声波远探测中偏心声源的辐射以及接收波场研究

许家旗, 胡恒山. 2020. 声波远探测中偏心声源的辐射以及接收波场研究. 地球物理学报, 63(9): 3545-3561, doi: 10.6038/cjg2020N0015
引用本文: 许家旗, 胡恒山. 2020. 声波远探测中偏心声源的辐射以及接收波场研究. 地球物理学报, 63(9): 3545-3561, doi: 10.6038/cjg2020N0015
XU JiaQi, HU HengShan. 2020. Study on the radiation and reception of the wave field in a single-well imaging system with an eccentric source. Chinese Journal of Geophysics (in Chinese), 63(9): 3545-3561, doi: 10.6038/cjg2020N0015
Citation: XU JiaQi, HU HengShan. 2020. Study on the radiation and reception of the wave field in a single-well imaging system with an eccentric source. Chinese Journal of Geophysics (in Chinese), 63(9): 3545-3561, doi: 10.6038/cjg2020N0015

声波远探测中偏心声源的辐射以及接收波场研究

  • 基金项目:

    国家自然科学基金项目(11972132,11734017)资助

详细信息
    作者简介:

    许家旗, 男, 博士生, 主要从事固体中波的传播研究.E-mail:hitgclx_xjq@163.com

    通讯作者: 胡恒山, 男, 教授, 主要从事弹性波教学与研究工作.E-mail:hhs@hit.edu.cn
  • 中图分类号: P631

Study on the radiation and reception of the wave field in a single-well imaging system with an eccentric source

More Information
  • 通过最速下降积分法获得了充液井孔中偏心点声源激发的井外波场的远场渐近解;利用互易性获得井外存在反射体时井内偏心接收的波场渐近解,渐近解结果与有限差分的结果吻合;分析了声源频率、偏心距离以及方位角对波场辐射与接收的影响.计算发现:声源频率是影响井外波场的主导因素,声源频率较低时,偏心点声源激发的远场波场与偏心距离无关,可以将偏心点声源视为中心声源;声源频率较高时,偏心点声源激发的远场波场与中心声源之间存在不可忽略的差异,且频率越高、偏心距离越大,差异越大.计算还发现:采用偏心声源与偏心接收时,辐射波场与接收波场的幅度都具有方位角依赖性.最后我们给出利用反射波幅度变化来消除反射体方位角180°不确定性的算例.

  • 加载中
  • 图 1 

    充液井孔中偏心声源模型图

    Figure 1. 

    Model of an eccentric source in a fluid filled borehole

    图 2 

    低频声源辐射的井外远处P波的前4阶分量

    Figure 2. 

    The first four components of far-filed P wave waveforms outside the borehole with low-frequency source

    图 3 

    中频声源辐射的井外远场P波波场的前4阶分量

    Figure 3. 

    First four order components of far-filed P wave waveforms outside the borehole with moderate-frequency source

    图 4 

    中频声源辐射的井外远场S波波场的前4阶分量

    Figure 4. 

    First four order components of far-filed S wave waveforms outside the borehole with moderate-frequency source

    图 5 

    低频时偏心源与居中源激发的井外波场比较

    Figure 5. 

    Comparison between wave fields outside borehole generated by eccentric source and central source with low frequency

    图 6 

    中频时偏心源与居中源激发的井外波场比较

    Figure 6. 

    Comparison between wave fields outside borehole generated by eccentric source and central source with moderate frequency

    图 7 

    高频时偏心源与居中源激发的井外波场比较

    Figure 7. 

    Comparison between wave fields outside borehole generated by eccentric source and central source with high frequency

    图 8 

    快速地层中不同方位角下的接收器接收到的波场和归一化波场辐射图

    Figure 8. 

    Waveforms received by receivers with different azimuths in the fast formation and normalized radiation patterns

    图 9 

    快速地层中不同方位角下的接收器接收到的波场和归一化波场辐射图

    Figure 9. 

