2013年南斯科舍海岭MW7.8地震的多点震源机制反演

张喆, 许力生. 2020. 2013年南斯科舍海岭MW7.8地震的多点震源机制反演. 地球物理学报, 63(8): 2978-2998, doi: 10.6038/cjg2020O0017
引用本文: 张喆, 许力生. 2020. 2013年南斯科舍海岭MW7.8地震的多点震源机制反演. 地球物理学报, 63(8): 2978-2998, doi: 10.6038/cjg2020O0017
ZHANG Zhe, XU LiSheng. 2020. 2013 MW7.8 South Scotia Ridge Earthquake: Focal mechanism inversion of the multi-point sources. Chinese Journal of Geophysics (in Chinese), 63(8): 2978-2998, doi: 10.6038/cjg2020O0017
Citation: ZHANG Zhe, XU LiSheng. 2020. 2013 MW7.8 South Scotia Ridge Earthquake: Focal mechanism inversion of the multi-point sources. Chinese Journal of Geophysics (in Chinese), 63(8): 2978-2998, doi: 10.6038/cjg2020O0017

2013年南斯科舍海岭MW7.8地震的多点震源机制反演

  • 基金项目:

    中国地震局地球物理研究所基本业务费(DQJB19B08)和科技部国家重点研发计划(2018YFC1503400)联合资助

详细信息
    作者简介:

    张喆, 男, 1989年出生, 中国地震局地球物理研究所, 在读博士.E-mail:zhangzhe@cea-igp.ac.cn

    通讯作者: 许力生, 男, 研究员, 主要从事地震学研究.E-mail:xuls@cea-igp.ac.cn
  • 中图分类号: P315

2013 MW7.8 South Scotia Ridge Earthquake: Focal mechanism inversion of the multi-point sources

More Information
  • 2013年11月17日,在南极南奥克尼群岛北、南极板块与斯科舍板块之间发生了一次MW7.8级地震(2013年南斯科舍海岭MW7.8地震),我们利用全球分布的长周期和宽频带地震记录反演确定了这次地震随时间和空间变化的震源机制,验证了提出的一种多点震源机制反演的新方法.首先利用长周期记录的W震相反演了这次地震的矩心矩张量解并利用体波提取了视震源时间函数,同时利用台阵反投影技术从宽频带记录中获得了这次地震的高频源的时空分布,然后基于矩心矩张量解、视震源时间函数以及高频源的时空分布,实现了采用新方法对2013年南斯科舍海岭MW7.8地震的多点震源机制反演.矩心矩张量解表明,地震矩心在44.50°W/60.18°S,矩心深度19 km,半持续时间49 s,释放标量地震矩4.71×1020 N·m,发震断层走向104°,倾角54°,滑动角8°.视震源时间函数清楚地揭示了地震矩随时间变化的方位依赖性,总体上可以将时间过程分为前60 s和后50 s两个阶段,但前60 s可细分为两次子事件.根据台阵反投影结果,这次地震为沿海沟从西到东的单侧破裂,破裂长度达311 km,可以分为5次子事件,能量释放的峰值点依次为13 s、30 s、51 s、64 s和84 s,平均破裂速度分别为0.6 km·s-1、2.6 km·s-1、2.3 km·s-1、2.8 km·s-1和3 km·s-1.多点震源机制反演显示,5次子事件的矩震级分别为MW7.57,MW7.48,MW6.80,MW7.53和MW7.08,半持续时间依次为21 s,17 s,6 s,16 s和8 s,走向分别为95°,105°,81°,98°和98°,倾角依次为57°,49°,86°,46°和64°,滑动角-9°,1°,-17°,13°和-4°.这些在震源机制、能量释放以及持续时间方面的变化都是当地构造和应力环境复杂性的反映.

  • 加载中
  • 图 1 

    2013年南斯科舍海岭MW7.8地震的构造与地震活动背景

    Figure 1. 

    Tectonic and seismicity settings of the 2013 MW7.8 South Scotia Ridge earthquake

    图 2 

    本研究中使用的地震台站分布及其长周期波形记录

    Figure 2. 

    Distribution of the seismic stations with long-period recordings used in this study

    图 3 

    矩心矩张量反演过程与结果

    Figure 3. 

