号: P318

Late Cretaceous paleoclimatic effects on the decreased dinosaur biodiversity in East Qinling

More Information
  • 气候与环境变化是影响生物群演化的关键驱动因素,因此研究陆地生态系统所处的古气候与古环境背景对于探讨生物盛衰甚至灭绝具有重要的意义.我国盛产恐龙骨骼和恐龙蛋化石,但迄今对于古气候-环境演化与恐龙种群数量和多样性演化联系的研究相对匮乏.东秦岭地区发育多个晚中生代-早新生代陆相沉积盆地,蕴含大量晚白垩世恐龙骨骼和蛋、新生代哺乳动物化石,是开展古气候与恐龙动物群多样性演化关系,探究恐龙灭绝原因的理想场所.本研究对东秦岭灵宝盆地好阳河剖面开展环境磁学和元素地球化学研究,重建了该区晚白垩世-早始新世期间的化学风化强度和古水文循环过程,以揭示生物-环境协同演化的关系.化学风化强度和磁化率记录表明晚白垩世-早始新世期间灵宝盆地古气候-水文环境发生了三次大的阶段性变化:在约74.4~68.0 Ma,研究区处于水动力较稳定的深湖相沉积环境和逐渐变冷的气候状态;随后68.0~65.8 Ma时期研究区逐渐干旱化,水文波动变强;在65.8~54.7 Ma,区域气候变化强烈,呈现明显增强的干湿水文循环.本研究揭示了古气候-水文环境变化与恐龙种群演化的关系,提出东秦岭地区在晚白垩世末期(约68~66 Ma)的气候干旱化及变强的水文波动可能是驱动该区恐龙动物群多样性降低的主要原因,为深入理解生物-环境协同演化提供了新数据支撑.

  • 加载中
  • 图 1 

    研究区位置示意图

    Figure 1. 

    A schematic map of the location of the study area

    图 2 

    好阳河剖面概况

    Figure 2. 

    Profile of the Haoyanghe section

    图 3 

    好阳河剖面岩性柱及古气候指标序列

    Figure 3. 

    Lithostratigraphic column and sequences of palaeoclimatic proxies of the Haoyanghe section

    图 4 

    好阳河剖面代表性样品岩石磁学结果

    Figure 4. 

    Rock magnetic results of representative samples from the Haoyanghe section

    图 5 

    好阳河剖面(全样)主量元素含量(以氧化物表示)变化

    Figure 5. 

    Variation of major element concentrations in the Haoyanghe section (bulk sample)

    图 6 

    好阳河剖面三个阶段的平均主量元素含量UCC标准化模式图

    Figure 6. 

    UCC-normalized pattern for average major element concentrations of the three phases in the Haoyanghe section

    图 7 

    好阳河剖面古气候及化学风化代用指标的相关性分析

    Figure 7. 

    Correlation analysis of paleoclimate and chemical weathering proxies

    图 8 

    好阳河剖面A-CN-K(Al2O3—CaO*+Na2O—K2O) 三角图解

    Figure 8. 

    A-CN-K (Al2O3—CaO*+Na2O—K2O) ternary diagram of the Haoyanghe section

    图 9 

    灵宝盆地好阳河剖面磁化率和化学风化强度(CIAc)随时间变化曲线及其与深海氧同位素记录、山阳盆地磁化率的对比

    Figure 9. 

    Temporal variation of magnetic susceptibility and the Al2O3/SiO2 corrected CIA (CIAc) of the Haoyanghe section in the Lingbao Basin and comparison with the deep-sea δ18 O and magnetic susceptibility of the Shanyang Basin

    表 1 

    好阳河剖面磁化率、化学风化强度(CIAc)及主量元素氧化物含量

    Table 1. 

