利用大地电磁技术揭示2016年1月21日青海门源MS6.4地震隐伏地震构造和孕震环境

赵凌强, 詹艳, 孙翔宇, 郝明, 祝意青, 陈小斌, 杨皓. 2019. 利用大地电磁技术揭示2016年1月21日青海门源MS6.4地震隐伏地震构造和孕震环境. 地球物理学报, 62(6): 2088-2100, doi: 10.6038/cjg2019M0204
引用本文: 赵凌强, 詹艳, 孙翔宇, 郝明, 祝意青, 陈小斌, 杨皓. 2019. 利用大地电磁技术揭示2016年1月21日青海门源MS6.4地震隐伏地震构造和孕震环境. 地球物理学报, 62(6): 2088-2100, doi: 10.6038/cjg2019M0204
ZHAO LingQiang, ZHAN Yan, SUN XiangYu, HAO Ming, ZHU YiQing, CHEN XiaoBin, YANG Hao. 2019. The hidden seismogenic structure and dynamic environment of the 21 January Menyuan, Qinghai, MS6.4 earthquake derived from magnetotelluric imaging. Chinese Journal of Geophysics (in Chinese), 62(6): 2088-2100, doi: 10.6038/cjg2019M0204
Citation: ZHAO LingQiang, ZHAN Yan, SUN XiangYu, HAO Ming, ZHU YiQing, CHEN XiaoBin, YANG Hao. 2019. The hidden seismogenic structure and dynamic environment of the 21 January Menyuan, Qinghai, MS6.4 earthquake derived from magnetotelluric imaging. Chinese Journal of Geophysics (in Chinese), 62(6): 2088-2100, doi: 10.6038/cjg2019M0204

利用大地电磁技术揭示2016年1月21日青海门源MS6.4地震隐伏地震构造和孕震环境

  • 基金项目:

    国家自然科学基金项目(41474057), 地震行业科研专项(20130811)和国家自然科学基金重大项目(41590860)共同资助

详细信息
    作者简介:

    赵凌强, 男, 1988年生, 工程师, 博士研究生, 主要从事大地电磁方法在深部结构探测中的应用研究.E-mail:zhaolingqiang0926@126.com

    通讯作者: 詹艳, 女, 1969年生, 研究员, 主要从事电磁方法和深部电性构造探测研究.E-mail:zhanyan66@vip.sina.com
  • 中图分类号: P315

The hidden seismogenic structure and dynamic environment of the 21 January Menyuan, Qinghai, MS6.4 earthquake derived from magnetotelluric imaging

More Information
  • 2016年1月21日01时13分在青海省海北州门源县发生了MS6.4地震,震中位置位于青藏高原东北缘地区祁连造山带内的祁连—海原断裂带冷龙岭断裂部分附近,震源深度约11.4 km,震源机制解显示该次地震为一次纯逆冲型地震.我们于2015年7—8月期间完成了跨过祁连造山带紧邻穿过2016年1月21日青海门源MS6.4地震震中区的大地电磁探测剖面(DKLB-M)和古浪地震大地电磁加密测量剖面(HYFP).本文对所采集到的数据进行了先进的数据处理和反演工作,获得了二维电性结构图.结合青藏高原东北缘地区最新获得的相对于欧亚板块2009—2015年GPS速度场分布特征,1月21日门源MS6.4地震主震与余震分布特征以及其他地质与地球物理资料等,探讨了门源MS6.4地震的发震断裂,断裂带空间展布、延伸位置,分析了门源MS6.4地震孕震环境与地震动力学背景等以及祁连山地区深部构造特征等相关问题.所获结论如下:2016年门源MS6.4地震震源区下存在较宽的SW向低阻体,推测冷龙岭断裂下方可能形成了明显的力学强度软弱区,这种力学强度软弱区的存在反映了介质的力学性质并促进了地震蠕动、滑移和发生;冷龙岭北侧断裂可能对门源MS6.4地震主震和余震的发生起控制作用,而该断裂为冷龙岭断裂在青藏高原北东向拓展过程中产生的伴生断裂,表现出逆冲特征;现今水准场、重力场、GPS速度场分布特征以及大地电磁探测结果均表明祁连—海原断裂带冷龙岭断裂部分为青藏高原东北缘地区最为明显的一条边界断裂,受控于青藏高原北东向拓展和阿拉善地块的阻挡作用,冷龙岭断裂附近目前正处于青藏高原北东向拓展作用最强烈、构造转化最剧烈的地区,这种动力学环境可能是门源MS6.4地震发生的最主要原因,与1927年古浪MS8.0地震和1954年民勤MS7.0地震相似,2016年门源MS6.4地震的发生同样是青藏高原北东向拓展过程中的一次地震事件.

