以虚拟地震的理论格林函数为模板搜寻小地震

王亮, 梁春涛. 2021. 以虚拟地震的理论格林函数为模板搜寻小地震. 地球物理学报, 64(7): 2374-2393, doi: 10.6038/cjg2021O0361
引用本文: 王亮, 梁春涛. 2021. 以虚拟地震的理论格林函数为模板搜寻小地震. 地球物理学报, 64(7): 2374-2393, doi: 10.6038/cjg2021O0361
WANG Liang, LIANG ChunTao. 2021. Detecting small earthquakes using the theoretical Green's function of virtual earthquakes as templates. Chinese Journal of Geophysics (in Chinese), 64(7): 2374-2393, doi: 10.6038/cjg2021O0361
Citation: WANG Liang, LIANG ChunTao. 2021. Detecting small earthquakes using the theoretical Green's function of virtual earthquakes as templates. Chinese Journal of Geophysics (in Chinese), 64(7): 2374-2393, doi: 10.6038/cjg2021O0361

以虚拟地震的理论格林函数为模板搜寻小地震

  • 基金项目:

    国家自然科学基金(41674059,41340009)资助

详细信息
    作者简介:

    王亮, 男, 1989年生, 成都理工大学博士候选人, 主要从事震源观测方面的研究.E-mail: wangliang.seis@gmail.com

    通讯作者: 梁春涛.E-mail: liangct@cdut.edu.cn
  • 中图分类号: P315

Detecting small earthquakes using the theoretical Green's function of virtual earthquakes as templates

More Information
  • 搜寻小地震而得到更加完备的地震目录是地震学的基本课题.传统的匹配滤波方法用已知地震的波形与连续观测做互相关,可有效识别小地震.然而,一些地区缺乏早期观测或地震活动性低而无真实地震可做模板,造成传统匹配滤波法难以施展.使用虚拟地震的理论波形做模板可解决该问题.若使用的虚拟地震包含所有可能的震源机制,即离散地覆盖整个震源机制解空间,虚拟地震的数量将大量增加,导致计算量剧增.本研究借鉴裁剪-粘贴法(CAP)中对滑动互相关的处理方式,发展了以虚拟地震的理论格林函数为模板的匹配滤波方法(Green's function-based matched filter,简称为GFMF),在不改变计算结果的前提下通过减少滑动互相关的次数,节省计算时间.本文将该方法应用到加州一地震序列,凭借对震源位置和震源机制的网格搜索,得到了该序列的时空分布变化特征和该区域全部中等地震的震源机制.研究结果显示,虚拟地震可以用作模板来检测小地震以解决真实模板地震不足的问题.若不对虚拟地震的震源机制进行遍历,得到的地震数量将减少70%以上.这表明本研究对震源机制遍历的相关优化是重要的.

  • 加载中
  • 图 1 

    GFMF工作流程图

    Figure 1. 

    Workflow of the GFMF method

    图 2 

    实际测试中的一天12个台站的8个虚拟震源的mean CC的振幅分布图

    Figure 2. 

    Histograms for amplitudes values in mean CCs from 1-day real observed data of 12 seismic stations and 8 virtual-template events

    图 3 

    研究区域地图

    Figure 3. 

    Map of the study area

    图 4 

    复杂模型测试的波形拟合情况

    Figure 4. 

    Waveform fitting of the complex model test

    图 5 

    一个被GFMF识别到,但未被SCSN地震目录收录的地震的波形拟合情况

    Figure 5. 

    Waveform fitting of one example event newly detected by the GFMF method but not existing in the SCSN catalog

    图 6 

    GFMF搜索结果和SCSN地震目录中地震事件的时间变化和空间分布,及二者震源参数的差异分布

    Figure 6. 

    Time evolution and spatial distribution of GFMF detections and the SCSN catalog, and their difference of source parameters

    图 7 

    震级、波形振幅和地震数量的关系

    Figure 7. 

    Relationship between magnitude, waveform amplitudes and the number of earthquakes

    图 8 

    Match & Locate搜索结果和SCSN地震目录中地震事件的时间变化,及二者震源参数的差异分布

    Figure 8. 

    Time evolution of Match & Locate and the SCSN catalog, and their difference of source parameters

    图 9 

    地震数量的时间累积图

    Figure 9. 

