大地电磁场源效应特征分析及其校正研究

罗威, 王绪本, 王堃鹏, 张刚, 李德伟, 杨钰菡. 2021. 大地电磁场源效应特征分析及其校正研究. 地球物理学报, 64(8): 2952-2964, doi: 10.6038/cjg2021O0410
引用本文: 罗威, 王绪本, 王堃鹏, 张刚, 李德伟, 杨钰菡. 2021. 大地电磁场源效应特征分析及其校正研究. 地球物理学报, 64(8): 2952-2964, doi: 10.6038/cjg2021O0410
LUO Wei, WANG XuBen, WANG KunPeng, ZHANG Gang, LI DeWei, YANG YuHan. 2021. Study on the characteristics of magnetotelluric source effects and its correction. Chinese Journal of Geophysics (in Chinese), 64(8): 2952-2964, doi: 10.6038/cjg2021O0410
Citation: LUO Wei, WANG XuBen, WANG KunPeng, ZHANG Gang, LI DeWei, YANG YuHan. 2021. Study on the characteristics of magnetotelluric source effects and its correction. Chinese Journal of Geophysics (in Chinese), 64(8): 2952-2964, doi: 10.6038/cjg2021O0410

大地电磁场源效应特征分析及其校正研究

  • 基金项目:

    国家自然科学基金项目(41674078,42004057,41930112),四川省科技计划(2021ZHCG0014),重点研发课题(2017YFC0601504)联合资助

详细信息
    作者简介:

    罗威, 男, 1988年生, 博士, 高级工程师, 主要从事电磁探测方法研究.E-mail: luovitas@qq.com

    通讯作者: 王绪本, 男, 1956年生, 教授, 博士生导师, 主要从事地球物理电磁勘探理论研究.E-mail: wxb@cdut.edu.cn
  • 中图分类号: P631

Study on the characteristics of magnetotelluric source effects and its correction

More Information
  • 大地电磁法一直以来基本都遵循场源为平面电磁波的假设,这种假设普遍适用于中高频的大地电磁研究,但在具有显著非平面波场特性的区域或开展长周期大地电磁研究时,则对场源平面波的理论基础带来了挑战,若不满足理论假设,将会导致深部探测的可靠性降低,勘探目标定位风险增高.本文通过选择线状、片状及非规则场源模型来模拟极光电集流、赤道环电流和横向波动的波数场源,开展了大地电磁场源效应的模拟研究,对比分析了非平面波模式和平面波模式的响应差别.模拟表明大地电磁场源效应强度与模型平均电阻率正相关,与频率和测点与源水平距离负相关,且与场源的高度、宽度和横向波长等参数均有关系,非平面波模式和平面波模式正演响应在一些情况下具有超过10%的差异.基于场源效应特征,归纳并提出了五种场源效应校正方法,一是计算极限模型来截断场源效应影响频段的频域截断法,二是对多个同步观测的邻近测点进行平均的测点平均法,三是延长测点观测时间的时间域延长法,四是剔除较强垂直磁场分量所对应场源效应较强段数据的时间域剔除法,五是直接考虑场源的反演,五种方法均能一定程度上降低大地电磁场源效应的影响.对于受场源效应影响的大地电磁数据,若直接采用平面波方式进行反演则可能在深部产生较大畸变,若在获知场源相关参数的基础上,可开展考虑场源的大地电磁反演来消除场源效应影响.

  • 加载中
  • 图 1 

    线电流源-层状介质模型示意图

    Figure 1. 

    Line current source-layered model

    图 2 

    均匀半空间模型线电流源正演响应

    Figure 2. 

    Response of line current source in uniform half-space model

    图 3 

    不同高度线电流源的正演响应

    Figure 3. 

    Responses of different heights line current sources

    图 4 

    稳定区域模型

    Figure 4. 

    Stable region model

    图 5 

    稳定区域模型线源与平面波源正演响应及其相对误差

    Figure 5. 

    Response and relative error between line source and plane wave source in stable region model

    图 6 

    活动区域模型

    Figure 6. 

    Active region model

    图 7 

    活动区域模型线源与平面波源正演响应及其相对误差

    Figure 7. 

    Response and relative error between line source and plane wave source in active region model

    图 8 

    不同半宽度片电流源正演结果

    Figure 8. 

    Responses of different half widths sheet source

    图 9 

    波数场源和平面波源对比示意图

    Figure 9. 

    Wave number field source and surface source

    图 10 

    波数场源100 Ωm模型正演响应

    Figure 10. 

    Responses of wave number field source in 100 Ωm model

    图 11 

    波数场源10000 Ωm模型正演响应

    Figure 11. 

    Responses of wave number field source in 10000 Ωm model

    图 12 

    线电流源正演结果测点平均校正前后对比

    Figure 12. 