    The inversion of centroid moment tensor and the inverted results

    图 4 

    观测波形与合成波形的比较

    Figure 4. 

    Comparison of the synthetic and observed data

    图 5 

    依赖于台站方位的视震源时间函数分析

    Figure 5. 

    Analysis of the azimuth-dependant apparent source time functions (ASTFs)

    图 6 

    平均视震源时间函数

    Figure 6. 

    The average of apparent source time functions

    图 7 

    不同台站的视震源时间函数(填充部分)以及用视震源时间函数合成的理论地震图与观测地震图的比较

    Figure 7. 

    The apparent source time functions (ASTFs) retrieved from various stations (color-filled) and the comparison of the observed data (black) with the synthesized data (red) using the ASTFs

    图 8 

    台站与震中

    Figure 8. 

    Stations and epicenter

    图 9 

    P波初至到时校正

    Figure 9. 

    Calibration of the P arrival times

    图 10 

    有效持续时间的确定

    Figure 10. 

    Determination of the effective duration time

    图 11 

    不同时窗内聚束能量的空间分布.五角星表示破裂起始点,红色圆圈表示瞬时能量最大点

    Figure 11. 

    Spatial distribution of the beam energy within various time windows, where red stars refer to the initial points and the red dots denote the points of the maximal energy within the windows

    图 12 

    高频源参数的估计

    Figure 12. 

    Estimation of the parameters of high-frequency sources

    图 13 

    基于高频源的时空特征辨识的5次子事件

    Figure 13. 

    Identification of 5 subevents based on the spatiotemporal distribution of the high-frequency sources

    图 14 

    子事件A、B的半持续时间与矩率时间函数的确定

    Figure 14. 

    Determination of the half-duration times and the moment rate time functions of subevents A and B

    图 15 

    子事件Ⅰ、Ⅱ的半持续时间与矩率时间函数的确定(其他说明,请参看图 14)

    Figure 15. 

    Determination of the half-duration times and the moment rate time functions of subevents A and B (Also see Fig. 14 for other information)

    图 16 

    五次子事件的震源机制与震源时间函数

    Figure 16. 

    Focal mechanism solutions and source time functions of the five subevents

    图 17 

    观测资料与合成资料的比较

    Figure 17. 

    Comparison between the observed and synthesized data

    图 18 

    频率为2 Hz时台阵响应的比较

    Figure 18. 

    Comparison of the array response functions at frequency of 2 Hz

    图 19 

    震源机制反演结果的对比

    Figure 19. 

    Comparison of the focal mechanism results inverted

    表 1 

    2013年斯科舍海MW7.8地震震源机制解

    Table 1. 

    Focal mechanism solutions of the 2013 MW7.8 South Scotia Ridge earthquake

    Sources Scalar Moment(N·m) τc(s) Centroid information Plane
    Latitude/(°) Longitude/(°) Depth(km) Strike/(°) Dip/(°) Rake/(°)
    GCMT 5.820e+20 45.5 -60.49 -45.32 23.8 103 44 -3
    USGS 5.151e+20 - -60.29 -45.55 11 99 50 -1
    Ye 6.45e+20 44.4 - - 11.5 97 46 -3
    GFZ 2.229e+20 - - - 16 90 66 -14
    下载: 导出CSV

    表 2 

    与GCMT矩心矩张量解对比

    Table 2. 

    Comparison of our result with the global centroid moment tensor solution

    DC Centroid Location Moment Tensor (1020N·m)
    Lat/(°) Lon/(°) depth/(km) Mrr Mtt Mpp Mrt Mrp Mtp
    WCMT (This study) 88% -60.18 -44.50 19 0.015 1.229 -1.244 1.752 2.562 3.484
    GCMT 93% -60.49 -45.32 23.8 0.059 1.210 -1.270 1.560 3.950 3.860
    下载: 导出CSV

    表 3 

    双力偶解

    Table 3. 

