高频GNSS实时地震学与地震预警研究现状

单新建, 尹昊, 刘晓东, 王振杰, 屈春燕, 张国宏, 张迎峰, 李彦川, 汪驰升, 姜宇. 2019. 高频GNSS实时地震学与地震预警研究现状. 地球物理学报, 62(8): 3043-3052, doi: 10.6038/cjg2019M0076
引用本文: 单新建, 尹昊, 刘晓东, 王振杰, 屈春燕, 张国宏, 张迎峰, 李彦川, 汪驰升, 姜宇. 2019. 高频GNSS实时地震学与地震预警研究现状. 地球物理学报, 62(8): 3043-3052, doi: 10.6038/cjg2019M0076
SHAN XinJian, YIN Hao, LIU XiaoDong, WANG ZhenJie, QU ChunYan, ZHANG GuoHong, ZHANG YingFeng, LI YanChuan, WANG ChiSheng, JIANG Yu. 2019. High-rate real-time GNSS seismology and early warning of earthquakes. Chinese Journal of Geophysics (in Chinese), 62(8): 3043-3052, doi: 10.6038/cjg2019M0076
Citation: SHAN XinJian, YIN Hao, LIU XiaoDong, WANG ZhenJie, QU ChunYan, ZHANG GuoHong, ZHANG YingFeng, LI YanChuan, WANG ChiSheng, JIANG Yu. 2019. High-rate real-time GNSS seismology and early warning of earthquakes. Chinese Journal of Geophysics (in Chinese), 62(8): 3043-3052, doi: 10.6038/cjg2019M0076

高频GNSS实时地震学与地震预警研究现状

  • 基金项目:

    国家自然科学基金项目(41631073)和基本科研业务费专项基金(IGCEA1613)资助

详细信息
    作者简介:

    单新建, 男, 1966年生, 研究员, 主要从事地壳形变观测与动力学研究.E-mail:xjshan@163.com

  • 中图分类号: P315

High-rate real-time GNSS seismology and early warning of earthquakes

  • 为实现从注重灾后救助向注重灾前预防转变,如何提高地震灾害监测预警和风险防范能力成为我们关注的重点.本文给出了国际上GNSS位移记录、强震动加速度记录、测震速度记录在地震预警中的应用现状,并总结了各自的特点,归纳出围绕高频GNSS地震学在震级与破裂过程实时反演中的几个需要进一步研究的关键问题:(1)引入北斗系统,基于高频GNSS(GPS/BDS)双系统的实时位移解算方法来提高实时单站位移解算精度,使实时解算精度达到厘米级;(2)开展强震仪加速度记录基线偏移校正研究,弥补地震近场GNSS站密度不足问题;(3)强震仪加速度记录与GNSS位移记录特点不同,开展强震仪加速度数据与GNSS位移数据实时融合处理研究,快速获得包含丰富地震形变和速率的波形数据;(4)测震学方法可快速估算震级,但是在强震发生时会出现震级饱和现象,造成震级估算偏低.需要开展基于GNSS位移时间序列的多种方法相结合的实时震级估算方法研究,通过与地震学方法比较和结合,来得到精度高、计算快的震级估值算法;(5)基于高频GNSS、断层初始模型快速选取、断层尺度、参数自适应调整是快速判断断层破裂方向的基础,在断层破裂过程自适应准实时反演算法方面需要进一步加强.通过国内外研究现状调研、分析,表明基于高频GNSS地震学的震级快速确定、震源破裂过程准实时反演算法的发展将对我国地震预警系统从"二网融合"到"三网融合"提供坚实的技术支撑.

  • 加载中
  • 图 1 

    中国地壳运动观测网络GPS连续站分布图

    Figure 1. 

    Map showing distribution of GPS continuous stations of crustal motion observation network in China mainland

    图 2 

    汶川地震PIXI(郫县)台站GPS记录与静态位移提取结果

    Figure 2. 

    Comparison of raw GPS data and extracted static offset at the PIXI station in the Wenchuan earthquake area

    图 3 

    日本3·11地震地震学方法与GPS方法确定震级及发布时间对比图(Colombelli et al., 2013)

    Figure 3. 

    Comparison of magnitudes and release times by seismic and GPS methods after the 2011 Tohoku-Oki, Japan earthquake

    图 4 

    日本3·11地震实时单站位移解算结果(MIZU站)

    Figure 4. 

    Real-time GPS displacement of 2011 Tohoku-Oki, Japan earthquake from a single receiver (MIZU station)

    图 5 

    G-larmS系统流程图(改自Grapenthin et al., 2014)

    Figure 5. 

    Flow chart of G-larmS system (modified from Grapenthin et al., 2014)

    图 6 

    2008汶川地震震中位置和台站分布

    Figure 6. 