    Comparison of average calibration of measuring points before and after in linear current response

    图 13 

    北京地磁台不同观测时长倾子幅值对比

    Figure 13. 

    TipMag of different observation time at the Beijing Geomagnetic Observatory

    图 14 

    线电流源-稳定区域模型Bz响应断面

    Figure 14. 

    Bz responses of line current source in stable region model

    图 15 

    北京地磁台2019年度磁场时间序列

    Figure 15. 

    The magnetic field time series of Beijing Geomagnetic Platform in 2019

    图 16 

    时间域剔除法校正北京地磁台倾子幅值

    Figure 16. 

    The time domain elimination method corrects the tilting amplitude of the Beijing geomagnetic platform

    图 17 

    地球平均电阻率模型反演响应和RMS收敛曲线

    Figure 17. 

    Inversion responses and RMS of earth mean resistivity model

    图 18 

    地球平均电阻率模型带源与不带源反演结果

    Figure 18. 

    Inversion results of earth mean resistivity model with and without source

    表 1 

    10000 Ωm均匀半空间模型极光电集流场源效应频段

    Table 1. 

    The source effects spectrum of aurora electric collector field in 10000 Ωm model

    测点纬度 测点与线源水平距离/km 线源与平面波源相对误差>1%的频段/s 线源与平面波源相对误差>10%的频段/s
    视电阻率 相位 视电阻率 相位
    7338 >1050 >175 >4000 >1950
    15° 5670 >610 >110 >2200 >1220
    30° 4003 >270 >60 >1220 >690
    45° 2335 >95 >27 >480 >380
    60° 667 >44 >125 >1500 >630
    75° 1000 >35 >22 >310 >1700
    90° 2668 >120 >30 >610 >420
    下载: 导出CSV
  •  

    Bai D H, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience, 3(5): 358-362, doi:10.1038/ngeo830.

     

    Boteler D H, Pirjola R, Trichtchenko L. 2000. On calculating the electric and magnetic fields produced in technological systems at the Earth's surface by a "wide" electrojet. Journal of Atmospheric and Solar-Terrestrial Physics, 62(14): 1311-1315, doi:10.1016/s1364-6826(00)00071-7.

     

    Cagniard L. 1953. Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics, 18(3): 605-635, doi:10.1190/1.1437915.

     

    Chen X B, Zhao G Z, Tang J, et al. 2005. An adaptive regularized inversion algorithm for magnetotelluric data. Chinese Journal of Geophysics (in Chinese), 48(4): 937-946, doi:10.3321/j.issn:0001-5733.2005.04.029.

     

    Egbert G D, Booker J R. 1986. Robust estimation of geomagnetic transfer functions. Geophysical Journal of the Royal Astronomical Society, 87(1): 173-194, doi:10.1111/j.1365-246X.1986.tb04552.x.

     

    Grayver A V, Munch F D, Kuvshinov A V, et al. 2017. Joint inversion of satellite-detected tidal and magnetospheric signals constrains electrical conductivity and water content of the upper mantle and transition zone. Geophysical Research Letters, 44(12): 6074-6081, doi:10.1002/2017GL073446.

     

    Hermance J F, Peltier W R. 1970. Magnetotelluric fields of a line current. Journal of Geophysical Research, 75(17): 3351-3356, doi:10.1029/jb075i017p03351.

     

    Jin S, Zhang L T, Wei W B, et al. 2010. Magnetotelluric method for deep detection of Chinese continent. Acta Geologica Sinica (in Chinese), 84(6): 808-817. http://www.researchgate.net/publication/285954327_Magnetotelluric_method_for_deep_detection_of_Chinese_continent

     

    Jones A G, Spratt J. 2002. A simple method for deriving the uniform field MT responses in auroral zones. Earth, Planets and Space, 54(5): 443-450, doi:10.1186/BF03353035.

     

    Kao D W. 1991. Line source effects on magnetotelluric responses. Acta Geophysica Sinica (in Chinese), 34(2): 210-215. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199102009.htm

     

    Keller G V. 1971. Electrical studies of the crust and upper mantle. //The Structure and Physical Properties of the Earth's Crust. American Geophysical Union, 14: 107-126.

     

    Lezaeta P, Chave A, Jones A G, et al. 2007. Source field effects in the auroral zone: Evidence from the Slave craton (NW Canada). Physics of the Earth and Planetary Interiors, 164(1-2): 21-35, doi:10.1016/j.pepi.2007.05.002.

     

    Madden T, Nelson P. 1986. A defense of Cagniard's magnetotelluric method. Geophysics, 43(5): 89-95. http://www.ualberta.ca/~unsworth/UA-classes/699/2011/pdf/Madden-defence-of-Cagniard-1963.pdf

     

    Park D. 1973. Magnetic field of a horizontal current above a conducting earth. Journal of Geophysical Research, 78(16): 3040-3043, doi:10.1029/JA078i016p03040.