    Table of magnetic susceptibility, the corrected chemical weathering intensity (CIAc), and major element concentrations in the Haoyanghe section

    数据分布 磁化率(10-8m3kg-1) CIAc 元素氧化物(%)
    SiO2 CaO Al2O3 MgO Fe2O3 K2O Na2O
    全剖面平均值
    (变化范围)
    29.35
    -2.39~172.76
    60.52
    50.90~73.56
    41.77
    2.12~76.90
    15.26
    0.55~45.40
    8.02
    0.61~15.56
    7.31
    0.92~21.70
    3.57
    0.56~9.25
    2.28
    0.48~4.33
    0.94
    0.14~2.42
    地层Ⅰ段平均值
    (变化范围)
    2.78
    -1.89~15.30
    66.97
    60.09~73.56
    32.47
    8.80~63.20
    22.36
    4.50~45.40
    6.63
    0.92~13.60
    7.66
    0.92~20.60
    1.89
    0.56~5.44
    1.59
    0.48~3.29
    0.46
    0.14~1.39
    地层Ⅱ段平均值
    (变化范围)
    23.70
    -1.73~143.75
    58.83
    51.43~65.24
    46.03
    2.12~76.90
    12.72
    0.88~39.59
    8.30
    0.66~12.64
    7.84
    2.27~21.70
    3.07
    0.39~7.81
    2.35
    0.21~3.88
    1.05
    0.63~2.42
    地层Ⅲ段平均值
    (变化范围)
    42.73
    -2.39~172.76
    58.06
    50.90~71.67
    44.84
    3.97~68.56
    12.74
    0.55~35.50
    8.57
    0.85~15.56
    7.02
    1.47~21.50
    4.45
    0.44~9.25
    2.57
    0.15~4.33
    1.13
    0.19~2.38
    注:限于表格篇幅,TiO2、P2O5、MnO三种含量较低的氧化物未展示于本表,可查阅附件数据.
    下载: 导出CSV
  •  

    Alvarez L W, Alvarez W, Asaro F, et al. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208(4448): 1095-1108, doi: 10.1126/science.208.4448.1095.

     

    Archibald J D. 2014. What the dinosaur record says about extinction scenarios. //International Conference on Volcanism, Impacts, and Mass Extinctions: Causes and Effects. Geological Society of America, 505: 213-224.

     

    Bouchez J, Lupker M, Gaillardet J, et al. 2011. How important is it to integrate riverine suspended sediment chemical composition with depth?Clues from Amazon River depth-profiles. Geochim. Cosmochim. Acta, 75(22): 6955-6970, doi: 10.1016/j.gca.2011.08.038.

     

    Brusatte S. 2015. What killed the dinosaurs. Sci. Am. , 313(6): 54-59, doi: 10.1038/scientificamerican1215-54.

     

    Brusatte S L, Butler R J, Barrett P M, et al. 2015. The extinction of the dinosaurs. Biol. Rev. , 90(2): 628-642, doi: 10.1111/brv.12128.

     

    Caves Rugenstein J K, Chamberlain C P. 2018. The evolution of hydroclimate in Asia over the Cenozoic: A stable-isotope perspective. Earth-Sci. Rev. , 185: 1129-1156, doi: 10.1016/j.earscirev.2018.09.003.

     

    Condamine F L, Guinot G, Benton M J, et al. 2021. Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures. Nat. Commun. , 12(1): 3833, doi: 10.1038/s41467-021-23754-0.

     

    Courtillot V, Fluteau F. 2010. Cretaceous extinctions: the volcanic hypothesis. Science, 328(5981): 973-974, doi: 10.1126/science.328.5981.973-b.

     

    Cramer B S, Toggweiler J R, Wright J D, et al. 2009. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography, 24(4): PA4216, doi: 10.1029/2008pa001683.

     

    Deng C, Zhu R, Jackson M J, et al. 2001. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese loess plateau: A pedogenesis indicator. Phys. Chem. Earth Pt. A-Solid Earth Geod. , 26(11-12): 873-878, doi: 10.1016/S1464-1895(01)00135-1.

     

    Deng K, Yang S Y, Guo Y L. 2022. A global temperature control of silicate weathering intensity. Nat. Commun. , 13(1): 1781, doi: 10.1038/s41467-022-29415-0.

     

    Ding L, Kapp P, Wan X Q. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24(3): TC3001, doi: 10.1029/2004tc001729.

     

    Fedo C M, Nesbitt H W, Young G M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10): 921-924, doi: 10.1130/0091-7613(1995)023.

     

    Gao Y, Ibarra D E, Caves Rugenstein J K, et al. 2021. Terrestrial climate in mid-latitude East Asia from the latest Cretaceous to the earliest Paleogene: A multiproxy record from the Songliao Basin in northeastern China. Earth-Sci. Rev. , 216: 103572, doi: 10.1016/j.earscirev.2021.103572.

