碳酸盐团簇同位素约束下塔中隆起奥陶系热历史

熊昱杰, 邱楠生, 李丹, 常健, 廖珂琰. 2023. 碳酸盐团簇同位素约束下塔中隆起奥陶系热历史. 地球物理学报, 66(11): 4625-4638, doi: 10.6038/cjg2022Q0498
引用本文: 熊昱杰, 邱楠生, 李丹, 常健, 廖珂琰. 2023. 碳酸盐团簇同位素约束下塔中隆起奥陶系热历史. 地球物理学报, 66(11): 4625-4638, doi: 10.6038/cjg2022Q0498
XIONG YuJie, QIU NanSheng, LI Dan, CHANG Jian, LIAO KeYan. 2023. Thermal history of the Ordovician in the Tazhong uplift under the constraint of carbonate clumped isotope. Chinese Journal of Geophysics (in Chinese), 66(11): 4625-4638, doi: 10.6038/cjg2022Q0498
Citation: XIONG YuJie, QIU NanSheng, LI Dan, CHANG Jian, LIAO KeYan. 2023. Thermal history of the Ordovician in the Tazhong uplift under the constraint of carbonate clumped isotope. Chinese Journal of Geophysics (in Chinese), 66(11): 4625-4638, doi: 10.6038/cjg2022Q0498

碳酸盐团簇同位素约束下塔中隆起奥陶系热历史

  • 基金项目:

    国家自然科学基金企业创新发展联合基金项目(U19B6003-02)资助

详细信息
    作者简介:

    熊昱杰, 男, 1996年生, 中国石油大学(北京)硕士研究生, 主要从事沉积盆地热历史方面的研究.E-mail: 2487418448@qq.com

    通讯作者: 邱楠生, 男, 1968年生, 中国石油大学(北京)教授, 主要从事沉积盆地构造-热演化及油气成藏机理方面的教学和研究.E-mail: qiunsh@cup.edu.cn
  • 中图分类号: P314

Thermal history of the Ordovician in the Tazhong uplift under the constraint of carbonate clumped isotope

More Information
  • 碳酸盐团簇同位素是近年来兴起的一种新型古温标, 其有效地解决了碳酸盐岩沉积盆地缺乏常用古温标的现状, 对于沉积盆地热史恢复具有重要意义.本文采集了塔中地区奥陶系碳酸盐岩钻井取芯样品, 利用一阶近似模型模拟了塔中隆起碳酸盐团簇同位素温度(TΔ47)热演化路径, 并结合等效镜质体反射率约束了塔中隆起的热历史.塔中隆起大地热流自奥陶纪到现今总体呈降低趋势, 自60~70 mW·m-2降低至40~50 mW·m-2, 二叠纪由于火成岩入侵造成热流短暂升高至60~70 mW·m-2.模拟结果认为, 北部斜坡带及潜山构造带受火成岩影响显著, 北部斜坡带及潜山构造带在二叠纪最高温度分别达到160~170 ℃及180~190 ℃; 而塔中南缘未受影响, 中生代或者现今为最高温度130~140 ℃.总的来说, 碳酸盐团簇同位素在热史领域的研究目前还处于探索阶段, 未来有望在重排规律、TΔ47影响因素以及模型理论方面有待进一步完善, 团簇同位素也将在热史领域的研究中产生愈加重大的影响力.

  • 加载中
  • 图 1 

    塔中隆起区构造位置及采样点分布

    Figure 1. 

    Structural location and sampling point distribution in the Tazhong uplift

    图 2 

    样品标本及预处理实验结果

    Figure 2. 

    Sample specimen and experimental results of pretreatment

    图 3 

    塔中隆起碳氧同位素分布

    Figure 3. 

    Distribution of carbon and oxygen isotopes in the Tazhong uplift

    图 4 

    塔中地区碳酸盐团簇同位素Δ47与水氧同位素交会图

    Figure 4. 

    Cross map of carbonate clumped isotope Δ47 and water oxygen isotope in Tazhong area

    图 5 

    塔中隆起各个典型单井埋藏史

    Figure 5. 

    Burial history of typical wells in the Tazhong uplift

    图 6 

    塔中隆起典型单井碳酸盐团簇同位素TΔ47模拟演化结果

    Figure 6. 