    Time cumulative number of earthquakes

    图 10 

    GFMF和Match & Locate搜索结果在发震时刻(a)和震中位置(b)的差异分布图

    Figure 10. 

    Histograms of the difference respectively in the origin time (a) and epicenter (b) between the Match & Locate detections and SCSN catalog

    图 11 

    全部大于3级地震的GFMF反演结果

    Figure 11. 

    Inversion results of GFMF for earthquakes (Mag>3)

    图 12 

    地震事件20181109145809的波形拟合情况

    Figure 12. 

    Waveform fitting of seismic event 20181109145809

    图 13 

    完整震源机制解空间和单个震源机制解识别到的地震总数(a)和识别率(b)的对比

    Figure 13. 

    Total detection number (a) and detection rate (b) of virtual-template events with varying and fixed focal mechanism(s)

    表 1 

    各理论测试中不同干扰因素得到的不同的结果

    Table 1. 

    Different result obtained by different interference factors in theoretical tests

    干扰因素 输入和得到的震源参数的差异 最大平均互相关值
    基本测试 完全一致 100.0%
    震源时间函数测试 加入了底边为0.2 s的等腰三角形的震源时间函数 发震时刻延迟0.1 s 84.7%
    噪声测试 在上一行的基础上,加入0.5倍的真实噪声 同上 34.0%
    复杂模型测试 在上一行的基础上,改用PREM模型搜索 发震时刻提前1.5 s,震中位置和震源机制为输入值的相邻网格位置 8.06%
    下载: 导出CSV

    表 2 

    大于3级地震的GFMF搜索结果和SCSN地震目录的震源参数差异的统计值

    Table 2. 

    Statistical values of the difference in source parameters between GFMF detections and SCSN cataloged earthquakes with magnitude greater than 3

    中值 平均值 最小值 最大值
    发震时刻 1.25 s 1 s 0.31 s 1.66 s
    震中 1.9 km 2 km 0.1 km 3.9 km
    震源深度 1.1 km 2 km 0.1 km 4.9 km
    P 12° 13° 25°
    T 11° 13° 29°
    N 12° 16° 37°
    下载: 导出CSV

    表 3 

    不同阈值的误检估计

    Table 3. 

    False detection estimation of different thresholds

    阈值(MAD倍数) 候选检测中的误检数(双精度) 候选检测总数 误检率
    8 46487.4556950635 8102992 0.57%
    9 869.989766776939 2313281 0.040%
    10 10.4419068023844 674619 0.0015%
    11 0.0802513102371449 196926 0.000041%
    12 4.54252699455537×10-4 57313 0.00000079%
    13 0 16555 0
    下载: 导出CSV

    表 4 

    不同阈值的检测总数和识别率

    Table 4. 

    Total number of detections and recognition rate of different thresholds

    阈值(MAD倍数) 检测总数 对SCSN目录事件的识别率
    8 43561 98.3%
    9 14514 98.0%
    10 5895 97.3%
    11 3273 97.1%
    12 2149 94.6%
    13 1428 83.0%
    下载: 导出CSV
  •  

    Aiken C, Peng Z G. 2014. Dynamic triggering of microearthquakes in three geothermal/volcanic regions of California. Journal of Geophysical Research: Solid Earth, 119(9): 6992-7009, doi:10.1002/2014JB011218.

     

    Aki K, Richards P G. 1986. Quantitative Seismology Theory and Methods (in Chinese). Beijing: Seismological Press, 59.

     

    Bai Q P, Ni S D, Chu R S, et al. 2020. gCAPjoint, a software package for full moment tensor inversion of moderately strong earthquakes with local and teleseismic waveforms. Seismological Research Letters, 91(6): 3550-3562, doi:10.1785/0220200031.

     

    Billings S D, Kennett B L N, Sambridge M S. 1994. Hypocentre location: genetic algorithms incorporating problem-specific information. Geophysical Journal International, 118(3): 693-706, doi:10.1111/j.1365-246X.1994.tb03994.x.

