基于背景噪声研究华北克拉通中部Rayleigh波相速度和方位各向异性

黄翔, 丁志峰, 宁杰远, 常利军. 2021. 基于背景噪声研究华北克拉通中部Rayleigh波相速度和方位各向异性. 地球物理学报, 64(8): 2701-2715, doi: 10.6038/cjg2021O0442
引用本文: 黄翔, 丁志峰, 宁杰远, 常利军. 2021. 基于背景噪声研究华北克拉通中部Rayleigh波相速度和方位各向异性. 地球物理学报, 64(8): 2701-2715, doi: 10.6038/cjg2021O0442
HUANG Xiang, DING ZhiFeng, NING JieYuan, CHANG LiJun. 2021. Rayleigh wave phase velocity and azimuthal anisotropy of central North China Craton derived from ambient noise tomography. Chinese Journal of Geophysics (in Chinese), 64(8): 2701-2715, doi: 10.6038/cjg2021O0442
Citation: HUANG Xiang, DING ZhiFeng, NING JieYuan, CHANG LiJun. 2021. Rayleigh wave phase velocity and azimuthal anisotropy of central North China Craton derived from ambient noise tomography. Chinese Journal of Geophysics (in Chinese), 64(8): 2701-2715, doi: 10.6038/cjg2021O0442

基于背景噪声研究华北克拉通中部Rayleigh波相速度和方位各向异性

  • 基金项目:

    国家重点研发计划(2017YFC1500200),中国地震局地球物理研究所基本科研业务费专项(DQJB17A01)和国家自然科学基金(42074053,41774061)资助

详细信息
    作者简介:

    丁志峰, 男, 1962年生, 研究员, 主要从事地震学、地球内部结构及动力学研究.E-mail: dingzf@cea-igp.ac.cn

  • 中图分类号: P315

Rayleigh wave phase velocity and azimuthal anisotropy of central North China Craton derived from ambient noise tomography

  • 基于中国地震科学台阵探测项目在华北中部布设的306个台站记录的波形数据,利用背景噪声层析成像方法开展了Rayleigh波相速度和方位各向异性研究.结果显示,短周期的相速度异常及其方位各向异性主要与地表构造相关,盆地表现为低速异常,造山带表现为高速异常,快波方向主要表现为NE-SW向,与断层走向以及构造单元走向一致.在中长周期,山西地堑南北段的相速度异常以及方位各向异性都表现出显著差异.北段表现为大范围的低速异常,而南段则转变为高速异常,北段显著的低速异常可能与第四纪大同火山群的岩浆活动有关,其中心位置随深度的变化可能代表了地幔热物质在地壳内上涌的通道,相速度异常的南北差异可能代表着岩浆活动只在北段比较活跃.方位各向异性在北段较弱且主要表现为NE-SW向,南段的方位各向异性较强且逐渐向E-W向转变.中下地壳对应的面波快波方向与该区域最大压应力方向比较吻合,推测山西地堑的地壳方位各向异性主要受地壳应力场的影响,但北段还受到岩浆活动影响.与前人SKS分裂的结果对比发现,北段的地壳以及上地幔顶部的快波方向与地幔的快波方向不一致,考虑到该区域受岩浆活动影响,面波方位各向异性的来源比较复杂,其壳幔变形模式有待进一步研究.而中南段下地壳以及上地幔表现为稳定的高速异常,其面波快波方向逐渐转变为E-W向,与SKS分裂快波方向大致吻合,符合垂直连贯变形模式.

  • 加载中
  • 图 1 

    研究区域构造背景图(a)和研究所用台站分布图(b)

    Figure 1. 

    Tectonic settings of the study area (a) and the location of seismic stations for this study (b)

    图 2 

    经过去仪器响应、带通滤波(5~50 s)、去线性趋势和去均值处理的连续波形

    Figure 2. 

    Continuous waveforms after removing instrument response, bandpass filtering (5~50 s), de-linear trend and de-mean

    图 3 

    以台站13801为中心的互相关对称分量波形

    Figure 3. 

