地震随机噪声压缩感知迭代压制方法

刘璐, 刘洋, 刘财, 郑植升. 2021. 地震随机噪声压缩感知迭代压制方法. 地球物理学报, 64(12): 4629-4643, doi: 10.6038/cjg2021P0045
引用本文: 刘璐, 刘洋, 刘财, 郑植升. 2021. 地震随机噪声压缩感知迭代压制方法. 地球物理学报, 64(12): 4629-4643, doi: 10.6038/cjg2021P0045
LIU Lu, LIU Yang, LIU Cai, ZHENG ZhiSheng. 2021. Iterative seismic random noise suppression method based on compressive sensing. Chinese Journal of Geophysics (in Chinese), 64(12): 4629-4643, doi: 10.6038/cjg2021P0045
Citation: LIU Lu, LIU Yang, LIU Cai, ZHENG ZhiSheng. 2021. Iterative seismic random noise suppression method based on compressive sensing. Chinese Journal of Geophysics (in Chinese), 64(12): 4629-4643, doi: 10.6038/cjg2021P0045

地震随机噪声压缩感知迭代压制方法

  • 基金项目:

    国家重点研发计划课题(2018YFC0603701),国家自然科学基金项目(41774127,41974134)和吉林大学高层次科技创新团队建设项目(2017TD-14)资助

详细信息
    作者简介:

    刘璐, 女, 博士研究生, 主要从事地震数据处理工作.E-mail: liul20@mails.jlu.edu.cn

    通讯作者: 刘洋, 男, 教授, 博士生导师, 主要从事非平稳地球物理数据处理和地质-地球物理综合研究等工作.E-mail: yangliu1979@jlu.edu.cn
  • 中图分类号: P631

Iterative seismic random noise suppression method based on compressive sensing

More Information
  • 复杂地表和复杂介质条件下,随机噪声往往严重影响着复杂地震信号的信噪比,同时深层地球物理目标探查中弱地震信号总是被随机噪声所掩盖,如何有效地压制随机噪声干扰、恢复有效地震信号仍然是高精度地震勘探中的关键问题.压缩感知理论突破了奈奎斯特采样定理的限制,利用有效地震信号的可压缩性和稀疏性,提供了从不可压缩随机噪声中进行有效信号分离的数据原理.本文系统分析压缩感知框架下地震随机噪声压制的稀疏优化反问题,提出了基于迭代软阈值算法的"采集-重建-修复"方案对该问题进行求解.在实现高度稀疏表征的基础上进行地震数据的压缩感知随机观测,通过迭代反演对有效地震信号进行重构,有效提高复杂地震数据的信噪比,同时,当求解稀疏优化问题时,如果出现正则化项引起重构信号衰减现象,可以匹配除偏对衰减的有效信号进行修复.通过与工业标准f-x预测滤波方法进行比较,理论模型和实际数据处理的结果表明,压缩感知迭代噪声压制方法对复杂地震数据中的随机噪声有较好的压制效果,可以有效恢复出被较强非平稳随机噪声干扰的时空变同相轴信息.

  • 加载中
  • 图 1 

    实现流程框架

    Figure 1. 

    Processing framework

    图 2 

    模型数据

    Figure 2. 

    Synthetic model data

    图 3 

    不同平稳性的随机噪声

    Figure 3. 

    Random noise with different stationarities

    图 4 

    不同去噪方法结果对比

    Figure 4. 

    Comparison of denoised results by different methods

    图 5 

    本文迭代方法处理结果

    Figure 5. 

    Denoising results using the proposed method

    图 6 

    模型数据f-k

    Figure 6. 

    Comparison of different f-k spectras

    图 7 

    实际数据处理结果

    Figure 7. 

    Processing result of real data

    图 8 

    处理结果f-k谱对比

    Figure 8. 

    Comparison of f-k spectra for processing results

    图 9 

    叠前实际数据处理结果

    Figure 9. 

    Processing results of pre-stack real data

    图 10 

    不同方法处理结果叠加剖面

    Figure 10. 

    Stacked profiles using different methods

    表 1 

    各方法去噪性能对比

    Table 1. 