     

    California Institute of Technology, United States Geological Survey Pasadena. 1926. Southern California Seismic Network. International Federation of Digital Seismograph Networks. doi:10.7914/SN/CI

     

    Chamberlain C J, Townend J. 2018. Detecting real earthquakes using artificial earthquakes: on the use of synthetic waveforms in matched-filter earthquake detection. Geophysical Research Letters, 45(21): 11641-11649, doi:10.1029/2018GL079872.

     

    Chen W W, Ni S D, Wang Z J, et al. 2012. Joint inversion with both local and teleseismic waveforms for source parameters of the 2010 Kaohsiung earthquake. Chinese Journal of Geophysics (in Chinese), 55(7): 2319-2328, doi:10.6038/j.issn.0001-5733.2012.07.017.

     

    Chen W W, Ni S D, Kanamori H, et al. 2015. CAPjoint, a computer software package for joint inversion of moderate earthquake source parameters with local and teleseismic waveforms. Seismological Research Letters, 86(2A): 432-441, doi:10.1785/0220140167.

     

    Cochran E S, Ross Z E, Harrington R M, et al. 2018. Induced earthquake families reveal distinctive evolutionary patterns near disposal wells. Journal of Geophysical Research: Solid Earth, 123(9): 8045-8055, doi:10.1029/2018JB016270.

     

    Crampin S, Gao Y. 2015. The physics underlying Gutenberg-Richter in the earth and in the moon. Journal of Earth Science, 26(1): 134-139, doi:10.1007/s12583-015-0513-3.

     

    Dieterich J. 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering. Journal of Geophysical Research: Solid Earth, 99(B2): 2601-2618, doi:10.1029/93JB02581.

     

    Durek J J, Ekström G. 1996. A radial model of anelasticity consistent with long-period surface-wave attenuation. Bulletin of the Seismological Society of America, 86(1A): 144-158. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=86/1A/144

     

    Foulger G R, Julian B R. 2014. Non-double-couple earthquakes. //Beer M, Kougioumtzoglou I A, Patelli E eds. Encyclopedia of Earthquake Engineering. Berlin Heidelberg: Springer, 1-31.

     

    Gibbons S J, Ringdal F. 2006. The detection of low magnitude seismic events using array-based waveform correlation. Geophysical Journal International, 165(1): 149-166, doi:10.1111/j.1365-246X.2006.02865.x.

     

    Gibbons S J, Ringdal F. 2012. Seismic monitoring of the North Korea nuclear test site using a multichannel correlation detector. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1897-1909, doi:10.1109/TGRS.2011.2170429.

     

    Goldstein P, Dodge D, Firpo M, et al. 2003. SAC2000: Signal processing and analysis tools for seismologists and engineers. International Geophysics, 81: 1613-1614. http://www.sciencedirect.com/science/article/pii/S007461420380284X

     

    Goldstein P, Snoke A. 2005. SAC availability for the IRIS community. Incorporated Research Institutions for Seismology Newsletter, 7(1): 11. http://digital.library.unt.edu/ark:/67531/metadc878294/

     

    Harrington R M, Brodsky E E. 2009. Source duration scales with magnitude differently for earthquakes on the San Andreas fault and on secondary faults in parkfield, California. Bulletin of the Seismological Society of America, 99(4): 2323-2334, doi:10.1785/0120080216.

     

    Hou J X, Wang B S. 2017. Temporal evolution of seismicity before and after the 2014 Ludian MS6.5 earthquake. Chinese Journal of Geophysics (in Chinses), 60(4): 1446-1456, doi:10.6038/cjg20170418.

     

    Hou J X, Xie F, Ren Y Q, et al. 2020. Detection of acoustic emissions associated with the stick-slips of a meter-scale fault in laboratory by using the matched filter technique. Chinese Journal of Geophysics (in Chinses), 63(4): 1630-1641, doi:10.6038/cjg2020N0102.

     

    Hutton K, Woessner J, Hauksson E. 2010. Earthquake monitoring in Southern California for Seventy-Seven Years (1932—2008). Bulletin of the Seismological Society of America, 100(2): 423-446, doi:10.1785/0120090130.

     

    Jia J, Wang F Y, Wu Q J. 2019. Review of the application of machine learning in seismic detection and phase identification. China Earthquake Engineering Journal (in Chinese), 41(6): 1419-1425, doi:10.3969/j.issn.1000-0844.2019.06.1419.