    Symmetric component of the cross-correlations between station 13801 and other stations

    图 4 

    华北克拉通中部Rayleigh波层析成像分辨率测试结果

    Figure 4. 

    Resolution test results of Rayleigh wave tomography in the central North China Craton

    图 5 

    不同周期Rayleigh波相速度和方位各向异性分布图

    Figure 5. 

    Maps for phase velocity and azimuthal anisotropy of Rayleigh waves at different periods

    图 6 

    (a) 研究区域的平均S波速度模型(红色),蓝色线条是AK135速度模型(Kennett et al., 1995);(b) 不同周期Rayleigh波相速度对S波速度的敏感核

    Figure 6. 

    (a) The average S-wave velocity model (red line) of the study area. The blue line is the AK135 earth model (Kennett et al., 1995); (b) Sensitivity kernels to S-wave velocity for Rayleigh wave phase velocities at different periods

    图 7 

    大同火山群下方岩浆上涌示意图

    Figure 7. 

    Schematic diagram of magma upwelling under DatongVolcanos

    图 8 

    Rayleigh波30 s和35 s的方位各向异性快波方向(黑色短棒)与SKS分裂(常利军等, 2021)快波方向(红色短棒)对比图

    Figure 8. 

    Comparison of azimuthal anisotropic fast wave directions from Rayleigh wave at 30 s and 35 s (black bars) and SKS splitting (red bars) (Chang et al., 2021)

  •  

    Ai S X, Zheng Y, He L P, et al. 2019. Joint inversion of ambient noise and earthquake data in the Trans-North China Orogen: On-going lithospheric modification and its impact on the Cenozoic continental rifting. Tectonophysics, 763: 73-85. doi: 10.1016/j.tecto.2019.05.003

     

    Ai S X, Zheng Y, Wang S X. 2020. Crustal deformations of the central North China Craton constrained by radial anisotropy. Journal of Geophysical Research: Solid Earth, 125(7): e2019JB018374, doi: 10.1029/2019JB018374.

     

    Bao X W, Song X D, Xu M J, et al. 2013. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications. Earth and Planetary Science Letters, 369-370: 129-137. doi: 10.1016/j.epsl.2013.03.015

     

    Barmin M P, Ritzwoller M H, Levshin A L. 2001. A fast and reliable method for surface wave tomography. Pure and Applied Geophysics, 158(8): 1351-1375. doi: 10.1007/PL00001225

     

    Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3): 1239-1260. doi: 10.1111/j.1365-246X.2007.03374.x

     

    Chang L J, Wang C Y, Ding Z F. 2008. A study on SKS splitting beneath Capital area of China. Acta Seismologica Sinica (in Chinese), 30(6): 551-559. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB200806003.htm

     

    Chang L J, Wang C Y, Ding Z F. 2011. Upper mantle anisotropy in the Ordos block and its margins. Science China Earth Sciences, 54(6): 888-900. doi: 10.1007/s11430-010-4137-2

     

    Chang L J, Wang C Y, Ding Z F. 2012. Upper mantle anisotropy beneath North China. Chinese Journal of Geophysics (in Chinese), 55(3): 886-896, doi: 10.6038/j.issn.0001-5733.2012.03.018.

     

    Chang L J, Ding Z F, Wang C Y. 2021. Upper mantle anisotropy and implications beneath the central and western North China and the NE margin of Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 64(1): 114-130, doi: 10.6038/cjg2021O0315.

     

    Chen H P, Zhu L B, Ye Q D, et al. 2015. Azimuthal anisotropy of the crust and uppermost mantle in northeast North China Craton from inversion of Rayleigh wave phase velocity. Geophysical Journal International, 202(1): 624-639. doi: 10.1093/gji/ggv153

     

    Chen W J, Li D M, Dai T M, et al. 1992. The K-Ar age and excess Ar of quaternary basalt in Datong. //Liu R X ed. The Age and Geochemistry of Cenozoic Volcanic Rock in China (in Chinese). Beijing: Seismological Press, 81-92.