    The simulated evolution results of the typical single well carbonate clumped isotope TΔ47 in the Tazhong uplift

    图 7 

    塔中隆起典型井埋藏史-热史恢复

    Figure 7. 

    Burial history and thermal history reconstruction of typical wells in the Tazhong uplift

    图 8 

    塔中隆起典型井热流恢复

    Figure 8. 

    Heat flow reconstruction of typical wells in Tazhong uplift

    表 1 

    塔中隆起碳酸盐团簇同位素实验测试数据

    Table 1. 

    Experimental test data of carbonate clumped in the Tazhong uplift

    样品号 层位 深度(m) 岩性 n δ13CVPDB
    (‰)
    δ18OVPDB
    (‰)
    地层温度
    (℃)
    Δ47-ARF
    (‰)
    TΔ47
    (℃)
    δ18Owater
    (‰)
    TZ162-1 O3 4330 灰岩 3 1.52 -5.72 116 0.527 96.5 11.66
    TZ162-2 O3 4705.1 灰岩 3 0.89 -4.77 120 0.541 88.4 12.63
    TZ162-3 O3 5086.7 白云岩 3 -1.81 -7.83 135 0.487 123.1 9.51
    TZ162-4 O2 5253.3 灰岩 3 -2.06 -7.3 137 0.513 105.2 10.05
    TZ162-5 O2 5599.2 灰岩 3 -2.04 -5.35 143 0.521 100.2 12.04
    TZ162-6 O2 5978.9 灰岩 2 -1.82 -9.59 153 0.468 137.9 7.72
    TZ2-1 O1 4089 白云岩 3 -3.74 -7.67 102 0.533 93.0 9.68
    TZ24-1 O3 4497.7 灰岩 3 1.66 -6.28 128 0.542 87.9 11.09
    TZ24-2 O3 4683.7 灰岩 3 1.56 -6.23 133 0.519 101.4 11.14
    TZ27-1 O3 3776.9 白云岩 3 2.51 -5.41 120 0.549 84.0 11.98
    TZ27-2 O3 4108 白云岩 3 2.51 -4.46 123 0.557 79.8 12.94
    TZ27-3 O3 4572.7 白云岩 3 2.52 -3.66 127 0.535 91.9 13.76
    TZ35-1 O3 5619.8 灰岩 3 1.44 -4.87 114 0.562 77.2 12.53
    TZ35-2 O1 5774 白云岩 3 2.41 -4.66 118 0.594 62.0 12.74
    TZ35-3 O1 5997 灰岩 3 -1.79 -7.07 125 0.498 115.2 10.29
    TZ49-1 O1 6134 白云岩 3 2.38 -6.24 135 0.51 107.1 11.13
    TZ49-2 O1 6342 灰岩 4 0.4 -6.99 143 0.503 111.8 10.37
    注:Δ47在90℃磷酸反应下测量,酸解系数为0.092‰,结果校正为常温状态ARF参考体系下的值;n为每个样品测试次数;地层温度采用塔中隆起各个单井的试油温度数据进行拟合得到;TΔ47值计算采用(Bonifacie et al., 2017)经验公式.δ18Owater为SMOW标准下水的氧同位素值,由O′Neil等(1969)经验公式计算得到.
    下载: 导出CSV
  •  

    Bonifacie M, Calmels D, Eiler J M, et al. 2017. Calibration of the dolomite clumped isotope thermometer from 25 to 350 ℃, and implications for a universal calibration for all (Ca, Mg, Fe) CO3 carbonates. J. Geochimica et Cosmochimica Acta, 200: 255-279, doi: 10.1016/j.gca.2016.11.028.

     

    Came R E, Eiler J M, Veizer J, et al. 2007. Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era. J. Nature, 449(7159): 198-201, doi: 10.1038/nature06085.

     

    Chang H, Gong Q, Ouyang R, et al. 2003. The characteristics of igneous rocks and their influences to petroleum exploration in the center ofTarim Basin. J. Geophysical Prospecting for Petroleum (in Chinese), 42(1): 49-53, doi: 10.3969/j.issn.1000-1441.2003.01.011.

     

    Chang J, Qiu N S, Reiners P, et al. 2010. Zircon (U-Th)/He ages of borehole samples from the Tarim basin and geological significance. //The 26th Annual Meeting of the Chinese Geophysical Society, The Thirteenth Academic Conference of the Seismological Society of China (in Chinese). Ningbo.