    Comparison of denoising performance in different methods

    去噪方法 达到终止条件时的迭代次数 SNR/dB MSE
    小波变换下本文去噪方法 6 8.0 3.93×10-7
    Seislet变换下本文去噪方法 10 11.7 1.45×10-7
    f-x预测滤波去噪方法 7.4 3.97×10-7
    f-x域流式预测滤波方法 8.5 3.2×10-7
    f-x域RNA方法 10.7 2.2×10-7
    下载: 导出CSV
  •  

    Amba R, Claerbout J. 1997. Lateral prediction for noise attenuation by t-x and f-x techniques. Geophysics, 60(6): 1887-1896. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=446A91EECC758677DF09870F8613DD05?doi=10.1.1.27.111&rep=rep1&type=pdf

     

    Beck A, Teboulle M. 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1): 183-202. doi: 10.1137/080716542

     

    Bonar D, Sacchi M. 2012. Denoising seismic data using the nonlocal means algorithm. Geophysics, 77(1): A5-A8. doi: 10.1190/geo2011-0235.1

     

    Bredies K, Lorenz D A. 2008. Linear convergence of iterative soft-thresholding. Journal of Fourier Analysis and Applications, 14(5): 813-837. http://pdfs.semanticscholar.org/0dd5/8bd61d4d82f566db8edcc18999d53fe6bfc1.pdf

     

    Canales L L. 1984. Random noise reduction. //54th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 525-527.

     

    Candès E J. 2006. Compressive sampling. //Proceedings of the International Congress of Mathematicians. Madrid, Spain: European Mathematicial Society Publishing House, 3: 1433-1452.

     

    Candès E J, Wakin M B. 2008. An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2): 21-30. doi: 10.1109/MSP.2007.914731

     

    Chen S S, Donoho D L, Saunders M A. 2001. Atomic decomposition by basis pursuit. SIAM Review, 43(1): 129-159. doi: 10.1137/S003614450037906X

     

    Chen X F, Sun H M. 2019. Seismic data denoising method based on compressed sensing theory. Progress in Geophysics (in Chinese), 34(3): 1025-1031, doi: 10.6038/pg2019CC0208.

     

    Claerbout J F. 2008. Basic Earth imaging. Stanford Exploration Project, http://sepwww.stanford.edu/sep/prof/.

     

    Daubechies I, Defrise M, De Mol C. 2004. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 57(11): 1413-1457. doi: 10.1002/cpa.20042

     

    Deng D, Pei J X, Deng Y, et al. 2019. Key techniques research for improving mid-deep layer structure imaging in deep water seismic data of South China Sea. Progress in Geophysics (in Chinese), 34(2): 702-708, doi: 10.6038/pg2019BB0551.

     

    Donoho D L. 1995. De-noising by Soft-Thresholding. IEEE Transactions on Information Theory, 41(3): 613-627. doi: 10.1109/18.382009

     

    Donoho D L. 2000. Orthonormal ridgelets and linear singularities. SIAM Journal on Mathematical Analysis, 31(5): 1062-1099. doi: 10.1137/S0036141098344403

     

    Figueiredo M A T, Nowak R D, Wright S J. 2007. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 1(4): 586-597. doi: 10.1109/JSTSP.2007.910281

     

    Fomel S, Liu Y. 2010. Seislet transform and seislet frame. Geophysics, 75(3): V25-V38. doi: 10.1190/1.3380591

     

    Gao J H, Mao J, Man W S, et al. 2006. On the denoising method of prestack seismic data in wavelet domain. Chinese Journal of Geophysics (in Chinese), 49(4): 1155-1163. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SEGEAB000025000001002852000001&idtype=cvips&gifs=Yes

     

    Gong X B, Han L G, Wang E L, et al. 2009. Denoising via high resolution Radon transform. Journal of Jilin University (Earth Science Edition) (in Chinese), 39(1): 152-157. http://xuebao.jlu.edu.cn/dxb/CN/abstract/abstract8616.shtml

     

    Guo L Y, Liu C, Liu Y, et al. 2020. Seismic random noise attenuation based on streaming prediction filter in the f-x domain. Chinese Journal of Geophysics (in Chinese), 63(1): 329-338, doi: 10.6038/cjg2020N0030.

     

    Herrmann F J, Hennenfent G. 2008. Non-parametric seismic data recovery with curvelet frames. Geophysical Journal of the Royal Astronomical Society, 173(1): 233-248. doi: 10.1111/j.1365-246X.2007.03698.x

     

    Herrmann F J, Wang D L, Hennenfent G, et al. 2008. Curvelet-based seismic data processing: A multiscale and nonlinear approach. Geophysics, 73(1): A1-A5. http://www.researchgate.net/profile/Felix_Herrmann2/publication/228780660_Curvelet-based_seismic_data_processing_A_multiscale_and_nonlinear_approach/links/54db7ce10cf261ce15d03146/Curvelet-based-seismic-data-processing-A-multiscale-and-nonlinear-approach.pdf

     