     

    Crampin S. 1994. The fracture criticality of crustal rocks. Geophysical Journal International, 118(2): 428-438. doi: 10.1111/j.1365-246X.1994.tb03974.x

     

    Debayle E, Sambridge M. 2004. Inversion of massive surface wave data sets: model construction and resolution assessment. Journal of Geophysical Research: Solid Earth, 109: B02316, doi: 10.1029/2003JB002652.

     

    Gao Y, Wu J. 2008. Compressive stress field in the crust deduced from shear-wave anisotropy: an example in capital area of China. Chinese Science Bulletin, 53(18): 2840-2848. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXTW200818017.htm

     

    Gao Y, Wu J, Yi G X, et al. 2010. Crust-mantle coupling in North China: Preliminary analysis from seismic anisotropy. Chinese Science Bulletin, 55(31): 3599-3605. doi: 10.1007/s11434-010-4135-y

     

    Griffin W L, Zhang A D, O'Reilly S Y, et al. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. //Flower M F J, Chung S L, Lo C H eds. Mantle Dynamics and Plate Interactions in East Asia. Washington, DC: American Geophysical Union, 27: 107-126.

     

    Gu Q P, Ding Z F, Kang Q Q, et al. 2020a. Group velocity tomography of Rayleigh wave in the middle-southern segment of the Tan-Lu fault zone and adjacent regions using ambient noise. Chinese Journal of Geophysics (in Chinese), 63(4): 1505-1522, doi: 10.6038/cjg2020N0117.

     

    Gu Q P, Kang Q Q, Zhang P, et al. 2020b. Rayleigh wave phase velocity and azimuthal anisotropy of the middle-southern segment of the Tan-Lu fault zone and adjacent regions from ambient noise tomography. Seismology and Geology (in Chinese), 42(5): 1129-1152. http://www.researchgate.net/publication/349694674_Rayleigh_wave_phase_velocity_and_azimuthal_anisotropy_of_the_middle-southern_segment_of_the_Tan-Lu_fault_zone_and_adjacent_regions_from_ambient_noise_tomography/download

     

    Guo Z, Chen Y J, Ning J Y, et al. 2016. Seismic evidence of on-going sublithosphere upper mantle convection for intra-plate volcanism in Northeast China. Earth and Planetary Science Letters, 433: 31-43. doi: 10.1016/j.epsl.2015.09.035

     

    Iyer H M, Hirahara K. 1993. Seismic Tomography: Theory and Practice. New York: Springer.

     

    Kennett B L N, Engdahl E R, Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122: 108-124. doi: 10.1111/j.1365-246X.1995.tb03540.x

     

    Lei J S. 2012. Upper-mantle tomography and dynamics beneath the North China Craton. Journal of Geophysical Research: Solid Earth, 117(B6): B06313, doi: 10.1029/2012JB009212.

     

    Levshin A L, Ritzwoller M H. 2001. Automated detection, extraction, and measurement of regional surface waves. Pure and Applied Geophysics, 158(8): 1531-1545. doi: 10.1007/PL00001233

     

    Li B, Atakan K, Sørensen M B, et al. 2015. Stress pattern of the Shanxi rift system, North China, inferred from the inversion of new focal mechanisms. Geophysical Journal International, 201(2): 505-527. doi: 10.1093/gji/ggv025

     

    Li G L, Niu F L, Yang Y J, et al. 2018. An investigation of time-frequency domain phase-weighted stacking and its application to phase-velocity extraction from ambient noise's empirical Green's functions. Geophysical Journal International, 212(2): 1143-1156. doi: 10.1093/gji/ggx448

     

    Li J, Wang X J, Niu F L. 2011. Seismic anisotropy and implications for mantle deformation beneath the NE margin of the Tibet plateau and Ordos plateau. Physics of the Earth and Planetary Interiors, 189(3-4): 157-170. doi: 10.1016/j.pepi.2011.08.009

     

    Li S L, Guo Z, Chen Y J, et al. 2018. Lithospheric structure of the northern Ordos from ambient noise and teleseismic surface wave tomography. Journal of Geophysical Research: Solid Earth, 123(8): 6940-6957.