     

    Chang J, Qiu N S. 2012. Closure temperature of (U-Th)/He system in apatite obtained from natural drillhole samples in the Tarim basin and its geological significance. J. Chinese Science Bulletin, 57(26): 3482-3490, doi: 10.1007/s11434-012-5176-1.

     

    Chang J, Qiu N S, Song X Y, et al. 2016. Multiple cooling episodes in the Central Tarim (Northwest China) revealed by apatite fission track analysis and vitrinite reflectance data. J. International Journal of Earth Sciences, 105(4): 1257-1272, doi: 10.1007/s00531-015-1242-7.

     

    Chang J, Yang X, Qiu N S, et al. 2022. Zircon (U-Th)/He thermochronology and thermal evolution of the Tarim Basin, Western China. J. Journal of Asian Earth Sciences, 230: 105210, doi: 10.1016/j.jseaes.2022.105210.

     

    Defliese W F, Hren M T, Lohmann K C. 2015. Compositional and temperature effects of phosphoric acid fractionation on Δ47 analysis and implications for discrepant calibrations. J. Chemical Geology, 396: 51-60, doi: 10.1016/j.chemgeo.2014.12.018.

     

    Dennis K J, Affek H P, Passey B H, et al. 2011. Defining an absolute reference frame for "clumped" isotope studies of CO2. J. Geochimica et Cosmochimica Acta, 75(22): 7117-7131, doi: 10.1016/j.gca.2011.09.025.

     

    Eiler J M. 2007. "Clumped-isotope" geochemistry—The study of naturally-occurring, multiply-substituted isotopologues. J. Earth and Planetary Science Letters, 262(3-4): 309-327, doi: 10.1016/j.epsl.2007.08.020.

     

    Eiler J M. 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. J. Quaternary Science Reviews, 30(25-26): 3575-3588, doi: 10.1016/j.quascirev.2011.09.001.

     

    Feng C G, Liu S W, Wang L S, et al. 2010. Present-daygeotemperature field characteristics in the central uplift area of the Tarim Basin and implications for hydrocarbon generation and preservation. J. Earth Science, 35(4): 645-656, doi: 10.3799/dqkx.2010.079.

     

    Guo W F, Mosenfelder J L, Goddard W A, et al. 2009. Isotopic fractionations associated with phosphoric acid digestion of carbonate minerals: Insights from first-principles theoretical modeling and clumped isotope measurements. J. Geochimica et Cosmochimica Acta, 73(24): 7203-7225, doi: 10.1016/j.gca.2009.05.071.

     

    Henkes G A, Passey B H, Wanamaker A D Jr, et al. 2013. Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells. J. Geochimica et Cosmochimica Acta, 106: 307-325, doi: 10.1016/j.gca.2012.12.020.

     

    Henkes G A, Passey B H, Grossman E L, et al. 2014. Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. J. Geochimica et Cosmochimica Acta, 139: 362-382, doi: 10.1016/j.gca.2014.04.040.

     

    Jia C Z. 1997. Structural Characteristics and Oil and Gas in the Tarim Basin (in Chinese). Beijing: Petroleum Industry Press.

     

    Lawson M, Shenton B J, Stolper D A, et al. 2018. Deciphering the diagenetic history of the El Abra Formation of eastern Mexico using reordered clumped isotope temperatures and U-Pb dating. J. GSA Bulletin, 130(3-4): 617-629, doi: 10.1130/b31656.1.

     

    Li C, Wang L S, Guo S P, et al. 2000. Thermal evolution in Tarim basin. J. Acta Petrolei Sinica (in Chinese), 21(3): 13-17, doi: 10.7623/syxb200003003.

     

    Li D X, Yang S F, Chen H L, et al. 2014. Late Carboniferous crustal uplift of theTarim plate and its constraints on the evolution of the Early Permian Tarim Large Igneous Province. J. Lithos, 204: 36-46, doi: 10.1016/j.lithos.2014.05.023.

     

    Li H L, Qiu N S, Jin Z J. 2005. Thermal history of central area of the Tarim Basin by apatite fission track analysis. J. Chinese Journal of Geology (in Chinese), 40(1): 129-132, doi: 10.3321/j.issn:0563-5020.2005.01.014.