    Kim S J, Koh K, Lustig M, et al. 2007. An interior-point method for large-scale L1 regularized least-squares. IEEE Journal of Selected Topics in Signal Processing, 1(4): 606-617. doi: 10.1109/JSTSP.2007.910971

     

    Landweber L. 1951. An iteration formula for Fredholm integral equations of the first kind. American Journal of Mathematics, 73(3): 615-624. doi: 10.2307/2372313

     

    Li H S, Chen D W, Wu J, et al. 2020. Pre-stack random noise suppression with deep residual network. Oil Geophysical Prospecting (in Chinese), 55(3): 493-503. http://www.researchgate.net/publication/338657824_Is_the_sparsity_enough_Random_noise_suppression_in_prestack_seismic_data_using_sparsity_and_lowrankness_simultaneously

     

    Li Q, Gao J H. 2013. Contourlet based seismic reflection data non-local noise suppression. Journal of Applied Geophysics, 95: 16-22. doi: 10.1016/j.jappgeo.2013.05.002

     

    Li Q Z. 1993. The way to Obtain A Better Resolution in Seismic Prospecting (in Chinese). Beijing: Petroleum Industry Press, 112-114.

     

    Liu C, Liu Y, Yang B J, et al. 2006. A 2D multistage median filter to reduce random seismic noise. Geophysics, 71(5): V105-V110. doi: 10.1190/1.2236003

     

    Liu G C, Chen X H, Du J, et al. 2012. Random noise attenuation using f-x regularized nonstationary autoregression. Geophysics, 77(2): V61-V69. doi: 10.1190/geo2011-0117.1

     

    Liu J, Lu W, Zhang P. 2018. Random noise attenuation using convolutional neural networks. //88th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts.

     

    Liu Y, Fomel S. 2010. OC-seislet: seislet transform construction with differential offset continuation. Geophysics, 75(6): WB235-WB245. doi: 10.1190/1.3479554

     

    Liu Y, Fomel S, Liu C. 2015. Signal and noise separation in prestack seismic data using velocity-dependent seislet transform. Geophysics, 80(6): WD117-WD128. doi: 10.1190/geo2014-0234.1

     

    Liu Y, Fomel S, Liu C, et al. 2009. High-order seislet transform and its application of random noise attenuation. Chinese Journal of Geophysics (in Chinese), 52(8): 2142-2151, doi: 10.3969/j.issn.0001-5733.2009.08.024.

     

    Liu Y, Li B X. 2018. Streaming orthogonal prediction filter in the t-x domain for random noise attenuation. Geophysics, 83(4): F41-F48. doi: 10.1190/geo2017-0322.1

     

    Liu Y, Li B X, Wang D, et al. 2017. Local SNR estimation method based on regularization for seismic data. Chinese Journal of Geophysics (in Chinese), 60(5): 1979-1987, doi: 10.6038/cjg20170529.

     

    Liu Y, Zhang P, Liu C. 2017. Seismic data interpolation using generalised velocity-dependent seislet transform. Geophysical Prospecting, 65(S1): 82-93.

     

    Mallat S, Zhong S. 1992. Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(7): 710-732. doi: 10.1109/34.142909

     

    Mallat S G, Zhang Z F. 1993. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12): 3397-3415. doi: 10.1109/78.258082

     

    Nan F Z, Xu Y, Liu W, et al. 2018. Denoising methods of OBS data based on sparse representation. Chinese Journal of Geophysics (in Chinese), 61(4): 1519-1528, doi: 10.6038/cjg2018L0130.

     

    Pope G. 2008. Compressive Sensing: A Summary of Reconstruction Algorithms. Zürich: Eidgen ssische Technische Hochschule.

     

    Tong S Y, Gao H, Liu R, et al. 2019. Seismic random noise adaptive suppression based on the Shearlet transform. Oil Geophysical Prospecting (in Chinese), 54(4): 744-750. http://en.cnki.com.cn/Article_en/CJFDTotal-SYDQ201904003.htm

     

    Vassiliou A A, Garossino P. 1998-12-15. Time-frequency processing and analysis of seismic data using very short-time Fourier transforms: US, 5850622.

     

    Wright S J, Nowak R D, Figueiredo M A T. 2008. Sparse reconstruction by separable approximation. //2008 IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, NV, USA: IEEE, 3373-3376.