     

    Peltier W R, Hermance J F. 1971. Magnetotelluric fields of a Gaussian electrojet. Canadian Journal of Earth Sciences, 8(3): 338-346, doi:10.1139/e71-034.

     

    Price A T. 1962. The theory of magnetotelluric methods when the source field is considered. Journal of Geophysical Research, 67(5): 1907-1918, doi:10.1029/jz067i005p01907.

     

    Sobouti Y. 1961. The relationship between unique geomagnetic and auroral events. Journal of Geophysical Research, 66(3): 725-737, doi:10.1029/JZ066i003p00725.

     

    Srivastava S P. 1965. Method of interpretation of magnetotelluric data when source field is considered. Journal of Geophysical Research, 70(4): 945-954, doi:10.1029/jz070i004p00945.

     

    Tikhonov A N, Arsenin V Y. 1977. Solutions of Ill-Posed Problems. Washington DC: Winston and Sons, doi:10.2307/2006360.

     

    Unsworth M J, Jones A G, Wei W, et al. 2005. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature, 438(7064): 78-81, doi:10.1038/nature04154.

     

    Wait J R. 1954. On the relation between telluric currents and the Earth's magnetic field. Geophysics, 19(2): 281-289, doi:10.1190/1.1437994.

     

    Wang H J. 2004. Digital filter algorithm of the sine and cosine transform. Chinese Journal of Engineering Geophysics (in Chinese), 1(4): 329-335, doi:10.3969/j.issn.1672-7940.2004.04.008.

     

    Wang X B, Yu N, Gao S, et al. 2017. Research progress in research on electrical structure of crust and upper mantle beneath the eastern margin of the Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 60(6): 2350-2370, doi:10.6038/cjg20170626.

     

    Wei W B, Jin S, Ye G F, et al. 2010. On the conductive structure of Chinese continental lithosphere-Experiment on "Standard Monitoring Network" of continental EM parameters (SinoProbe-01). Acta Geologica Sinica (in Chinese), 84(6): 788-800. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201006005.htm

     

    Worzewski T, Jegen M, Kopp H, et al. 2010. Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone. Nature Geoscience, 4(2): 108-111, doi:10.1038/ngeo1041.

     

    Yang B, Egbert G D, Kelbert A, et al. 2015. Three-dimensional electrical resistivity of the north-central USA from EarthScope long period magnetotelluric data. Earth and Planetary Science Letters, 422: 87-93, doi:10.1016/j.epsl.2015.04.006.

     

    Zhao G Z, Chen X B, Wang L F, et al. 2008. Evidence of crustal "channel flow" in the eastern margin of Tibetan plateau from MT measurements. Chinese Science Bulletin (in Chinese), 53(3): 345-350. doi: 10.1360/csb2008-53-3-345

     

    陈小斌, 赵国泽, 汤吉等. 2005. 大地电磁自适应正则化反演算法. 地球物理学报, 48(4): 937-946, doi:10.3321/j.issn:0001-5733.2005.04.029. http://www.geophy.cn//CN/abstract/abstract763.shtml

     

    高文. 1991. 大地电磁感应的场源效应. 地球物理学报, 34(2): 210-215. doi: 10.3321/j.issn:0001-5733.1991.02.010 http://www.geophy.cn//CN/abstract/abstract4590.shtml

     

    金胜, 张乐天, 魏文博等. 2010. 中国大陆深探测的大地电磁测深研究. 地质学报, 84(6): 808-817. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201006007.htm

     

    王华军. 2004. 正余弦变换的数值滤波算法. 工程地球物理学报, 1(4): 329-335, doi:10.3969/j.issn.1672-7940.2004.04.008.

     

    王绪本, 余年, 高嵩等. 2017. 青藏高原东缘地壳上地幔电性结构研究进展. 地球物理学报, 60(6): 2350-2370, doi:10.6038/cjg20170626. http://www.geophy.cn//CN/abstract/abstract13778.shtml

     

    魏文博, 金胜, 叶高峰等. 2010. 中国大陆岩石圈导电性结构研究——大陆电磁参数"标准网"实验(SinoProbe-01). 地质学报, 84(6): 788-800. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201006005.htm

     

    赵国泽, 陈小斌, 王立凤等. 2008. 青藏高原东边缘地壳"管流"层的电磁探测证据. 科学通报, 53(3): 345-350. doi: 10.3321/j.issn:0023-074X.2008.03.011

  • 加载中

(18)

(1)

计量
  • 文章访问数:  1814
  • PDF下载数:  522
  • 施引文献:  0
出版历程
收稿日期:  2020-10-27
修回日期:  2021-04-15
上线日期:  2021-08-10

目录