  • 加载中
  • 图 1 

    区域构造和大地电磁剖面位置图(断裂邓起东等,2003郭鹏等,2017徐锡伟等,2017)

    Figure 1. 

    Maps showing tectonics of study area and magnetotelluric survey profiles (major faults cited from Deng et al., 2003;Guo et al., 2017;Xu et al., 2017)

    图 2 

    沿DKLB-M剖面10个典型测点的测量方向的视电阻率和阻抗相位曲线

    Figure 2. 

    Apparent resistivity and impedance phase curves of 10 typical measuring sites in profile DKLB-M

    图 3 

    相位张量分解获得的二维偏离度角|β|(a)和相位不变量φ2(b)随频率分布图

    Figure 3. 

    |β|(a), φ2(b) and phase tensor ellipses of different periods from the phase tensor decomposition in profile

    图 4 

    沿剖面全部测点的分频段和全频段的相位张量分解最佳主轴电性走向玫瑰花瓣图

    Figure 4. 

    Rose diagrams of the geoelectric strikes along the profile from phase tensor decomposition

    图 5 

    DKLB-M剖面不同正则化因子反演得到的模型粗糙度、拟合误差曲线图

    Figure 5. 

    Curve of Rms and roughness for profile DKLB-M from inversion using varied regularization factors

    图 6 

    剖面实测与2-D模型理论计算的TE和TM极化模式的视电阻率和阻抗相位柱状图

    Figure 6. 

    Comparison of TE and TM apparent resistivity and impedance phase along the profile from measurement and calculation on a 2-D theoretical model

    图 7 

    DKLB-M和HYFP剖面深部电性结构图和门源地震区地表断裂走向与主、余震分布图

    Figure 7. 

    Deep electric structure on profiles DKLB-M and HYFP, surface faults, and main shock and aftershocks of the 2016 Menyuan event

    图 8 

    青藏高原东北缘2011—2014年累计重力变化(a)(等值线单位:10-8 m·s-2)与水准场年速率分布图(b)

    Figure 8. 

    Gravity changes from 2011 to 2014 (a) (ontours represent, unit:10-8m·s-2) and vertical deformation rates (b) in northeastern margin of Tibetan plateau

    图 9 

    青藏高原东北缘2009—2015年GPS速度场(a)与GPS垂直冷龙岭断裂分量(b)平行冷龙岭断裂分量(c)

    Figure 9. 

    GPS velocity field in northeastern margin of Tibetan Plateau (a), GPS component perpendicular to Lenglongling fault (b), and GPS component parallel to Lenglongling fault (c)

  •  

    Bai D H, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience, 3(5):358-362, doi:10.1038/NGEO830.

     

    Becken M, Ritter O, Bedrosian P A, et al. 2011. Correlation between deep fluids, tremor and creep along the central San Andreas fault. Nature, 480(7375):87-90. doi: 10.1038/nature10609

     

    Bibby H M, Caldwell T G, Brown C. 2005. Determinable and non-determinable parameters of galvanic distortion in magnetotellurics. Geophysical Journal International, 163(3):915-930. doi: 10.1111/gji.2005.163.issue-3

     

    Booker J R. 2014. The magnetotelluric phase tensor:A critical review. Surveys in Geophysics, 35(1):7-40. doi: 10.1007/s10712-013-9234-2

     

    Cai J T, Chen X B. 2010. Refined techniques for data processing and 2-dimensional inversion in magnetotelluric Ⅱ:Which data polarization mode should be used in 2D inversion. Chinese Journal of Geophysics (in Chinese), 53(11):2703-2714, doi:10.3969/j.issn.0001-5733.2010.11.018.