     

    Jiang J Z, Chen Q F, Li J. 2019. Waveform detection and location of deep earthquakes in the subduction zone beneath Northeast China. Chinese Journal of Geophysics (in Chinese), 62(8): 2930-2945, doi:10.6038/cjg2019M0210.

     

    Kato A, Nakagawa S. 2014. Multiple slow-slip events during a foreshock sequence of the 2014 Iquique, Chile MW8.1 earthquake. Geophysical Research Letters, 41(15): 5420-5427, doi:10.1002/2014GL061138.

     

    Lee E J, Chen P, Jordan T H, et al. 2014. Full-3-D tomography for crustal structure in Southern California based on the scattering-integral and the adjoint-wavefield methods. Journal of Geophysical Research: Solid Earth, 119(8): 6421-6451, doi:10.1002/2014JB011346.

     

    Li L, Wang B S, Hou J X. 2017. Applications of matched filter technique in seismic data processing. Earthquake Research in China (in Chinese), 33(1): 14-22, doi:10.3969/j.issn.1001-4683.2017.01.002.

     

    Liu M, Li H Y, Zhang M, et al. 2020. Graphics Processing Unit-Based Match and Locate (GPU-M & L): an improved match and locate method and its application. Seismological Research Letters, 91(2A): 1019-1029, doi:10.1785/0220190241.

     

    Meng X F, Yang H F, Peng Z G. 2018. Foreshocks, b value map, and aftershock triggering for the 2011 MW5.7 Virginia earthquake. Journal of Geophysical Research: Solid Earth, 123(6): 5082-5098, doi:10.1029/2017JB015136.

     

    Miller S A, Collettini C, Chiaraluce L, et al. 2004. Aftershocks driven by a high-pressure CO2 source at depth. Nature, 427(6976): 724-727, doi:10.1038/nature02251.

     

    Peng Z G, Zhao P. 2009. Migration of early aftershocks following the 2004 Parkfield earthquake. Nature Geoscience, 2(12): 877-881, doi:10.1038/ngeo697.

     

    Perol T, Gharbi M, Denolle M. 2018. Convolutional neural network for earthquake detection and location. Science Advances, 4(2): e1700578, doi:10.1126/sciadv.1700578.

     

    Ross Z E, Meier M A, Hauksson E. 2018a. P wave arrival picking and first-motion polarity determination with deep learning. Journal of Geophysical Research: Solid Earth, 123(6): 5120-5129, doi:10.1029/2017JB015251.

     

    Ross Z E, Meier M A, Hauksson E, et al. 2018b. Generalized seismic phase detection with deep learning. Bulletin of the Seismological Society of America, 108(5A): 2894-2901, doi:10.1785/0120180080.

     

    Rousseeuw P J, Croux C. 1993. Alternatives to the median absolute deviation. Journal of the American Statistical Association, 88(424): 1273-1283, doi:10.1080/01621459.1993.10476408.

     

    Schmittbuhl J, Karabulut H, Lengliné O, et al. 2016. Long-lasting seismic repeaters in the Central Basin of the Main Marmara Fault. Geophysical Research Letters, 43(18): 9527-9534, doi:10.1002/2016GL070505.

     

    Shearer P M. 2002. Parallel fault strands at 9-km depth resolved on the Imperial Fault, Southern California. Geophysical Research Letters, 29(14): 19-1-19-4, doi:10.1029/2002GL015302.

     

    Shearer P M. 2009. Introduction to Seismology. 2nd ed. Cambridge: Cambridge University Press.

     

    Shelly D R, Beroza G C, Ide S. 2007. Non-volcanic tremor and low-frequency earthquake swarms. Nature, 446(7133): 305-307, doi:10.1038/nature05666.

     

    Sheng M H, Chu R S, Wei Z G, et al. 2018. Study of microseismicity caused by Xishancun Landslide deformation in Li county, Sichuan Province. Chinese Journal of Geophysics (in Chinese), 61(1): 171-182, doi:10.6038/cjg2018L0367.

     

    Sianipar D. 2020. Immediate foreshocks activity preceding the 2018 MW7.5 Palu earthquake in Sulawesi, Indonesia. Pure and Applied Geophysics, 177(6): 2421-2436, doi:10.1007/s00024-020-02520-1.