    Double-couple solutions

    Time/s Location/(°) Focal mechanism (DC)
    τc τh Lat Lon Scalar moment (N·m) strike/(°) dip/(°) rake/(°)
    WCMT(This study) 49 49 -60.18 -44.50 4.708×1020 104 54 8
    Event A 34 28 -60.40 -45.93 4.218×1020 99 55 -3
    Event B 81 20 -60.46 -43.26 2.519×1020 88 53 -3
    Event Ⅰ 23 21 -60.39 -46.73 2.585×1020 95 57 -9
    Event Ⅱ 44 17 -60.41 -45.13 1.890×1020 105 49 1
    Event Ⅲ 65 6 -60.38 -44.41 1.791×1019 81 86 -17
    Event Ⅳ 81 16 -60.53 -43.36 2.239×1020 98 46 13
    Event Ⅴ 102 8 -60.48 -42.01 4.701×1019 98 64 -4
    Ⅰ—Ⅴ total - - - - 7.363×1020 98 52 0
    下载: 导出CSV
  •  

    Berterto M, Bindi D, Boccacci P, et al. 1997. Application of the projected Landweber method to the estimation of the source time function in seismology. Inverse Problems, 13(2):465-486. doi: 10.1088/0266-5611/13/2/017

     

    Chen Y T, Xu L S. 2000. A time-domain inversion technique for the tempo-spatial distribution of slip on a finite fault plane with applications to recent large earthquakes in the Tibetan Plateau. Geophysical Journal International, 143(2):407-416. doi: 10.1046/j.1365-246X.2000.01263.x

     

    Du H L. 2007. Analysis of the energy radiation sources of the 2004 Sumatra-Andaman earthquake using time-domain array techniques[Master's thesis] (in Chinese). Beijing: Institute of Geophysics, China earthquake Administration.

     

    Du H L, Xu L S, Chen Y T. 2009. Rupture process of the 2008 great Wenchuan earthquake from the analysis of the Alaska-array data. Chinese Journal of Geophysics (in Chinese), 52(2):372-378. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200902009

     

    Du H L, Zhang X, Xu L S, et al. 2018. Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and inSAR data. Earth and Planetary Physics, 2(4):310-326. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.26464/epp2018029

     

    Duputel Z, Rivera L, Kanamori H, et al. 2012a. W phase source inversion for moderate to large earthquakes (1990-2010). Geophysical Journal International, 189(2):1125-1147. doi: 10.1111/j.1365-246X.2012.05419.x

     

    Duputel Z, Kanamori H, Tsai V C, et al. 2012b. The 2012 Sumatra great earthquake sequence. Earth and Planetary Science Letters, 351-352:247-257. doi: 10.1016/j.epsl.2012.07.017

     

    Duputel Z, Rivera L. 2017. Long-period analysis of the 2016 Kaikoura earthquake.Physics of the Earth and Planetary Interiors, 265:62-66. doi: 10.1016/j.pepi.2017.02.004

     

    Dziewonski A M, Chou T A, Woodhouse J H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research:Solid Earth, 86(B4):2825-2852. doi: 10.1029/JB086iB04p02825

     

    Ekström G. 1989. A very broad band inversion method for the recovery of earthquake source parameters. Tectonophysics, 166(1-3):73-100. doi: 10.1016/0040-1951(89)90206-0

     

    Ekström G, Nettles M, Dziewoński A M. 2012. The global CMT project 2004-2010:centroid-moment tensors for 13, 017 earthquakes. Physics of the Earth and Planetary Interiors, 200-201:1-9. doi: 10.1016/j.pepi.2012.04.002

     

    Hayes G P, Rivera L, Kanamori H. 2009. Source inversion of the W-phase:real-time implementation and extension to low magnitudes. Seismological Research Letters, 80(5):817-822. doi: 10.1785/gssrl.80.5.817

     

    Ishii M, Shearer P M, Houston H, et al. 2005. Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array. Nature, 435(7044):933-936. doi: 10.1038/nature03675

     

    Ishii M, Shearer P M, Houston H, et al. 2007. Teleseismic P wave imaging of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Sumatra earthquake ruptures using the Hi-Net array. Journal of Geophysical Research:Solid Earth, 112(B11):B11307, doi:10.1029/2006JB004700.

     

    Kanamori H, Anderson D L. 1975. Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65(5):1073-1095.