     

    Li Y X, Zhang J H, Guo L Q, et al. 2005. Counterclockwise rotation and geodynamics of Ordos block. Journal of Geodesy and Geodynamics (in Chinese), 25(3): 50-56. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB200503010.htm

     

    Liu M, Cui X J, Liu F T. 2004. Cenozoic rifting and volcanism in eastern China: A mantle dynamic link to the Indo-Asian collision?. Tectonophysics, 393(1-4): 29-42. doi: 10.1016/j.tecto.2004.07.029

     

    Liu Z K, Huang J L, Yao H J. 2016. Anisotropic Rayleigh wave tomography of Northeast China using ambient seismic noise. Physics of the Earth and Planetary Interiors, 256: 37-48. doi: 10.1016/j.pepi.2016.05.001

     

    Long M D, Becker T W. 2010. Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters, 297(3-4): 341-354. doi: 10.1016/j.epsl.2010.06.036

     

    Lu L Y, He Z Q, Ding Z F, et al. 2014. Azimuth anisotropy and velocity heterogeneity of Yunnan area based on seismic ambient noise. Chinese Journal of Geophysics (in Chinese), 57(3): 822-836, doi: 10.6038/cjg20140312.

     

    Lü Z Q. 2019. Uppermost mantle velocity and anisotropy structure beneath the North China Craton and its adjacent regions. Tectonophysics, 754: 45-55. doi: 10.1016/j.tecto.2019.01.014

     

    Menzies M A, Fan W M, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. Geological Society, London, Special Publications, 76: 71-81. doi: 10.1144/GSL.SP.1993.076.01.04

     

    Molnar P, Tapponnier P. 1977. Relation of the tectonics of eastern China to the India-Eurasia collision: Application of slip-line field theory to large-scale continental tectonics. Geology, 5(4): 212-216. doi: 10.1130/0091-7613(1977)5<212:ROTTOE>2.0.CO;2

     

    Montagner J P, Nataf H C. 1986. A simple method for inverting the azimuthal anisotropy of surface waves. Journal of Geophysical Research: Solid Earth, 91(B1): 511-520. doi: 10.1029/JB091iB01p00511

     

    Northrup C J, Royden L H, Burchfiel B C. 1995. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology, 23(8): 719-722. doi: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2

     

    Qu W, Lu Z, Zhang Q, et al. 2014. Kinematic model of crustal deformation of Fenwei basin, China based on GPS observations. Journal of Geodynamics, 75: 1-8. doi: 10.1016/j.jog.2014.01.001

     

    Rabbel W, Mooney W D. 1996. Seismic anisotropy of the crystalline crust: What does it tell us?. Terra Nova, 8(1): 16-21. doi: 10.1111/j.1365-3121.1996.tb00721.x

     

    Shen W S, Ritzwoller M H, Kang D, et al. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophysical Journal International, 206(2): 954-979. doi: 10.1093/gji/ggw175

     

    Smith M L, Dahlen F A. 1973. The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. Journal of Geophysical Research, 78(17): 3321-3333. doi: 10.1029/JB078i017p03321

     

    Tang Y C, Chen Y S, Yang Y J, et al. 2011. Ambient noise tomography in North China Craton. Chinese Journal of Geophysics (in Chinese), 54(8): 2011-2022, doi: 10.3969/j.issn.0001-5733.2011.08.008.