     

    Garzanti E, Andò S, Vezzoli G. 2009. Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth Planet. Sci. Lett. , 277(3-4): 422-432, doi: 10.1016/j.epsl.2008.11.007.

     

    Gradstein F M, Ogg J G, Schmitz M, et al. 2012. The Geologic Time Scale 2012. Amsterdam: Elsevier.

     

    Guo Y L, Yang S Y, Su N, et al. 2018. Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices. Geochim. Cosmochim. Acta, 227: 48-63, doi: 10.1016/j.gca.2018.02.015.

     

    Guo Z T, Sun B, Zhang Z S, et al. 2008. A major reorganization of Asian climate by the early Miocene. Clim. Past. , 4(3): 153-174, doi: 10.5194/cp-4-153-2008.

     

    Guo Z T. 2017. Loess Plateau attests to the onsets of monsoon and deserts. Sci. Sin. Terrae (in Chinese), 47(4): 421-437, doi: 10.1360/n072017-00037.

     

    Han F, Wang Q, Wang H P, et al. 2022. Low dinosaur biodiversity in central China 2 million years prior to the end-Cretaceous mass extinction. Proc. Natl. Acad. Sci. , 119(39): e2211234119, doi: 10.1073/pnas.2211234119.

     

    Harnois L. 1988. The CIW index: A new chemical index of weathering. Sediment. Geol. , 55(3-4): 319-322, doi: 10.1016/0037-0738(88)90137-6.

     

    Jéhanno C, Boclet D, Froget L, et al. 1992. The Cretaceous-Tertiary boundary at Beloc, Haiti: No evidence for an impact in the Caribbean Area. Earth Planet. Sci. Lett. , 109(1-2): 229-241, doi: 10.1016/0012-821X(92)90086-B.

     

    Jiang K, Liang W T, Wu G Z, et al. 2022a. Anisotropy of magnetic susceptibility study and its significance in the Late Cretaceous-Cenozoic Sanmenxia Basin in the southeastern Shanxi rift, Central China. Solid Earth Sci. , 7(2): 135-150, doi: 10.1016/j.sesci.2022.02.002.

     

    Jiang Z X, Liu Q S, Roberts A P, et al. 2022b. The magnetic and color reflectance properties of hematite: From Earth to Mars. Rev. Geophys. , 60(1): e2020RG000698, doi: 10.1029/2020rg000698.

     

    Jiang H, Zhang J, Zhang S, et al. 2022c. Tectonic and climatic impacts on environmental evolution in East Asia during the Palaeogene. Geophys. Res. Lett. , 49(3): e2021GL096832, doi: 10.1029/2021gl096832.

     

    Keller G, Adatte T, Pardo A, et al. 2010. Cretaceous extinctions: evidence overlooked. Science, 328(5981): 974-975, doi: 10.1126/science.328.5981.974-a.

     

    Li F L, Yang S Y, Breecker D O, et al. 2022. Responses of silicate weathering intensity to the Pliocene-Quaternary cooling in East and Southeast Asia. Earth Planet. Sci. Lett. , 578: 117301, doi: 10.1016/j.epsl.2021.117301.

     

    Liu J, Chen X Q, Shi W, et al. 2019. Tectonically controlled evolution of the Yellow River drainage system in the Weihe region, North China: Constraints from sedimentation, mineralogy and geochemistry. J. Asian Earth Sci. , 179: 350-364, doi: 10.1016/j.jseaes.2019.05.008.

     

    Liu Q S, Roberts A P, Larrasoaña J C, et al. 2012. Environmental magnetism: Principles and applications. Rev. Geophys. , 50(4): RG4002, doi: 10.1029/2012rg000393.

     

    Lu H Y, Wang X Y, Wang X Y, et al. 2019. Formation and evolution of Gobi Desert in central and eastern Asia. Earth-Sci. Rev. , 194: 251-263, doi: 10.1016/j.earscirev.2019.04.014.

     

    MacLeod K G, Huber B T, Isaza-Londoño C. 2005. North Atlantic warming during global cooling at the end of the Cretaceous. Geology, 33(6): 437-440, doi: 10.1130/g21466.1.

     

    McLennan S M. 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. //Lipin B R, McKay G A eds. Geochemistry and Mineralogy of Rare Earth Elements. Berlin: De Gruyter, 169-200.