     

    Cai J T, Chen X B, Xu X W, et al. 2017. Rupture mechanism and seismotectonics of the MS6.5 Ludian earthquake inferred from three-dimensional magnetotelluric imaging. Geophysical Research Letters, 44(3):1275-1285. doi: 10.1002/grl.v44.3

     

    Cai J T, Chen X B, Zhao G Z. 2010. Refined techniques for data processing and two-dimensional inversion in magnetotelluric Ⅰ:Tensor decomposition and dimensionality analysis. Chinese Journal of Geophysics (in Chinese), 53(10):2516-2526, doi:10.3969/j.issn.0001-5733.2010.10.025.

     

    Caldwell T G, Bibby H M, Brown C. 2004. The magnetotelluric phase tensor. Geophysical Journal international, 158(2):457-469. doi: 10.1111/gji.2004.158.issue-2

     

    Chave A D, Thomson D J, Ander M E. 1987. On the robust estimation of power spectra, coherences, and transfer functions. Journal of Geophysical Research:Solid Earth, 92(B1):633-648. doi: 10.1029/JB092iB01p00633

     

    Chen L S, Wang G E. 1990. Magnetotelluric Sounding Method (in Chinese). Beijing:Geological Publishing House, 10-15.

     

    Chen X B, Zhao G Z, Zhan Y. 2004. A visual intergrated windows system for MT data process and interpretation. Oil Geophysical Prospecting (in Chinese), 39(S1):11-16.

     

    Cherevatova M, Smirnov M Y, Jones A G, et al. 2015. Magnetotelluric array data analysis from north-west Fennoscandia. Tectonophysics, 653:1-19. doi: 10.1016/j.tecto.2014.12.023

     

    Deng Q D, Zhang P Z, Ran Y K, et al. 2003. Active tectonics and earthquake activities in China. Earth Science Frontiers (in Chinese), 10(S1):66-73. http://cn.bing.com/academic/profile?id=b85938a492d0fe2f1908ce055d856c20&encoded=0&v=paper_preview&mkt=zh-cn

     

    Egbert G D, Booker J R. 1986. Robust estimation of geomagnetic transfer functions. Geophysical Journal of the Royal Astronomical Society, 87(1):173-194. doi: 10.1111/gji.1986.87.issue-1

     

    Electromagnetic Research Group for the Active Fault. 1982. Low electrical resistivity along an active fault, the Yamasaki Fault. Journal of Geomagnetism and Geoelectricity, 34(2):103-127. doi: 10.5636/jgg.34.103

     

    Guo P. 2016. Holocene slip rate and seismogenic capacity of the Lenglongling fault, Northeastern Margin of the Tibetan Plateau[Ph. D. thesis] (in Chinese). Beijing: Beijing Institute of Geology, China Earthquake Administration, 59-71.

     

    Guo P, Han Z J, An Y F, et al. 2017. Activity of the Lenglongling fault system and seismotectonics of the 2016 MS6.4 Menyuan earthquake. Science China Earth Sciences, 60(5):929-942. doi: 10.1007/s11430-016-9007-2

     

    Han Z J, Lu F S, Ji F G, et al. 2012. Seismotectonics of the 26 November 2005 Jiujiang-Ruichang, Jiangxi, MS5.7 Earthquake. Acta Geologica Sinica, 86(2):497-509. doi: 10.1111/j.1755-6724.2012.00677.x

     