     

    Skoumal R J, Brudzinski M R, Currie B S. 2016. An efficient repeating signal detector to investigate earthquake swarms. Journal of Geophysical Research: Solid Earth, 121(8): 5880-5897, doi:10.1002/2016JB012981.

     

    Skoumal R J, Brudzinski M R, Currie B S, et al. 2020. Temporal patterns of induced seismicity in Oklahoma revealed from multi-station template matching. Journal of Seismology, 24(5): 921-935, doi:10.1007/s10950-019-09864-9.

     

    Tan Y P, Cao J Q, Bian Z F, et al. 2014. Missing earthquakes detection and seismogenic structure of the Yuxian earthquake swarm in August of 2013. Acta Seismologica Sinica (in Chinese), 36(6): 1022-1031, doi:10.3969/j.issn.0253-3782.2014.06.004.

     

    Tang J, Wang B S, Ge H K, et al. 2008. Study on weak signal detection of small shot in regional scale deep exploration. Chinese Journal of Geophysics (in Chinese), 51(6): 1810-1818. http://www.oalib.com/paper/1568090

     

    Uchida N, Bürgmann R. 2019. Repeating earthquakes. Annual Review of Earth and Planetary Sciences, 47: 305-332, doi:10.1146/annurev-earth-053018-060119.

     

    Utsu T. 1999. Representation and analysis of the earthquake size distribution: a historical review and some new approaches. Pure and Applied Geophysics, 155(2): 509-535, doi:10.1007/s000240050276.

     

    Utsu T. 2002. Statistical features of seismicity. International Geophysics, 81: 719-732.

     

    Van Trees H L. 1968. Detection Estimation and Modulation Theory. New York: John Wiley and Sons, Inc.

     

    Vernon F, University California San Diego. 1982. ANZA Regional Network. International Federation of Digital Seismograph Networks. doi:10.7914/SN/AZ.

     

    Wessel P, Luis J F, Uieda L, et al. 2019. The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20(11): 5556-5564, doi:10.1029/2019GC008515.

     

    Whalen A D. 1971. Detection of Signals in Noise. New York: Academic Press.

     

    Yang H, Zhu L, Chu R. 2009. Fault-plane determination of the 18 April 2008 mount Carmel, Illinois, earthquake by detecting and relocating aftershocks. Bulletin of the Seismological Society of America, 99(6): 3413-3420, doi:10.1785/0120090038.

     

    Yang H, Chu R S, Sheng M H. 2018. Source characterization of the 2015 gypsum mining earthquake in Pingyi, Shandong. Progress in Geophysics (in Chinese), 33(1): 125-132, doi:10.6038/pg2018AA0509.

     

    Yang H F, Liu Y J, Wei M, et al. 2017. Induced earthquakes in the development of unconventional energy resources. Science China Earth Sciences, 60(9): 1632-1644, doi:10.1007/s11430-017-9063-0.

     

    Yao D D, Peng Z G, Meng X F. 2015. Remotely triggered earthquakes in South-Central Tibet following the 2004 MW9.1 Sumatra and 2005 MW8.6 Nias earthquakes. Geophysical Journal International, 201(2): 543-551, doi:10.1093/gji/ggv037.

     

    Yao D D, Walter J I, Meng X F, et al. 2017. Detailed spatiotemporal evolution of microseismicity and repeating earthquakes following the 2012 MW7.6 Nicoya earthquake. Journal of Geophysical Research: Solid Earth, 122(1): 524-542, doi:10.1002/2016JB013632.

     

    Yao J Y, Tian D D, Lu Z, et al. 2018. Triggered seismicity after North Korea′s 3 September 2017 nuclear test. Seismological Research Letters, 89(6): 2085-2093, doi:10.1785/0220180135.

     

    Yoon C E, O′Reilly O, Bergen K J, et al. 2015. Earthquake detection through computationally efficient similarity search. Science Advances, 1(11): e1501057, doi:10.1126/sciadv.1501057.

     

    Zhang M, Tian D D, Wen L X. 2014. A new method for earthquake depth determination: stacking multiple-station autocorrelograms. Geophysical Journal International, 197(2): 1107-1116, doi:10.1093/gji/ggu044.