    Waveforms received by receivers with different azimuths in the fast formation and normalized radiation patterns

    图 10 

    慢速地层中不同方位角下的接收器接收到的波场和归一化波场辐射波

    Figure 10. 

    Waveforms received by receivers with different azimuths in the slow formation and normalized radiation patterns

    图 11 

    含偏心声源和偏心接收器的声波远探测模型图

    Figure 11. 

    Single-well imaging model with eccentric source and eccentric receivers

    图 12 

    声源与接收器都位于井轴时的远探测示意图

    Figure 12. 

    Sketch of remote detection with source and receivers located at the borehole axis

    图 13 

    井轴处接收到的声压全波波形

    Figure 13. 

    Full waveforms of the acoustic pressure at the borehole axis

    图 14 

    反射波渐近解与数值解的对比

    Figure 14. 

    Comparison between asymptotic solutions and numerical solutions to reflected waves

    图 15 

    不同方位角反射体时井内接收器接收到反射波波形

    Figure 15. 

    Reflected waveforms from the reflectors with different azimuths

    图 16 

    井旁界面反射体模型图

    Figure 16. 

    Interface reflection model outside a borehole

    图 17 

    方位角相差180°时井内接收器接收到反射全波

    Figure 17. 

    Reflected waveforms with azimuth difference between the reflectors as 180°

    图 18 

    声源与接收器时发生偏心时接收到的归一化反射波指向图

    Figure 18. 

    Normalized reception patterns of reflected waves when source and receiver are eccentric

    表 1 

    井外流体和地层参数

    Table 1. 

    Parameters of borehole fluid and formations

    密度/(kg·m-3) 纵波速度/(m·s-1) 横波速度/(m·s-1)
    流体 1000 1500 -
    快速地层1 2000 3000 1800
    快速地层2 2600 4000 2300
    慢速地层 2000 2200 1200
    下载: 导出CSV
  •  

    Aki K, Richards P G. 1980. Quantitative Seismology:Theory and Methods. New York:W. H. Freeman & Co.

     

    Borland W H, Holderson J, Al Rougha H A B, et al. 2005. Integration of microelectrical and sonic reflection imaging around the borehole-offshore UAE.//75th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts.

     

    Byun J, Nafi T M. 2006. Effects of an off-centered tool on dipole and quadrupole logging. Geophysics, 71(4):F91-F100.

     

    Chen T, Wang B, Zhu Z Y, et al. 2010. Asymmetric source acoustic LWD for improved formation shear velocity estimation.//80th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 548-552.

     

    Dong J L, Xu X K, Zhang J Y, et al. 2020. Overview and development of acoustic far detection technology. Progress in Geophysics (in Chinese), 35(2):566-572, doi:10.6038/pg2020CC0180.

     

    Geoquest S. 1998. Geoframe BARS user' Guide. Version 1.0. Kanagawa: Schlumberger K K, 1-6.

     

    Gong H, Chen H, He X, et al. 2015. Eliminating the azimuth ambiguity in single-well imaging using 3C sonic data. Geophysics, 80(1):A13-A17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9dd7b2fdf8a04e1ea8acd622f3ec42b1

     

    Gu X H, Tang X M, Zhuang C X, et al. 2020. Simulation of dipole shear-wave reflection survey for multi-fracture system using liner slip interface theory. Progress in Geophysics (in Chinese), 35(3):955-962, doi:10.6038/pg2020DD0053.

     

    Haldorsen J, Voskamp A, Thorsen R, et al. 2006. Borehole acoustic reflection survey for high resolution imaging.//76th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 314-318.

     

    Haldorsen J B U, Borland W, Al Rougha H A B, et al. 2005. Azimuthal sonic imaging.//67th Annual International Conference and Exhibition, EAGE, Extended Abstracts, I017.

     

    Hao Z T, Sun X F, Liu X E, et al. 2014. The application research of dipole acoustic reflection imaging technology. Progress in Geophysics (in Chinese), 29(5):2172-2177, doi:10.6038/pg20140527.