    Hao M, Wang Q L, Shen Z K, et al. 2014. Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau. Tectonophysics, 632:281-292. doi: 10.1016/j.tecto.2014.06.016

     

    Heise W, Caldwell T G, Bibby H M, et al. 2008. Three-dimensional modelling of magnetotelluric data from the Rotokawa geothermal field, Taupo Volcanic Zone, New Zealand. Geophysical Journal International, 173(2):740-750. doi: 10.1111/gji.2008.173.issue-2

     

    Hu C Z, Yang P X, Li Z M, et al. 2016. Seismogenic mechanism of the 21 January 2016 Menyuan, Qinghai MS6.4 earthquake. Chinese Journal of Geophysics (in Chinese), 59(5):1637-1646, doi:10.6038/cjg20160509.

     

    Hu X Y, Bi B T, Liu G X, et al. 2017. The lithospheric electrical structure of Ji'an-Fuzhou profile in the east part of South China. Chinese Journal of Geophysics (in Chinese), 60(7):2756-2766, doi:10.6038/cjg20170721.

     

    Jones A G. 1992. Electrical conductivity of the continental lower crust.//Fountain D M, Arculus R, Kay R W eds. Continental Lower Crust. Amsterdam: Elsevier, 81-143.

     

    Liang S S, Lei J S, Xu Z G, et al. 2017. Relocation of the aftershock sequence and focal mechanism solutions of the 21 January 2016 Menyuan, Qinghai, MS6.4 earthquake. Chinese Journal of Geophysics (in Chinese), 60(6):2091-2103, doi:10.6038/cjg20170606.

     

    Liu B Y, Zeng W H, Yuan D Y, et al. 2014. Fault parameters and slip properties of the 1954 Northern Tengger Desert M7.0 earthquake. China Earthquake Engineering Journal (in Chinese), 36(3):622-627. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb201403032

     

    Liu H C, Dai H G, Li L H, et al. 2000. A preliminary study on the 1954 Minqin MS7.0 Earthquake in Gansu Province. Northwestern Seismological Journal (in Chinese), 22(3):232-235. http://en.cnki.com.cn/Article_en/CJFDTotal-ZBDZ200003003.htm

     

    Ma J, Ma S L, Liu L Q, et al. 1996. Geometrical textures of faults, evolution of physical field and instability characteristics. Acta Seismologica Sinica, 9(2):261-269. doi: 10.1007/BF02651070

     

    Rodi W, Mackie R L. 2001. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66(1):174-187. doi: 10.1190/1.1444893

     

    Shen X Z, Kim Y H, Gan W J. 2017. Lithospheric velocity structure of the northeast margin of the Tibetan Plateau:Relevance to continental geodynamics and seismicity. Tectonophysic, 712-713:482-493. doi: 10.1016/j.tecto.2017.06.022

     

    Unsworth M J, Malin P, Egbert G D, et al. 1997. Internal structure of the San Andreas fault at Parkfield, California. Geology, 25(4):359-362. doi: 10.1130/0091-7613(1997)025<0359:ISOTSA>2.3.CO;2

     

    Wang X, Zhan Y, Zhao G Z, et al. 2010. Deep electric structure beneath the northern section of the western margin of the Ordos basin. Chinese Journal of Geophysics (in Chinese), 50(3):595-604, doi:10.3969/j.issn.0001-5733.2010.03.013.

     

    Wang X B, Zhu Y T, Zhao X K, et al. 2009. Deep conductivity characteristics of the Longmen Shan, Eastern Qinghai-Tibet Plateau. Chinese Journal of Geophysics (in Chinese), 52(2):564-571. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1071/ASEG2009ab079

     

    Xiao Q B. 2005. A visualization scheme of MT data processing based on database platform. Geophysical and Geochemical Exploration (in Chinese), 29(3):269-272. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200503021

     

    Xu X W, Wen X Z, Han Z J, et al. 2013. Lushan MS7.0 earthquake:A blind reserve-fault event. Chinese Science Bulletin, 58(28-29):3437-3443. doi: 10.1007/s11434-013-5999-4