     

    Tang Y C, Chen Y J, Zhou S Y, et al. 2013. Lithosphere structure and thickness beneath the North China Craton from joint inversion of ambient noise and surface wave tomography. Journal of Geophysical Research: Solid Earth, 118(5): 2333-2346. doi: 10.1002/jgrb.50191

     

    Xu H R. 2018. Study on the shear velocity structure and anisotropy of eastern part of Ordos block[Ph. D. thesis] (in Chinese). Wuhan: China University of Geosciences.

     

    Xu X W, Ma X Y. 1992. Geodynamics of the Shanxi rift system, China. Tectonophysics, 208(1-3): 325-340. doi: 10.1016/0040-1951(92)90353-8

     

    Xu Y G, Chung S L, Ma J L, et al. 2004. Contrasting Cenozoic lithospheric evolution and architecture in the Western and Eastern Sino-Korean Craton: constraints from geochemistry of basalts and mantle xenoliths. The Journal of Geology, 112(5): 593-605. doi: 10.1086/422668

     

    Xu Y G, Ma J L, Frey F A, et al. 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chemical Geology, 224(4): 247-271. doi: 10.1016/j.chemgeo.2005.08.004

     

    Xu Y G. 2007. Diachronous lithospheric thinning of the North China Craton and formation of the Daxin'anling-Taihangshan gravity lineament. Lithos, 96(1-2): 281-298. doi: 10.1016/j.lithos.2006.09.013

     

    Yang Y, Yao H J, Zhang P, et al. 2018. Crustal azimuthal anisotropy in the trans-North China orogen and adjacent regions from receiver functions. Science China Earth Sciences, 61(7): 903-913. doi: 10.1007/s11430-017-9209-9

     

    Yao H J, Van Der Hilst R D, Montagner J P. 2010. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography. Journal of Geophysical Research: Solid Earth, 115(B12): B12307, doi: 10.1029/2009JB007142.

     

    Zhang H, Gao Y, Shi Y T, et al. 2020. Crustal seismic anisotropy beneath the northern and western margins of the Ordos block. Chinese Journal of Geophysics (in Chinese), 63(6): 2230-2247, doi: 10.6038/cjg2020M0657.

     

    Zhang H Q, Huang Q H, Zhao G Z, et al. 2016. Three-dimensional conductivity model of crust and uppermost mantle at the northern Trans North China Orogen: Evidence for a mantle source of Datong volcanoes. Earth and Planetary Science Letters, 453: 182-192. doi: 10.1016/j.epsl.2016.08.025

     

    Zhang Y Q, Mercier J L, Vergély P. 1998. Extension in the graben systems around the Ordos (China), and its contribution to the extrusion tectonics of south China with respect to Gobi-Mongolia. Tectonophysics, 285(1-2): 41-75. doi: 10.1016/S0040-1951(97)00170-4

     

    Zhao B, Gao Y, Shi Y T. 2011. Shear wave splitting in the crust in the intersection zone of the Zhangjiakou-Bohai seismic belt and Shanxi seismic belt. Chinese Journal of Geophysics (in Chinese), 54(6): 1517-1527, doi: 10.3969/j.issn.0001-5733.2011.06.011.

     

    Zhao G C, Sun M, Wilde S A, et al. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002

     

    Zheng T, Ding Z F, Ning J Y, et al. 2019. Crustal azimuthal anisotropy beneath the central North China Craton revealed by receiver functions. Geochemistry, Geophysics, Geosystems, 20(5): 2235-2251. http://onlinelibrary.wiley.com/doi/10.1029/2019GC008181

     

    Zheng T Y, Chen L, Zhao L, et al. 2006. Crust-mantle structure difference across the gravity gradient zone in North China Craton: seismic image of the thinned continental crust. Physics of the Earth and Planetary Interiors, 159(1-2): 43-58. doi: 10.1016/j.pepi.2006.05.004

     

    常利军, 王椿镛, 丁志峰. 2008. 首都圈地区SKS波分裂研究. 地震学报, 30(6): 551-559. doi: 10.3321/j.issn:0253-3782.2008.06.001

     

    常利军, 王椿镛, 丁志峰. 2011. 鄂尔多斯块体及周缘上地幔各向异性研究. 中国科学: 地球科学, 41(5): 686-699.