     

    He F J. 2005. The study on the simulation of the borehole acoustic reflection imaging logging tool and its waveform processing method[Ph.D. thesis]. Beijing: China University of Petroleum (Beijing).

     

    Hirabayashi N, Sakiyama N, Ikegami T. 2017. Characteristics of waveforms recorded by azimuthally spaced hydrophones of sonic logging tool for incident plane waves. Geophysics, 82(6):D353-D368. doi: 10.1190/geo2017-0201.1

     

    Hornby B E. 1989. Imaging of near-borehole structure using full-waveform sonic data. Geophysics, 54(6):747-757. doi: 10.1190/1.1442702

     

    Kurkjian A L, Chang S K. 1986. Acoustic multipole sources in fluid-filled boreholes. Geophysics, 51(1):148-163.

     

    Nwosu N, Alford J, Kadir H, et al. 2015. Enhancing shale reservoir completion design using oriented unipole logging while drilling sonic measurements in horizontal well.//85th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts.

     

    Pardo D, Matuszyk P J, Torres-Verdin C, et al. 2013. Influence of borehole-eccentered tools on wireline and logging-while-drilling sonic logging measurements. Geophysical Prospecting, 61(S1):268-283.

     

    Peng C B. 1994. Borehole effects on downhole seismic measurements[Ph. D. thesis]. Cambridge, MA: Massachusetts Institute of Technology.

     

    Qiao W X, Che X H, Li G, et al. 2004. The physical modelling of acoustic reflection image logging. Geophysical Prospecting For Petroleum (in Chinese), 43(3):294-297.

     

    Sakiyama N, Syresin D, Iritani R, et al. 2016. LWD unipole for probing azimuthally heterogeneous formation properties: Characterization through numerical modeling and field data.//2016th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 612-616.

     

    Schoenberg M. 1986. Fluid and solid motion in the neighborhood of a fluid-filled borehole due to the passage of a low-frequency elastic plane wave. Geophysics, 51(6):1191-1205. doi: 10.1190/1.1442174

     

    Shen J G, Zhang H L. 2000. Numerical study on 3D acoustic field generated by eccentric sources in borehole. Chinese Journal of Geophysics (in Chinese), 43(2):279-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/cjg2.38

     

    Tang X M. 2004. Imaging near borehole structure using directional acoustic wave measurement. Geophysics, 69(6):1378-1386. doi: 10.1190/1.1836812

     

    Tang X M, Cao J J, Wei Z T. 2014. Shear-wave radiation, reception, and reciprocity of a borehole dipole source:With application to modeling of shear-wave reflection survey. Geophysics, 79(2):T43-T50.

     

    Tang X M, Cheng C H. 2004. Quantitative Borehole Acoustic Methods. San Diego: Elsevier Science Publishing Co. Inc.

     

    Tang X M, Patterson D J. 2009. Single-well S-wave imaging using multicomponent dipole acoustic log date. Geophysics, 74(6):WCA211-WCA223. doi: 10.1190/1.3227150

     

    Tsang L, Rader D. 1979. Numerical evaluation of the transient acoustic waveform due to a point source in a fluid-filled borehole. Geophysics, 44(10):1706-1720. doi: 10.1190/1.1440932

     

    Wang T, Dawber M, Boonen P M. 2011. Theory of unipole acoustic logging tools and their relevance to dipole and quadrupole tools for slow formations.//81st Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts.

     

    Wang T, Tang X M. 2003. LWD Finite-difference Modeling of elastic wave propagation:A nonsplitting perfectly matched layer approach. Geophysics, 68(5):1749-1755. doi: 10.1190/1.1620648

     

    Wang Z. 2016. Reciprocity relations of the elastic wavefields in layered elastic and porous media[Ph.D. thesis]. Harbin: Harbin Institute of Technology.