     

    Li J W, Li Z, Qiu N S, et al. 2016. Carboniferous-Permian abnormal thermal evolution of the Tarim basin and its implication for deep structure and magmatic activity. J. Chinese Journal of Geophysics (in Chinese), 59(9): 3318-3329, doi: 10.6038/cjg20160916.

     

    Liu Y C, Qiu N S, Chang J, et al. 2020. Application of clumped isotope thermometry to thermal evolution of sedimentary basins: A case study of Shuntuoguole area in Tarim Basin. J. Chinese Journal of Geophysics (in Chinese), 63(2): 597-611, doi: 10.6038/cjg2020N0152.

     

    Liu Y C, Dong S Y, Zhao C H. 2021. Thermal evolution and the maturation of the deeply buried lower Paleozoic source rocks in the Tarim Basin, northwest China. J. Arabian Journal of Geosciences, 14(13): 1238, doi: 10.1007/s12517-021-07562-w.

     

    Lloyd M K, Ryb U, Eiler J M. 2018. Experimental calibration of clumped isotope reordering in dolomite. J. Geochimica et Cosmochimica Acta, 242: 1-20, doi: 10.1016/j.gca.2018.08.036.

     

    Loyd S J, Corsetti F A, Eagle R A, et al. 2015. Evolution of Neoproterozoic Wonoka-Shuram Anomaly-aged carbonates: Evidence from clumped isotope paleothermometry. J. Precambrian Research, 264: 179-191, doi: 10.1016/j.precamres.2015.04.010.

     

    Mangenot X, Deçoninck J F, Bonifacie M, et al. 2019. Thermal and exhumation histories of the northern subalpine chains (Bauges and Bornes-France): Evidence from forward thermal modeling coupling clay mineral diagenesis, organic maturity and carbonate clumped isotope (Δ47) data. J. Basin Research, 31(2): 361-379, doi: 10.1111/bre.12324.

     

    Müller I A, Violay M E S, Storck J C, et al. 2017. Clumped isotope fractionation during phosphoric acid digestion of carbonates at 70 ℃. J. Chemical Geology, 449: 1-14, doi: 10.1016/j.chemgeo.2016.11.030.

     

    Naylor H N, Defliese W F, Grossman E L, et al. 2020. Investigation of the thermal history of the Delaware Basin (West Texas, USA) using carbonate clumped isotope thermometry. J. Basin Research, 32(5): 1140-1155, doi: 10.1111/bre.12419.

     

    O'NEIL J R, Clayton R N, Mayeda T K. 1969. Oxygen isotope fractionation in divalent metal carbonates. J. The Journal of Chemical Physics, 51(12): 5547-5558, doi: 10.1063/1.1671982.

     

    Passey B H, Levin N E, Cerling T E, et al. 2010. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. J. Proceedings of the National Academy of Sciences of the United States of America, 107(25): 11245-11249, doi: 10.1073/pnas.1001824107.

     

    Passey B H, Henkes G A. 2012. Carbonate clumped isotope bond reordering and geospeedometry. J. Earth and Planetary Science Letters, 351-352: 223-236, doi: 10.1016/j.epsl.2012.07.021.

     

    Qiang S T, Shen P, Zhang J, et al. 2017. The evolution of carbonate sediment diagenesis and pore fluid in Dengying Formation, Central Sichuan Basin. J. Acta Sedimentologica Sinica (in Chinese), 35(4): 797-811, doi: 10.14027/j.cnki.cjxb.2017.04.014.

     

    Qiu N S, Li H L, Jin Z J, et al. 2006. Study on the geothermometer of free radicals in organic matter for the reconstruction of the thermal history of marine carbonate succession. J. Acta Geologica Sinica (in Chinese), 80(3): 390-397, doi: 10.3321/j.issn:0001-5717.2006.03.011.

     

    Qiu N S, Li H L, Jin Z J, et al. 2007. Free radicals in organic matter for thermal history reconstruction of carbonate succession. J. Acta Geologica Sinica, 81(4): 605-613, doi: 10.1111/j.1755-6724.2007.tb00984.x.

     

    Qiu N S, Chang J, Zuo Y H, et al. 2012. Thermal evolution and maturation of lower Paleozoic source rocks in the Tarim Basin, northwest China. J. AAPG Bulletin, 96(5): 789-821, doi: 10.1306/09071111029.