     

    Wu Z C, Liu T Y. 2008. Wavelet transform methods in seismic data noise attenuation. Progress in Geophysics (in Chinese), 23(2): 493-499. http://www.oalib.com/paper/1698635

     

    Yang G Y, Luan X W, Meng F S, et al. 2020. Seismic data reconstruction based on Shearlet transform and total generalized variation regularization. Chinese Journal of Geophysics (in Chinese), 63(9): 3465-3477, doi: 10.6038/cjg2020M0424.

     

    Yin W T, Osher S, Goldfarb D, et al. 2008. Bregman iterative algorithms for L1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences, 1(1): 143-168. doi: 10.1137/070703983

     

    Zhong T. 2016. A study on the characteristics of land-seismic-prospecting random noise based on modern statistical theory[Ph. D. thesis]. Changchun: Jilin University.

     

    Zhong T, Li Y, Yang B J, et al. 2017. Statistical features of the random noise in land seismic prospecting. Chinese Journal of Geophysics (in Chinese), 60(2): 655-664, doi: 10.6038/cjg20170219.

     

    陈兴飞, 孙红梅. 2019. 基于压缩感知理论的地震数据降噪方法. 地球物理学进展, 34(3): 1025-1031, doi: 10.6038/pg2019CC0208.

     

    邓盾, 裴健翔, 邓勇等. 2019. 南海深水盆地改善中深层地震成像关键技术研究. 地球物理学进展, 34(2): 702-708, doi: 10.6038/pg2019BB0551.

     

    高静怀, 毛剑, 满蔚仕等. 2006. 叠前地震资料噪声衰减的小波域方法研究. 地球物理学报, 49(4): 1155-1163. doi: 10.3321/j.issn:0001-5733.2006.04.030 http://www.geophy.cn//CN/abstract/abstract1620.shtml

     

    巩向博, 韩立国, 王恩利等. 2009. 压制噪声的高分辨率Radon变换法. 吉林大学学报(地球科学版), 39(1): 152-157. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200901024.htm

     

    国胧予, 刘财, 刘洋等. 2020. 基于f-x域流式预测滤波器的地震随机噪声衰减方法. 地球物理学报, 63(1): 329-338, doi: 10.6038/cjg2020N0030. http://www.geophy.cn//CN/abstract/abstract15309.shtml

     

    李海山, 陈德武, 吴杰等. 2020. 叠前随机噪声深度残差网络压制方法. 石油地球物理勘探, 55(3): 493-503. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202003003.htm

     

    李庆忠. 1993. 走向精确勘探的道路. 北京: 石油工业出版社, 112-114.

     

    刘洋, Fomel S, 刘财等. 2009. 高阶seislet变换及其在随机噪声消除中的应用. 地球物理学报, 52(8): 2142-2151, doi: 10.3969/j.issn.0001-5733.2009.08.024. http://www.geophy.cn//CN/abstract/abstract1150.shtml

     

    刘洋, 李炳秀, 王典等. 2017. 基于正则化条件的地震数据局部信噪比估计方法. 地球物理学报, 60(5): 1979-1987, doi: 10.6038/cjg20170529. http://www.geophy.cn//CN/abstract/abstract13745.shtml

     

    南方舟, 徐亚, 刘伟等. 2018. 基于稀疏表达的OBS去噪方法. 地球物理学报, 61(4): 1519-1528, doi: 10.6038/cjg2018L0130. http://www.geophy.cn//CN/abstract/abstract14469.shtml

     

    童思友, 高航, 刘锐等. 2019. 基于Shearlet变换的自适应地震资料随机噪声压制. 石油地球物理勘探, 54(4): 744-750. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201904003.htm

     

    吴招才, 刘天佑. 2008. 地震数据去噪中的小波方法. 地球物理学进展, 23(2): 493-499. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200802027.htm

     

    杨冠雨, 栾锡武, 孟凡顺等. 2020. 基于Shearlet变换和广义全变分正则化的地震数据重建. 地球物理学报, 63(9): 3465-3477, doi: 10.6038/cjg2020M0424. http://www.geophy.cn//CN/abstract/abstract15585.shtml

     

    钟铁. 2016. 基于现代统计理论的陆地地震勘探随机噪声特征研究[博士论文]. 长春: 吉林大学.

     

    钟铁, 李月, 杨宝俊等. 2017. 陆地地震勘探随机噪声统计特性. 地球物理学报, 60(2): 655-664, doi: 10.6038/cjg20170219. http://www.geophy.cn//CN/abstract/abstract13460.shtml

  • 加载中

(10)

(1)

计量
  • 文章访问数:  3580
  • PDF下载数:  711
  • 施引文献:  0
出版历程
收稿日期:  2021-01-18
修回日期:  2021-07-20
上线日期:  2021-12-10

目录