     

    Wei Z T, Tang X M. 2012. Numerical simulation of radiation, reflection, and reception of elastic waves from a borehole dipole source. Geophysics, 77(6):D253-D261. doi: 10.1190/geo2012-0061.1

     

    Xu J Q, Hu H S, Wang Z. 2019. Asymptotic solution to a 3D dipole single-well imaging system with combined monopole and dipole receivers with an application in elimination of azimuth ambiguity. Geophysics, 84(5):D191-D207, doi:10.1190/geo2018-0658.1.

     

    Xue M. 2002. Study on remote exploration acoustic reflection well logging & its acoustic sonde design[Ph.D. thesis]. Beijing: China University of Petroleum (Beijing).

     

    Yamamoto H, Watanable S, Koelman J M V, et al. 2000. Borehole acoustic reflection survey experiments in horizontal wells for accurate well positioning.//70th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts.

     

    Yang Y F, Guan W, Cui N G, et al. 2016. FDTD simulation and analysis of the collar wave propagation in acoustic logging while drilling. Chinese Journal of Geophysics (in Chinese), 59(1):368-380, doi:10.6038/cjg20160131.

     

    Zhang B X, Wang K X, Dong Q D. 1996. Nonaxisymmetric acoustic field excited by a cylindrical tool placed off a borehole axis and extraction of shear wave. The Journal of the Acoustical Society of America, 99(2):682-690. doi: 10.1121/1.414645

     

    Zhang Y D, Hu H S. 2014. Position determination of the interface out of a borehole based on the phase feature of reflected waves. Progress in Geophysics (in Chinese), 29(2):870-878, doi:10.6038/pg20140253.

     

    Zhang Y D, Hu H S. 2014. A technique to eliminate the azimuth ambiguity in single-well imaging. Geophysics, 79(6):D409-D416. doi: 10.1190/geo2013-0310.1

     

    董经利, 许孝凯, 张晋言等. 2020.声波远探测技术概述及发展.地球物理学进展, 35(2):566-572, doi:10.6038/pg2020CC0180.

     

    古希浩, 唐晓明, 庄春喜等. 2020.用滑移界面理论模拟多裂缝体系的偶极横波远探测声场.地球物理学进展, 35(3):955-962, doi:10.6038/pg2020DD0053.

     

    郝仲田, 孙小芳, 刘西恩等. 2014.偶极横波远探测测井技术应用研究.地球物理学进展, 29(5):2172-2177, doi:10.6038/pg20140527.

     

    何峰江. 2005.声反射成像测井仪器仿真及波形处理技术研究[博士论文].北京: 中国石油大学(北京).

     

    乔文孝, 车小花, 李刚等. 2004.反射声波成像测井的物理模拟.石油物探, 43(3):294-297. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sywt200403019

     

    沈建国, 张海澜. 2000.井内偏心声源激发的三维声场的数值研究.地球物理学报, 43(2):279-286. http://www.geophy.cn//CN/abstract/abstract3746.shtml

     

    王治. 2016.分层弹性与孔隙介质中弹性波场的互易关系[博士论文].哈尔滨: 哈尔滨工业大学.

     

    薛梅. 2002.远探测声波反射波测井研究[博士论文].北京: 中国石油大学(北京).

     

    杨玉峰, 关威, 崔乃刚等. 2016.随钻声波测井FDTD模拟及钻铤波传播特性研究.地球物理学报, 59(1):368-380, doi:10.6038/cjg20160131. http://www.geophy.cn//CN/abstract/abstract12115.shtml

     

    张义德, 胡恒山. 2014.基于反射波相位特征的井外界面方位判别法.地球物理学进展, 29(02):870-878, doi:10.6038/pg20140253.

  • 加载中

(18)

(1)

计量
  • 文章访问数:  2001
  • PDF下载数:  924
  • 施引文献:  0
出版历程
收稿日期:  2019-01-07
修回日期:  2020-05-16
上线日期:  2020-09-05

目录