     

    Xu X W, Wu X Y, Yu G H, et al. 2017. Seismo-geological signatures for identifying M ≥ 7.0 earthquake risk areas and their premilimary application in mainland China. Seismology and Geology (in Chinese), 39(2):219-275. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201702001

     

    Xu Y, Wang K Y. 1995. Crustal conductivity layer in Tianshan area and hypocenter environment. Inland Earthquake (in Chinese), 9(2):112-117. http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-LLDZ502.002.htm

     

    Zhan Y, Zhao G Z, Unsworth M, et al. 2013. Deep structure beneath the southwestern section of the Longmenshan fault zone and seimogenetic context of the 4.20 MS7.0 earthquake. Chinese Science Bulletin, 58(28-29):3467-3474. doi: 10.1007/s11434-013-6013-x

     

    Zhan Y, Zhao G Z, Wang J J, et al. 2005. Crustal electric structure of Haiyuan arcuate tectonic region in the northeastern margin of Qinghai-Xizang plateau, China. Acta Seismologica Sinica (in Chinese), 27(4):431-440. http://cn.bing.com/academic/profile?id=a6d3ecc1b3b3d42f580239ba0ef1eec9&encoded=0&v=paper_preview&mkt=zh-cn

     

    Zhan Y, Zhao G Z, Wang J J, et al. 2008. Deep electric structure beneath the epicentre of the 1927 Gulang M8 earthquake and its adjacent areas from magnetotelluric sounding. Chinese Journal of Geophys (in Chinese), 51(2):511-520. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200802023

     

    Zhang P Z, Wang Q, Ma Z J. 2002. GPS velocity field and active crustal deformation in and around the Qinghai-Tibet Plateau. Earth Science Frontiers (in Chinese), 9(2):442-450. http://cn.bing.com/academic/profile?id=272b480009acfae074f8b5debac9eb59&encoded=0&v=paper_preview&mkt=zh-cn

     

    Zhang S, Xu Y X, Li J, et al. 2017. Electrical structures in the northwest margin of the Junggar basin:Implications for its late Paleozoic geodynamics. Tectonophysics, 717:473-483. doi: 10.1016/j.tecto.2017.08.031

     

    Zhao G Z, Tang J, Zhan Y, et al. 2005. Relation between electricity structure of the crust and deformation of crustal blocks on the northeastern margin of Qinghai-Tibet plateau. Science in China (Series D:Earth Sciences), 48(10):1613-1626. doi: 10.1360/02YD0047

     

    Zhao G Z, Unsworth M J, Zhan Y, et al. 2012. Crustal structure and rheology of the Longmenshan and Wenchuan MW7.9 earthquake epicentral area from magnetotelluric data. Geology, 40(12):1139-1142. doi: 10.1130/G33703.1

     

    Zhao L Q, Zhan Y, Chen X B, et al. 2015. Deep electrical structure of the central west Qinling orogenic belt and blocks on its either side. Chinese Journal of Geophysics (in Chinese), 58(7):2460-2472, doi:10.6038/cjg20150722.

     

    Zhao L Q, Zhan Y, Wang Q L, et al. 2018. Deep electrical structure beneath the 1954 MS7.0 Minqin, Gansu earthquake and its seismotectonic environment. Seismology and Geology (in Chinese), 40(3):552-565. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201803004

     

    Zheng W J, Zhang P Z, Ge W P, et al. 2013. Late Quaternary slip rate of the South Heli Shan Fault (northern Hexi Corridor, NW China) and its implications for northeastward growth of the Tibetan Plateau. Tectonics, 32(2):271-293. doi: 10.1002/tect.v32.2

     

    Zheng W J, Zhang P Z, Yuan D Y, et al. 2009. Deformation on the northern of the Tibetan plateau from GPS measurement and geologic rates of Late Quaternary along the major fault. Chinese Journal of Geophysics (in Chinese), 52(10):2491-2508, doi:10.3969/j.issn.0001-5733.2009.10.008.