     

    常利军, 王椿镛, 丁志峰. 2012. 华北上地幔各向异性研究. 地球物理学报, 55(3): 886-896, doi: 10.6038/j.issn.0001-5733.2012.03.018. http://www.geophy.cn/CN/abstract/abstract8529.shtml

     

    常利军, 丁志峰, 王椿镛. 2021. 华北中西部和青藏高原东北缘上地幔各向异性变形特征. 地球物理学报, 64(1): 114-130, doi: 10.6038/cjg2021O0315. http://www.geophy.cn/CN/abstract/abstract15729.shtml

     

    陈文寄, 李大明, 戴潼漠等. 1992. 大同第四纪玄武岩的K-Ar年龄及过剩氩. //刘若新. 中国新生代火山岩年代学与地球化学. 北京: 地震出版社, 81-92.

     

    高原, 吴晶. 2008. 利用剪切波各向异性推断地壳主压应力场: 以首都圈地区为例. 科学通报, 53(23): 2933-2939. doi: 10.3321/j.issn:0023-074X.2008.23.015

     

    高原, 吴晶, 易桂喜等. 2010. 从壳幔地震各向异性初探华北地区壳幔耦合关系. 科学通报, 55(29): 2837-2843. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201029009.htm

     

    顾勤平, 丁志峰, 康清清等. 2020a. 郯庐断裂带中南段及邻区基于背景噪声的瑞利波群速度层析成像. 地球物理学报, 63(4): 1505-1522, doi: 10.6038/cjg2020N0117. http://www.geophy.cn/CN/abstract/abstract15422.shtml

     

    顾勤平, 康清清, 张鹏等. 2020b. 郯庐断裂带中南段及邻区Rayleigh波相速度与方位各向异性. 地震地质, 42(5): 1129-1152.

     

    李延兴, 张静华, 郭良迁等. 2005. 鄂尔多斯的逆时针旋转与动力学. 大地测量与地球动力学, (3): 50-56.

     

    鲁来玉, 何正勤, 丁志峰等. 2014. 基于背景噪声研究云南地区面波速度非均匀性和方位各向异性. 地球物理学报, 57(3): 822-836, doi: 10.6038/cjg20140312. http://www.geophy.cn/CN/abstract/abstract10218.shtml

     

    唐有彩, 陈永顺, 杨英杰等. 2011. 华北克拉通中部地区背景噪声成像. 地球物理学报, 54(8): 2011-2022, doi: 10.3969/j.issn.0001-5733.2011.08.008. http://www.geophy.cn/CN/abstract/abstract8086.shtml

     

    胥鸿睿. 2018. 鄂尔多斯块体东缘横波速度结构及各向异性研究[博士论文]. 武汉: 中国地质大学.

     

    杨妍, 姚华建, 张萍等. 2018. 用接收函数方法研究华北克拉通中部造山带及其邻域地壳方位各向异性. 中国科学: 地球科学, 48(7): 912-923. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201807008.htm

     

    张晖, 高原, 石玉涛等. 2020. 鄂尔多斯块体北缘与西缘地区地壳各向异性特征. 地球物理学报, 63(6): 2230-2247, doi: 10.6038/cjg2020M0657. http://www.geophy.cn/CN/abstract/abstract15483.shtml

     

    赵博, 高原, 石玉涛等. 2011. 张家口-渤海地震带与山西地震带交汇区的地壳剪切波分裂. 地球物理学报, 54(6): 1517-1527, doi:10.3969/j.issn.0001-5733.2011.06.011. http://www.geophy.cn/CN/abstract/abstract7985.shtml

  • 加载中

(8)

计量
  • 文章访问数:  3467
  • PDF下载数:  386
  • 施引文献:  0
出版历程
收稿日期:  2020-11-13
修回日期:  2021-04-22
上线日期:  2021-08-10

目录