     

    Kanamori H. 1977. The energy release in great earthquakes. Journal of Geophysical Research, 82(20):2981-2987. doi: 10.1029/JB082i020p02981

     

    Kanamori H. 1993. W phase. Geophysical Research Letters, 20(16):1691-1694. doi: 10.1029/93GL01883

     

    Kanamori H, Maechling P, Hauksson E. 1999. Continuous monitoring of ground-motion parameters. Bulletin of the Seismological Society of America, 89(1):311-316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=79190a92fd09c920f3de8727ebaefa1d

     

    Kanamori H, Rivera L. 2008. Source inversion of W phase:speeding up seismic tsunami warning. Geophysical Journal International, 175(1):222-238. doi: 10.1111/j.1365-246X.2008.03887.x

     

    Kennett B L N, Engdahl E R, Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal id the Royal Astronomical Society, 122(1):108-124. doi: 10.1111/j.1365-246X.1995.tb03540.x

     

    Kikuchi M, Kanamori H. 1986. Inversion of complex body waves-Ⅱ. Physics of the Earth and Planetary Interiors, 43(3):205-222. doi: 10.1016/0031-9201(86)90048-8

     

    Kikuchi M, Kanamori H. 1991. Inversion of complex body waves-Ⅲ. Bulletin of the Seismological Society of America, 81(6):2335-2350.

     

    Lanza V, Spallarossa D, Cattaneo M, et al. 1999. Source parameters of small events using constrained deconvolution with empirical Green's functions. Geophysical Journal of the Royal Astronomical Society, 137(3):651-662. doi: 10.1046/j.1365-246x.1999.00809.x

     

    Lay T, Wallace T C. 1995. Modern Global Seismology. San Diego:Academic Press.

     

    Liu Z P, Song C, Ge Z X. 2018. Utilizing back-projection method based on 3-D global tomography model to investigate MW7.8 New Zealand South Island earthquake. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 54(4):721-729. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjdxxb201804006

     

    Meng L S, Inbal A, Ampuero J P. 2011. A window into the complexity of the dynamic rupture of the 2011 MW9 Tohoku-Oki earthquake. Geophysical Research Letters, 38(7):L00G07, doi:10.1029/2011GL048118.

     

    Mori J, Hartzell S H. 1990. Source inversion of the 1988 upland, California, earthquake:determination of a fault plane for a small event. Bulletin of the Seismological Society of America, 80(3):507-517.

     

    Park S, Ishii M. 2015. Inversion for rupture properties based upon 3-D directivity effect and application to deep earthquakes in the Sea of Okhotsk region. Geophysical Journal International, 203(2):1011-1025. doi: 10.1093/gji/ggv352

     

    Qin W Z, Yao H J. 2017. Characteristics of subevents and three-stage rupture processes of the 2015 MW7.8 Gorkha Nepal earthquake from multiple-array back projection. Journal of Asian Earth Sciences, 133:72-79. doi: 10.1016/j.jseaes.2016.11.012

     

    Radulian M, Popa M. 1996. Scaling of source parameters for Vrancea (Romania) intermediate depth earthquake. Tectonophysics, 261(1-3):67-81. doi: 10.1016/0040-1951(96)00057-1

     

    Sambridge M. 1999. Geophysical inversion with a neighbourhood algorithm-I. searching a parameter space. Geophysical Journal of the Royal Astronomical Society, 138(2):479-494. doi: 10.1046/j.1365-246X.1999.00876.x

     

    Tocheport A, Van Der Woerd J V, Tocheport A, et al. 2006. A study of the 14 November 2001 Kokoxili earthquake:history and geometry of the rupture from teleseismic data and field observations. Bulletin of the Seismological Society of America, 96(5):1729-1741. doi: 10.1785/0120050200

     

    Tsai V C, Nettles M, Ekström G, et al. 2005. Multiple CMT source analysis of the 2004 Sumatra earthquake. Geophysical Research Letters, 32(17):L17304, doi:10.1029/2005GL023813.

     

    Venkataraman A, Rivera L, Kanamori H. 2002. Radiated energy from the 16 October 1999 hector mine earthquake:regional and teleseismic estimates. Bulletin of the Seismological Society of America, 92(4):1256-1265. doi: 10.1785/0120000929

     

    Walker K T, Shearer P M. 2009. Illuminating the near-sonic rupture velocities of the intracontinental Kokoxili MW7.8 and Denali fault MW7.9 strike-slip earthquakes with global P wave back projection imaging. Journal of Geophysical Research:Solid Earth, 114(B2):B02304, doi:10.1029/2008JB005738.