     

    Zheng W J, Zhang Z Q, Zhang P Z, et al. 2013. Seismogenic structure and mechanism of the 1954 MS71/4 Shandan Earthquake, Gansu Province, Western China. Chinese Journal of Geophysics (in Chinese), 56(3):916-928, doi:10.6038/cjg20130320.

     

    Zhu Y Q, Li T M, Hao M, et al. 2013. Gravity changes before the Menyuan, Qinghai MS6.4 earthquake of 2016. Chinese Journal of Geophysics (in Chinese), 59(10):3744-3752, doi:10.6038/cjg20161019.

     

    蔡军涛, 陈小斌. 2010.大地电磁资料精细处理和二维反演解释技术研究(二)-反演数据极化模式选择.地球物理学报, 53(11):2703-2714, doi:10.3969/j.issn.0001-5733.2010.11.018. http://www.geophy.cn//CN/abstract/abstract3423.shtml

     

    蔡军涛, 陈小斌, 赵国泽. 2010.大地电磁资料精细处理和二维反演解释技术研究(一)-阻抗张量分解与构造维性分析.地球物理学报, 53(10):2516-2526, doi:10.3969/j.issn.0001-5733.2010.10.025.

     

    陈乐寿, 王光锷. 1990.大地电磁测深法.北京:地质出版社, 10-15.

     

    陈小斌, 赵国泽, 詹艳. 2004. MT资料处理与解释的Windows可视化集成系统.石油地球物理勘探, 39(S1):11-16. http://www.cnki.com.cn/Article/CJFDTotal-SYDQ2004S1004.htm

     

    邓起东, 张培震, 冉勇康等. 2003.中国活动构造与地震活动.地学前缘, 10(S1):66-73. http://d.old.wanfangdata.com.cn/Periodical/dxqy2003z1012

     

    郭鹏. 2016.冷龙岭断裂全新世滑动速率与发震能力研究[博士论文].北京: 中国地震局地质研究所, 59-71.http://cdmd.cnki.com.cn/Article/CDMD-85402-1016300071.htm

     

    郭鹏, 韩竹军, 安艳芬等. 2017.冷龙岭断裂系活动性与2016年门源6.4级地震构造研究.中国科学:地球科学, 47(5):617-630. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201705009

     

    胡朝忠, 杨攀新, 李智敏等. 2016. 2016年1月21日青海门源6.4级地震的发震机制探讨.地球物理学报, 59(5):1637-1646, doi:10.6038/cjg20160509. http://www.geophy.cn//CN/abstract/abstract12773.shtml

     

    胡祥云, 毕奔腾, 刘国兴等. 2017.华南东部吉安-福州剖面岩石圈电性结构研究.地球物理学报, 60(7):2756-2766, doi:10.6038/cjg20170721. http://www.geophy.cn//CN/abstract/abstract13890.shtml

     

    梁姗姗, 雷建设, 徐志国等. 2017. 2016年1月21日青海门源MS6.4余震序列重定位和主震震源机制解.地球物理学报, 60(6):2091-2103, doi:10.6038/cjg20170606. http://www.geophy.cn//CN/abstract/abstract13758.shtml

     

    刘白云, 曾文浩, 袁道阳等. 2014. 1954年腾格里沙漠北7级地震断层面参数和滑动性质研究.地震工程学报, 36(3):622-627. doi: 10.3969/j.issn.1000-0844.2014.03.0622

     

    刘洪春, 戴华光, 李龙海等. 2000.对1954年民勤7级地震的初步研究.西北地震学报, 22(3):232-235. http://d.old.wanfangdata.com.cn/Periodical/xbdzxb200003004

     

    王绪本, 朱迎堂, 赵锡奎等. 2009.青藏高原东缘龙门山逆冲构造深部电性结构特征.地球物理学报, 52(2):564-571. http://www.geophy.cn//CN/abstract/abstract937.shtml