     

    McLennan S M. 1993. Weathering and global denudation. J. Geol. , 101(2): 295-303, doi: 10.1086/648222.

     

    Mitchell J S, Roopnarine P D, Angielczyk K D. 2012. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America. Proc. Natl. Acad. Sci. USA, 109(46): 18857-18861, doi: 10.1073/pnas.1202196109.

     

    Mo J Y, Tan Q W, Hu Y G, et al. 2018. New material of juvenile sauropod from the Upper Cretaceous of the Xichuan basin. Acta Palaeontol. Sin. (in Chinese), 57(4): 504-512, doi: 10.19800/j.cnki.aps.2018.04.009.

     

    Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715-717, doi: 10.1038/299715a0.

     

    Nesbitt H W, Young G M. 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta, 48(7): 1523-1534, doi: 10.1016/0016-7037(84)90408-3.

     

    Nesbitt H W, Young G M. 1989. Formation and diagenesis of weathering profiles. J. Geol. , 97(2): 129-147, doi: 10.1086/629290.

     

    Özdemir Ö, Dunlop D J. 1993. Chemical remanent magnetization during γFeOOH phase transformations. J. Geophys. Res. -Solid Earth, 98(B3): 4191-4198, doi: 10.1029/92jb02569.

     

    Panahi A, Young G M, Rainbird R H. 2000. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochim. Cosmochim. Acta, 64(13): 2199-2220, doi: 10.1016/S0016-7037(99)00420-2.

     

    Quan C, Liu Z H, Utescher T, et al. 2014. Revisiting the Paleogene climate pattern of East Asia: A synthetic review. Earth-Sci. Rev. , 139: 213-230, doi: 10.1016/j.earscirev.2014.09.005.

     

    Ramstein G, Fluteau F, Besse J, et al. 1997. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 386(6627): 788-795, doi: 10.1038/386788a0.

     

    Ren X P, Nie J S, Saylor J E, et al. 2020. Temperature control on silicate weathering intensity and evolution of the Neogene East Asian summer monsoon. Geophys. Res. Lett. , 47(15): e2020GL088808, doi: 10.1029/2020gl088808.

     

    Roberts A P. 2015. Magnetic mineral diagenesis. Earth-Sci. Rev. , 151: 1-47, doi: 10.1016/j.earscirev.2015.09.010.

     

    Sakamoto M, Benton M J, Venditti C. 2016. Dinosaurs in decline tens of millions of years before their final extinction. Proc. Natl. Acad. Sci. USA, 113(18): 5036-5040, doi: 10.1073/pnas.1521478113.

     

    Schulte P, Alegret L, Arenillas I, et al. 2010. The Chicxulub Asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, 327(5970): 1214-1218, doi: 10.1126/science.1177265.

     

    Slotznick S P, Swanson-Hysell N L, Sperling E A. 2018. Oxygenated Mesoproterozoic lake revealed through magnetic mineralogy. Proc. Natl. Acad. Sci. USA, 115(51): 12938-12943, doi: 10.1073/pnas.1813493115.

     

    Sun G. 2022. New information on the research results of Cretaceous flora and strata in eastern Northeast China. Geol. Resour. (in Chinese), 31(3): 289-302, doi: 10.13686/j.cnki.dzyzy.2022.03.006.

     

    Sun J M, Liu W G, Liu Z H, et al. 2017. Effects of the uplift of the Tibetan Plateau and retreat of Neotethys Ocean on the stepwise aridification of Mid-latitude Asian Interior. Bull. Chin. Acad. Sci. (in Chinese), 32(9): 951-958, doi: 10.16418/j.issn.1000-3045.2017.09.004.

     

    Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications.

     

    Tong Y S, Wang J W. 1980. Subdivision of the Upper Cretaceous and Lower Tertiary of the Tantou basin, the Lushi basin and the Lingbao basin of W. Henan. Vertebrata Palasiatica (in Chinese), 18(1): 21-27, doi: 10.19615/j.cnki.1000-3118.1980.01.004.

     

    Wang C S, Scott R W, Wan X Q, et al. 2013. Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric sea strata. Earth-Sci. Rev. , 126: 275-299, doi: 10.1016/j.earscirev.2013.08.016.

     

    Wang N S, Kuang H W, Liu Y Q, et al. 2015. Taphonomic characteristics of the Late Cretaceous cluster dinosaur fossils in eastern China and comparison between domestic and abroad. J. Palaeogeogr. (in Chinese), 17(5): 593-610.