     

    Zhang M, Wen L X. 2015a. Earthquake characteristics before eruptions of Japan′s Ontake volcano in 2007 and 2014. Geophysical Research Letters, 42(17): 6982-6988, doi:10.1002/2015GL065165.

     

    Zhang M, Wen L X. 2015b. An effective method for small event detection: match and locate (M & L). Geophysical Journal International, 200(3): 1523-1537, doi:10.1093/gji/ggu466.

     

    Zhao L S, Helmberger D V. 1994. Source estimation from broadband regional seismograms. Bulletin of the Seismological Society of America, 84(1): 91-104. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=84/1/91

     

    Zhu L P, Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms. Bulletin of the Seismological Society of America, 86(5): 1634-1641. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=86/5/1634

     

    Zhu L P, Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3): 619-627, doi:10.1046/j.1365-246X.2002.01610.x.

     

    Zhu L P, Ben-Zion Y. 2013. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data. Geophysical Journal International, 194(2): 839-843, doi:10.1093/gji/ggt137.

     

    Zhu W Q, Beroza G C. 2018. PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1): 261-273, doi:10.1093/gji/ggy423.

     

    安艺敬一, 理查兹P G. 1986. 定量地震学理论和方法. 北京: 地震出版社, 59.

     

    陈伟文, 倪四道, 汪贞杰等. 2012. 2010年高雄地震震源参数的近远震波形联合反演. 地球物理学报, 55(7): 2319-2328, doi:10.6038/j.issn.0001-5733.2012.07.017. http://www.geophy.cn//CN/abstract/abstract8802.shtml

     

    侯金欣, 王宝善. 2017. 2014年鲁甸MS6.5地震前后地震活动性. 地球物理学报, 60(4): 1446-1456, doi:10.6038/cjg20170418. http://www.geophy.cn//CN/abstract/abstract13612.shtml

     

    侯金欣, 谢凡, 任雅琼等. 2020. 利用模板匹配技术检测米尺度岩石断层黏滑实验中的声发射事件. 地球物理学报, 63(4): 1630-1641, doi:10.6038/cjg2020N0102. http://www.geophy.cn//CN/abstract/abstract15431.shtml

     

    贾佳, 王夫运, 吴庆举. 2019. 机器学习在地震检测与震相识别的应用综述. 地震工程学报, 41(6): 1419-1425, doi:10.3969/j.issn.1000-0844.2019.06.1419.

     

    姜金钟, 陈棋福, 李姣. 2019. 中国东北的深源地震波形匹配检测及定位. 地球物理学报, 62(8): 2930-2945, doi:10.6038/cjg2019M0210. http://www.geophy.cn//CN/abstract/abstract15116.shtml

     

    李璐, 王宝善, 侯金欣. 2017. 模板匹配滤波技术在地震数据处理中的应用. 中国地震, 33(1): 14-22, doi:10.3969/j.issn.1001-4683.2017.01.002.

     

    盛敏汉, 储日升, 危自根等. 2018. 四川省理县西山村滑坡运动变形过程中的微震研究. 地球物理学报, 61(1): 171-182, doi:10.6038/cjg2018L0367. http://www.geophy.cn//CN/abstract/abstract14307.shtml

     

    谭毅培, 曹井泉, 卞真付等. 2014. 2013年8月河北蔚县小震群遗漏地震检测与发震构造分析. 地震学报, 36(6): 1022-1031, doi:10.3969/j.issn.0253-3782.2014.06.004.

     

    唐杰, 王宝善, 葛洪魁等. 2008. 小当量激发的远距离信号检测研究. 地球物理学报, 51(6): 1810-1818. doi: 10.3321/j.issn:0001-5733.2008.06.022 http://www.geophy.cn//CN/abstract/abstract845.shtml

     

    杨慧, 储日升, 盛敏汉. 2018. 2015山东平邑石膏矿塌陷地震震源参数测定. 地球物理学进展, 33(1): 125-132, doi:10.6038/pg2018AA0509.

  • 加载中

(13)

(4)

计量
  • 文章访问数:  2700
  • PDF下载数:  326
  • 施引文献:  0
出版历程
收稿日期:  2021-01-02
修回日期:  2021-02-18
上线日期:  2021-07-10

目录