     

    Wang D, Mori J. 2016. Short-period energy of the 25 April 2015 MW7.8 Nepal earthquake determined from backprojection using four arrays in Europe, China, Japan, and Australia. Bulletin of the Seismological Society of America, 106(1):259-266. doi: 10.1785/0120150236

     

    Wang R J. 1999. A simple orthonormalization method for stable and efficient computation of Green's functions. Bulletin of the Seismological Society of America, 89(3):733-7410. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3ca5b29241fc72197af2cd274692e754

     

    Wang X X, Ding Z F, Ma Y L. 2017. Rapidly tracking the rupture energy center of the MW7.9 Nepal earthquake by using nonlinear array stacking method. Chinese Journal of Geophysics (in Chinese), 60(1):142-150, doi:10.6038/cjg20170112.

     

    Xu L S, Chen Y T. 1999. Tempo-spatial rupture process of the 1997 Mani, Tibet, China earthquake of MS7.9. Acta Seismologica Sinica (in Chinese), 21(5):449-459.

     

    Xu L S, Chen Y T, Gao M T. 2002. Spatial and temporal rupture process of the January 26, 2001, Gujarat, India, MS7.8 earthquake. Acta Seismologica Sinica (in Chinese), 24(5):447-461.

     

    Xu Y, Koper K D, Sufri O, et al. 2013. Rupture imaging of the MW7.9 12 May 2008 Wenchuan earthquake from back projection of teleseismic P waves. Geochemistry, Geophysics, Geosystems, 10(4):Q04006, doi:10.1029/2008GC002335.

     

    Yagi Y, Nakao A, Kasahara A. 2012. Smooth and rapid slip near the Japan Trench during the 2011 Tohoku-oki earthquake revealed by a hybrid back-projection method. Earth and Planetary Science Letters, 355-356:94-101. doi: 10.1016/j.epsl.2012.08.018

     

    Yao H J, Gerstoft P, Shearer P M, et al. 2013. Compressive sensing of the Tohoku-Oki MW9.0 earthquake:frequency-dependent rupture modes. Geophysical Research Letters, 38(20):L20310, doi:10.1029/2011GL049223.

     

    Ye L L, Lay T, Koper K D, et al. 2014. Complementary slip distributions of the August 4, 2003 MW7.6 and November 17, 2013 MW7.8 south Scotia ridge earthquakes. Earth and Planetary Science Letters, 401:215-226. doi: 10.1016/j.epsl.2014.06.007

     

    Yin J X, Yao H J, Yang H F, et al, 2017. Frequency-dependent rupture process, stress change, and seismogenic mechanism of the 25 April 2015 Nepal Gorkha MW7.8 earthquake. Science China Earth Science, 60(4):796-808. doi: 10.1007/s11430-016-9006-0

     

    Zahradnik J, Sokos E. 2014. The MW7.1 van, eastern Turkey, earthquake 2011:two-point source modelling by iterative deconvolution and non-negative least squares. Geophysical Journal International, 196(1):522-538. doi: 10.1093/gji/ggt386

     

    Zhang H, Chen J W, Ge Z X. 2012. Multi-fault rupture and successive triggering during the 2012 MW8.6 Sumatra offshore earthquake. Geophysical Research Letters, 39(22):22305, doi:10.1029/2012GL053805.

     

    Zhang X. 2016. Study on new methods for analysis of the complexity of source rupture process based on apparent source time functions[Ph. D. thesis] (in Chinese). Beijing: Institute of Geophysics, China Earthquake Administration.

     

    Zhang X, Xu L S, Du H L, et al. 2019. Source complexity of the 2018 MW7.9 Gulf of Alaska earthquake. Chinese Journal of Geophysics (in Chinese), 62(5):1680-1692, doi:10.6038/cjg2019M0456.

     

    Zhang Y. 2008. Study on the inversion methods of source rupture process[Ph. D. thesis] (in Chinese). Beijing: Peking University, 1-158.