     

    Qiu N S, Liu W, Xu Q C, et al. 2018. Temperature-pressure field and hydrocarbon accumulation in deep-ancient marine strata. J. Earth Science (in Chinese), 43(10): 3511-3525, doi: 10.3799/dqkx.2018.286.

     

    Schauble E A, Ghosh P, Eiler J M. 2006. Preferential formation of 13C-18O bonds in carbonate minerals, estimated using first-principles lattice dynamics. J. Geochimica et Cosmochimica Acta, 70(10): 2510-2529, doi: 10.1016/j.gca.2006.02.011.

     

    Shenton B J, Grossman E L, Passey B H, et al. 2015. Clumped isotope thermometry in deeply buried sedimentary carbonates: The effects of bond reordering and recrystallization. J. Geological Society of America Bulletin, 127(7-8): 1036-1051, doi: 10.1130/b31169.1.

     

    Spencer C, Kim S T. 2015. Carbonate clumped isotope paleothermometry: a review of recent advances in CO2 gas evolution, purification, measurement and standardization techniques. J. Geosciences Journal, 19(2): 357-374, doi: 10.1007/s12303-015-0018-1.

     

    Stolper D A, Eiler J M. 2016. Constraints on the formation and diagenesis of phosphorites using carbonate clumped isotopes. J. Geochimica et Cosmochimica Acta, 181: 238-259, doi: 10.1016/j.gca.2016.02.030.

     

    Tang J W, Dietzel A, Fernandez A, et al. 2014. Evaluation of kinetic effects on clumped isotope fractionation (Δ47) during inorganic calcite precipitation. J. Geochimica et Cosmochimica Acta, 134: 120-136, doi: 10.1016/j.gca.2014.03.005.

     

    Veizer J, Ala D, Azmy K, et al. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. J. Chemical Geology, 161(1-3): 59-88, doi: 10.1016/S0009-2541(99)00081-9

     

    Wacker U, Fiebig J, Schoene B R. 2013. Clumped isotope analysis of carbonates: comparison of two different acid digestion techniques. J. Rapid Communications in Mass Spectrometry, 27(14): 1631-1642, doi: 10.1002/rcm.6609.

     

    Wacker U, Rutz T, Löffler N, et al. 2016. Clumped isotope thermometry of carbonate-bearing apatite: Revised sample pre-treatment, acid digestion, and temperature calibration. J. Chemical Geology, 443: 97-110, doi: 10.1016/j.chemgeo.2016.09.009.

     

    Xiang C F, Pang X Q, Danišík M. 2013. Post-Triassic thermal history of the Tazhong Uplift Zone in the Tarim basin, Northwest China: Evidence from apatite fission-track thermochronology. J. Geoscience Frontiers, 4(6): 743-754, doi: 10.1016/j.gsf.2012.11.010.

     

    Xu H L, Fang L H, Zhang X, et al. 2006. Characteristics of Early Permian magmatic rocks and their impact on hydrocarbon accumulation inTarim Basin. J. Acta Geoscientia Sinica (in Chinese), 27(3): 235-240, doi: 10.3321/j.issn:1006-3021.2006.03.007.

     

    Xu Q C, Qiu N S, Liu W, et al. 2019. Reconstructing the basin thermal history with clumped isotope. J. Chinese Science Bulletin (in Chinese), 64(5-6): 566-578, doi: 10.1360/N972018-00458.

     

    Xu Y G, Wei X, Luo Z Y, et al. 2014. The Early PermianTarim Large Igneous Province: main characteristics and a plume incubation model. J. Lithos, 204: 20-35, doi: 10.1016/j.lithos.2014.02.015.

     

    Yang J F. 2015. Description of the Permian Magmatism and its geological significance in Tazhong area, Tarim, NW China [Ph. D. thesis] (in Chinese). Nanjing: Nanjing University.

     

    Yang S F, Chen H L, Li Z L, et al. 2013. Early PermianTarim large igneous province in northwest China. J. Science China Earth Sciences, 56(12): 2015-2026, doi: 10.1007/s11430-013-4653-y.