     

    Wei X F, Xia M L, Xu L, et al. 2021. Advances of the studies on Late Cretaceous vertebrate fauna from Luanchuan in Henan Province. Geol. Bull. China (in Chinese), 40(7): 1178-1188.

     

    Wignall P B. 2001. Large igneous provinces and mass extinctions. Earth-Sci. Rev. , 53(1-2): 1-33, doi: 10.1016/S0012-8252(00)00037-4.

     

    Woelders L, Vellekoop J, Kroon D, et al. 2017. Latest Cretaceous climatic and environmental change in the South Atlantic region. Paleoceanography, 32(5): 466-483, doi: 10.1002/2016pa003007.

     

    Zachos J C, Dickens G R, Zeebe R E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451(7176): 279-283, doi: 10.1038/nature06588.

     

    Zhao H, Zhao Z K. 1998. Dinosaur eggs from Xichuan basin, Henan Province. Vertebrata Palasiatica (in Chinese), 36(4): 282-296, doi: 10.19615/j.cnki.1000-3118.1998.04.003.

     

    Zhao H B, Yin Z G, Wan X Q, et al. 2006. Influence of Late Cretaceous climate change to extinction of dinosaurs in Jiayin area of Heilongjiang, analyzed by spore and pollen. Geoscience (in Chinese), 20(2): 216-224.

     

    Zhou S Q, Feng Z J, Zhang G J. 2001. Oolithias assemblages in Henan Province and its age significances. Geoscience (in Chinese), 15(4): 362-369.

     

    Zoller W H, Parrington J R, Phelan Kotra J M. 1983. Iridium enrichment in airborne particles from Kilauea Volcano: January 1983. Science, 222(4628): 1118-1121, doi: 10.1126/science.222.4628.1118.

     

    郭正堂. 2017. 黄土高原见证季风和荒漠的由来. 中国科学: 地球科学, 47(4): 421-437, doi: 10.1360/n072017-00037.

     

    莫进尤, 谭庆伟, 胡永国等. 2018. 淅川盆地上白垩统蜥脚类幼年个体新材料. 古生物学报, 57(4): 504-512, doi: 10.19800/j.cnki.aps.2018.04.009.

     

    孙革. 2022. 中国东北地区东部白垩纪植物群及地层新知. 地质与资源, 31(3): 289-302, doi: 10.13686/j.cnki.dzyzy.2022.03.006.

     

    孙继敏, 刘卫国, 柳中晖等. 2017. 青藏高原隆升与新特提斯海退却对亚洲中纬度阶段性气候干旱的影响. 中国科学院院刊, 32(9): 951-958, doi: 10.16418/j.issn.1000-3045.2017.09.004.

     

    童永生, 王景文. 1980. 河南潭头、卢氏和灵宝盆地上白垩统-下第三系的划分. 古脊椎动物与古人类, 18(1): 21-27, doi: 10.19615/j.cnki.1000-3118.1980.01.004.

     

    王能盛, 旷红伟, 柳永清等. 2015. 中国东部晚白垩世恐龙化石集群埋藏特征及国内外对比. 古地理学报, 17(5): 593-610. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201505002.htm

     

    魏雪芳, 夏梦丽, 徐莉等. 2021. 河南栾川地区晚白垩世脊椎动物群研究进展. 地质通报, 40(7): 1178-1188. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202107014.htm

     

    赵宏, 赵资奎. 1998. 河南淅川盆地的恐龙蛋. 古脊椎动物学报, 36(4): 282-296, doi: 10.19615/j.cnki.1000-3118.1998.04.003.

     

    赵海滨, 尹志刚, 万晓樵等. 2006. 据孢粉分析黑龙江嘉荫地区晚白垩世气候变化对恐龙绝灭的影响. 现代地质, 20(2): 216-224. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200602003.htm

     

    周世全, 冯祖杰, 张国建. 2001. 河南恐龙蛋化石组合类型及其地层时代意义. 现代地质, 15(4): 362-369. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200104001.htm

  • 加载中

(9)

(1)

计量
  • 文章访问数:  1660
  • PDF下载数:  98
  • 施引文献:  0
出版历程
收稿日期:  2023-01-11
修回日期:  2023-05-11
上线日期:  2023-09-10

目录