    Distribution of GPS stations and epicenter of 2008 Wenchuan earthquake

    图 7 

    利用PGD计算的震级结果

    Figure 7. 

    Magnitude of 2008 Wenchuan event calculated by PGD

    图 8 

    51MXN台站基线偏移校正前后位移序列对比图

    Figure 8. 

    Comparison between uncorrected displacement and corrected displacements at station 51MXN

  •  

    Allen R M, Kanamori H. 2003. The potential for earthquake early warning in southern California. Science, 300(5620):786-789. doi: 10.1126/science.1080912

     

    Allen R M, Ziv A. 2011. Application of real-time GPS to earthquake early warning. Geophysical Research Letters, 38(16):L16310, doi:10.1029/2011GL047947.

     

    Bilich A, Cassidy J F, Larson K M. 2008. GPS seismology:application to the 2002 MW7.9 Denali fault earthquake. Bulletin of the Seismological Society of America, 98(2):593-606, doi:10.1785/0120070096.

     

    Blewitt G, Hammond W C, Kreemer C, et al. 2009. GPS for real-time earthquake source determination and tsunami warning systems. Journal of Geodesy, 83(3-4):335-343. doi: 10.1007/s00190-008-0262-5

     

    Chen J, Chen Y K, Ding G Y, et al. 2003. Surface rupture zones of the 2001 earthquake MS8.1 west of KUNLUN pass, northern QingHai-Xizang plateau. Quaternary Sciences (in Chinese), 23(6):629-639. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200306005.htm

     

    Chen K, Zamora N, Babeyko A, et al. 2015. Can BDS improve tsunami early warning in South China Sea?//Sun J, Liu J, Fan S, et al eds. China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume Ⅱ. Lecture Notes in Electrical Engineering. Berlin, Heidelberg: Springer, 341: 593-603.

     

    Colombelli S, Allen R M, Zollo A. 2013. Application of real-time GPS to earthquake early warning in subduction and strike-slip environment. Journal of Geophysical Research:Solid Earth, 118(7):3448-3461. doi: 10.1002/jgrb.50242

     

    Colosimo G, Crespi M, Mazzoni A. 2011. Real-time GPS seismology with a stand-alone receiver:A preliminary feasibility demonstration. Journal of Geophysical Research:Solid Earth, 116(B11):B11302, doi:10.1029/2010JB007941.

     

    Crowell B W, Melgar D, Bock Y, et al. 2013. Earthquake magnitude scaling using seismogeodetic data. Geophysical Research Letters, 40(23):6089-6094. doi: 10.1002/2013GL058391

     

    Daud M E, Sagiya T, Kimata F, et al. 2008. Long-baseline quasi-real time kinematic GPS data analysis for early tsunami warning. Earth, Planets and Space, 60(12):1191-1195, doi:10.1186/BF03352877.

     

    Geng J H, Bock Y, Melgar D, et al. 2013. A new seismogeodetic approach applied to GPS and accelerometer observations of the 2012 Brawley seismic swarm:Implications for earthquake early warning. Geochemistry, Geophysics, Geosystems, 14(7):2124-2142. doi: 10.1002/ggge.20144

     

    Geng T, Xie X, Fang R X, et al. 2015. Real-time capture of seismic waves using high-rate multi-GNSS observations:Application to the 2015 MW7.8 Nepal earthquake. Geophysical Research Letters, 43(1):161-167. https://www.researchgate.net/publication/287337389_Real-time_capture_of_seismic_waves_using_high-rate_multi-GNSS_observations_Application_to_the_2015_Mw_78_Nepal_earthquake

     

    Grapenthin R, Johanson I A, Allen R M. 2014. Operational real-time GPS-enhanced earthquake early warning. Journal of Geophysical Research:Solid Earth, 119(10):7944-7965. doi: 10.1002/2014JB011400

     

    Horiuchi S, Negishi H, Abe K, et al. 2005. An automatic processing system for broadcasting earthquake alarms. Bulletin of the Seismological Society of America, 95(2):708-718. doi: 10.1785/0120030133

     

    Kamigaichi O, Saito M, DoiK, et al. 2009. Earthquake early warning in Japan:warning the general public and future prospects. Seismological Research Letters, 80(5):717-726. doi: 10.1785/gssrl.80.5.717

     

    Kamigaichi O JMA earthquake early warning. 2004. Journal of the Japan Association for Earthquake Engineering, 4(3): 134-137.