     

    Yu X, Yang S F, Chen H L, et al. 2011. Permian flood basalts from theTarim basin, Northwest China: SHRIMP zircon U-Pb dating and geochemical characteristics. J. Gondwana Research, 20(2-3): 485-497, doi: 10.1016/j.gr.2010.11.009.

     

    Yu X, Yang S F, Chen H L, et al. 2017. Petrogenetic model of the Permian Tarim large igneous province. J. Science China Earth Sciences, 60(10): 1805-1816.

     

    Zhang S T, Liu Q, Tang M, et al. 2020. Molecular-level mechanism of phosphoric acid digestion of carbonates and recalibration of the13C-18O clumped isotope thermometer. J. ACS Earth and Space Chemistry, 4(3): 420-433, doi: 10.1021/acsearthspacechem.9b00307.

     

    苌衡, 龚奇, 欧阳睿等. 2003. 塔中地区火成岩特征及其石油地质意义. 石油物探, 42(1): 49-53, doi: 10.1007/s11434-012-5176-1.

     

    常健, 邱楠生, Reiners P等. 2010. 塔里木盆地钻孔样品的锆石(U-Th)/He年龄及其地质意义. //中国地球物理学会第二十六届年会、中国地震学会第十三次学术大会论文集. 宁波.

     

    冯昌格, 刘绍文, 王良书等. 2010. 塔里木盆地中央隆起区现今地温场分布特征及其与油气的关系. 地球科学, 35(4): 645-656, doi: 10.3799/dqkx.2010.079.

     

    贾承造. 1997. 中国塔里木盆地构造特征与油气. 北京: 石油工业出版社.

     

    李成, 王良书, 郭随平等. 2000. 塔里木盆地热演化. 石油学报, 21(3): 13-17, doi: 10.7623/syxb200003003.

     

    李慧莉, 邱楠生, 金之钧. 2005. 利用磷灰石裂变径迹研究塔里木盆地中部地区的热历史. 地质科学, 40(1): 129-132, doi: 10.3321/j.issn:0563-5020.2005.01.014.

     

    李佳蔚, 李忠, 邱楠生等. 2016. 塔里木盆地石炭-二叠纪异常热演化及其对深部构造-岩浆活动的指示. 地球物理学报, 59(9): 3318-3329, doi: 10.6038/cjg20160916.

     

    刘雨晨, 邱楠生, 常健等. 2020. 碳酸盐团簇同位素在沉积盆地热演化中的应用——以塔里木盆地顺托果勒地区为例. 地球物理学报, 63(2): 597-611, doi: 10.6038/cjg2020N0152.

     

    强深涛, 沈平, 张健等. 2017. 四川盆地川中地区震旦系灯影组碳酸盐沉积物成岩作用与孔隙流体演化. 沉积学报, 35(4): 797-811, doi: 10.14027/j.cnki.cjxb.2017.04.014.

     

    邱楠生, 李慧莉, 金之钧等. 2006. 碳酸盐岩层系热历史恢复的有机质自由基古温标研究. 地质学报, 80(3): 390-397, doi: 10.3321/j.issn:0001-5717.2006.03.011.

     

    邱楠生, 刘雯, 徐秋晨等. 2018. 深层-古老海相层系温压场与油气成藏. 地球科学, 43(10): 3511-3525, doi: 10.3799/dqkx.2018.286.

     

    徐汉林, 方乐华, 张昕等. 2006. 塔里木盆地早二叠世岩浆特征及其对油气成藏关系初探. 地球学报, 27(3): 235-240, doi: 10.3321/j.issn:1006-3021.2006.03.007.

     

    徐秋晨, 邱楠生, 刘雯等. 2019. 利用团簇同位素恢复沉积盆地热历史的探索. 科学通报, 64(5-6): 566-578, doi: 10.1360/N972018-00458.

     

    杨江峰. 2015. 塔中地区二叠纪岩浆活动精细描述及其地质意义探讨[博士论文]. 南京: 南京大学.

     

    余星, 杨树锋, 陈汉林等. 2017. 塔里木早二叠世大火成岩省的成因模式. 中国科学: 地球科学, 47(10): 1179-1190, doi: 10.1360/N072016-00246.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  707
  • PDF下载数:  37
  • 施引文献:  0
出版历程
收稿日期:  2022-06-25
修回日期:  2022-10-02
上线日期:  2023-11-10

目录