     

    王鑫, 詹艳, 赵国泽等. 2010.鄂尔多斯盆地西缘构造带北段深部电性结构.地球物理学报, 50(3):595-604, doi:10.3969/j.issn.0001-5733.2010.03.013. http://www.geophy.cn//CN/abstract/abstract1298.shtml

     

    肖骑彬. 2005.基于数据库平台的MT数据处理可视化方案.物探与化探, 29(3):269-272. doi: 10.3969/j.issn.1000-8918.2005.03.021

     

    徐锡伟, 闻学泽, 韩竹军等. 2013.四川芦山7.0级强震:一次典型的盲逆断层型地震.科学通报, 58(20):1887-1893. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201305034

     

    徐锡伟, 吴熙彦, 于贵华等. 2017.中国大陆高震级地震危险区判定的地震地质学标志及其应用.地震地质, 39(2):219-275. doi: 10.3969/j.issn.0253-4967.2017.02.001

     

    胥颐, 王克元. 1995.天山的壳内高导层与震源环境.内陆地震, 9(2):112-117. http://www.cnki.com.cn/Article/CJFDTOTAL-LLDZ502.002.htm

     

    詹艳, 赵国泽, Unsworth M等. 2013.龙门山断裂带西南段4.20芦山7.0级地震区的深部结构和孕震环境.科学通报, 58(20):1917-1924. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201320005

     

    詹艳, 赵国泽, 王继军等. 2005.青藏高原东北缘海原弧形构造区地壳电性结构探测研究.地震学报, 27(4):431-440. doi: 10.3321/j.issn:0253-3782.2005.04.010

     

    詹艳, 赵国泽, 王继军等. 2008. 1927年古浪8级大震区及其周边地块的深部电性结构.地球物理学报, 51(2):511-520. doi: 10.3321/j.issn:0001-5733.2008.02.023 http://www.geophy.cn//CN/abstract/abstract446.shtml

     

    张培震, 王琪, 马宗晋. 2002.青藏高原现今构造变形特征与GPS速度场.地学前缘, 2002, 9(2):442-450. doi: 10.3321/j.issn:1005-2321.2002.02.023

     

    赵国泽, 汤吉, 詹艳等. 2004.青藏高原东北缘地壳电性结构和地块变形关系的研究.中国科学D辑:地球科学, 34(10):908-918. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200410003

     

    赵凌强, 詹艳, 陈小斌等. 2015.西秦岭造山带(中段)及其两侧地块深部电性结构特征.地球物理学报, 58(7):2460-2472, doi:10.6038/cjg20150722. http://www.geophy.cn//CN/abstract/abstract11664.shtml

     

    赵凌强, 詹艳, 王庆良等. 2018. 1954年甘肃民勤7级地震区深部电性结构特征及其地震构造环境研究.地震地质, 40(3):552-565. doi: 10.3969/j.issn.0253-4967.2018.03.004

     

    郑文俊, 张培震, 袁道阳等. 2009. GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形.地球物理学报, 52(10):2491-2508, doi:10.3969/j.issn.0001-5733.2009.10.008. http://www.geophy.cn//CN/abstract/abstract1200.shtml

     

    郑文俊, 张竹琪, 张培震等. 2013. 1954年山丹71/4级地震的孕震构造和发震机制探讨.地球物理学报, 56(3):916-928, doi:10.6038/cjg20130320. http://www.geophy.cn//CN/abstract/abstract9338.shtml

     

    祝意青, 李铁明, 郝明等. 2016. 2016年青海门源MS6.4地震前重力变化.地球物理学报, 59(10):3744-3752, doi:10.6038/cjg20161019. http://www.geophy.cn//CN/abstract/abstract13148.shtml

  • 加载中

(9)

计量
  • 文章访问数:  2537
  • PDF下载数:  710
  • 施引文献:  0
出版历程
收稿日期:  2018-04-06
修回日期:  2018-11-23
上线日期:  2019-06-05

目录