     

    Zhang Y, Xu L S, Chen Y T. 2009. Spatio-temporal variation of the source mechanism of the 2008 great Wenchuan earthquake. Chinese Journal of Geophysics (in Chinese), 52(2):379-389. doi: 10.1002/cjg2.1358

     

    Zhang Y, Wang R J. 2015. Geodetic inversion for source mechanism variations with application to the 2008 MW7.9 Wenchuan earthquake. Geophysical Journal International, 200(3):1627-1635. doi: 10.1093/gji/ggu496

     

    Zhang Z, Xu L S, Du H L. 2019. 2018 MW8.2 Fiji deep earthquake:high-frequency radiation process and seismic genesis. Chinese Journal of Geophysics (in Chinese), 62(11):4279-4289, doi:10.6038/cjg2019M0629.

     

    Zhao X, Yao Z X. 2018. The kinematic characteristics of the 2016 MW7.8 offshore Sumatra, Indonesia earthquake. Chinese Journal of Geophysics (in Chinese), 61(3):880-888, doi:10.6038/cjg2018K0624.

     

    杜海林. 2007. 2004年苏门答腊-安达曼大地震能量辐射源的时间域台阵技术分析[硕士论文].北京: 中国地震局地球物理研究所.

     

    杜海林, 许力生, 陈运泰. 2009.利用阿拉斯加台阵资料分析2008年汶川大地震的破裂过程.地球物理学报, 52(2):372-378. http://www.geophy.cn//CN/abstract/abstract918.shtml

     

    刘志鹏, 宋超, 盖增喜. 2018.利用基于全球三维模型的反投影方法研究2016年MW7.8级新西兰地震.北京大学学报(自然科学版), 54(4):721-729. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjdxxb201804006

     

    王晓欣, 丁志峰, 马延路. 2017.利用非线性台阵叠加方法快速追踪2015年4月25日尼泊尔MW7.9地震破裂能量中心运动轨迹.地球物理学报, 60(1):142-150, doi:10.6038/cjg20170112. http://www.geophy.cn//CN/abstract/abstract13349.shtml

     

    许力生, 陈运泰. 1999. 1997年中国西藏玛尼MS7.9地震的时空破裂过程.地震学报, 21(5):449-459. doi: 10.3321/j.issn:0253-3782.1999.05.001

     

    许力生, 陈运泰, 高孟潭. 2002. 2001年1月26日印度古杰拉特(Gujarat)MS7.8地震时空破裂过程.地震学报, 24(5):447-461. doi: 10.3321/j.issn:0253-3782.2002.05.001

     

    张喆, 许力生, 杜海林. 2019. 2018年斐济MW8.2深震:高频辐射过程和发生原因.地球物理学报, 62(11):4279-4289, doi:10.6038/cjg2019M0629. http://www.geophy.cn//CN/abstract/abstract15228.shtml

     

    张旭. 2016.基于视震源时间函数的震源过程复杂性分析新方法研究[博士论文].北京: 中国地震局地球物理研究所.

     

    张旭, 许力生, 杜海林等. 2019. 2018年阿拉斯加湾MW7.9地震震源复杂性.地球物理学报, 62(5):1680-1692, doi:10.6038/cjg2019M0456. http://www.geophy.cn//CN/abstract/abstract14970.shtml

     

    张勇. 2008.震源破裂过程反演方法研究[博士论文].北京: 北京大学, 1-158.

     

    张勇, 许力生, 陈运泰. 2009. 2008年汶川大地震震源机制的时空变化.地球物理学报, 52(2):379-389. http://www.geophy.cn//CN/abstract/abstract919.shtml

     

    赵旭, 姚振兴. 2018. 2016年印尼苏门答腊岛海域MW7.8地震震源运动学特征.地球物理学报, 61(3):880-888, doi:10.6038/cjg2018K0624. http://www.geophy.cn//CN/abstract/abstract14412.shtml

  • 加载中

(19)

(3)

计量
  • 文章访问数:  1979
  • PDF下载数:  353
  • 施引文献:  0
出版历程
收稿日期:  2020-01-13
修回日期:  2020-07-19
上线日期:  2020-08-05

目录