     

    Kanamori H. 2005. Real-time seismology and earthquake damage mitigation. Annual Review of Earth and Planetary Sciences, 33(1):195-214. doi: 10.1146/annurev.earth.33.092203.122626

     

    Kanamori H. 2008. Earthquake physics and real-time seismology. Nature, 451(7176):271-273. doi: 10.1038/nature06585

     

    Li X, Ge M, Guo B, et al. 2013. Temporal point positioning approach for real-time GNSS seismology using a single receiver. Geophysical Research Letters, 40(21):5677-5682. doi: 10.1002/2013GL057818

     

    Maerten F, Resor P, Pollard D, Maerten L. 2005. Inverting for slip on three-dimensional fault surfaces using angular dislocations. Bulletin of the Seismological Society of America, 95(5):1654-1665. doi: 10.1785/0120030181

     

    Melgar D, Crowell B W, Geng J H, et al. 2015. Earthquake magnitude calculation without saturation from the scaling of peak ground displacement. Geophysical Research Letters, 42(13):5197-5205. doi: 10.1002/2015GL064278

     

    Nakamura Y. 1988. On the urgent earthquake detection and alarm system (UrEDAS).//Proceedings of the 9th World Conference on Earthquake Engineering. Tokyo-Kyoto, 7: 673-678.

     

    Odolinski R, Teunissen P J G, Odijk D. 2014. First combined COMPASS/BeiDou-2 and GPS positioning results in Australia. Part Ⅱ:Single-and multiple-frequency single-baseline RTK positioning. Journal of Spatial Science, 59(1):25-46.

     

    Tu R, Ge M R, Wang R J, et al. 2014. A new algorithm for tight integration of real-time GPS and strong-motion records, demonstrated on simulated, experimental, and real seismic data. Journal of Seismology, 18(1):151-161, doi:10.1007/s10950-013-9408-x.

     

    Tu R, Wang R, Ge M, et al. 2013. Cost-effective monitoring of ground motion related to earthquakes, landslides, or volcanic activity by joint use of a single-frequency GPS and a MEMS accelerometer. Geophysical Research Letters, 40(15):3825-3829, doi:10.1002/grl.50653.

     

    Wang R J, Parolai S, Ge M R, et al. 2013. The 2011 MW9.0 Tohoku earthquake:comparison of GPS and strong-motion data. Bulletin of the Seismological Society of America, 103(2B):1336-1347. doi: 10.1785/0120110264

     

    Wang R J, Schurr B, Milkereit C, et al. 2011. An improved automatic scheme for empirical baseline correction of digital strong-motion records. Bulletin of the Seismological Society of America, 2011, 101(5):2029-2044. doi: 10.1785/0120110039

     

    Wright T J, Houlie N, Hildyard M, et al. 2012. Real-time, reliable magnitudes for large earthquakes from 1 Hz GPS precise point positioning:The 2011 Tohoku-Oki (Japan) earthquake. Geophysical Research Letters, 39(12):L12302, doi:10.1029/2012GL051894.

     

    Wu Y M, Teng T. 2002. A virtual subnetwork approach to earthquake early warning. Bulletin of the Seismological Society of America, 92(5):2008-2018. doi: 10.1785/0120010217

     

    Xu X W, Wen X Z, Ye J Q, et al. 2008. The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure. Seismology and Geology (in Chinese), 30(3):597-629. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz200803003

     

    Yue H, Lay T. 2011. Inversion of high-rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (MW9.1). Geophysical Research Letters, 38(7):L00G09, doi:10.1029/2011GL048700.

     

    Zhang L, Wu J C, Ge L L, et al. 2005. Determining fault slip distribution of the Chi-Chi Taiwan earthquake with GPS and InSAR data using triangular dislocation elements. Journal of Geodynamics, 45(4-5):163-168. http://www.sciencedirect.com/science/article/pii/S0264370707000671

     

    Zhang X H, Guo B F. 2013. Real-time tracking the instantaneous movement of crust during earthquake with a stand-alone GPS receiver. Chinese Journal of Geophysics (in Chinese), 56(6):1928-1936, doi:10.6038/cjg20130615.

     

    Zhang X H, Guo F, Guo B F, et al. 2012. Coseismic displacement monitoring and wave picking with high-frequency GPS. Chinese Journal of Geophysics (in Chinese), 55(6):1912-1918, doi:10.6038/j.issn.0001-5733.2012.06.012.

     

    陈杰, 陈宇坤, 丁国瑜等. 2003. 2001年昆仑山口西8.1级地震地表破裂带.第四纪研究, 23(6):629-639. doi: 10.3321/j.issn:1001-7410.2003.06.006

     

    徐锡伟, 闻学泽, 叶建青等. 2008.汶川MS8.0地震地表破裂带及其发震构造.地震地质, 30(3):597-629. doi: 10.3969/j.issn.0253-4967.2008.03.003

     

    张小红, 郭博峰. 2013.单站GPS测速在实时地震监测中的应用.地球物理学报, 56(6):1928-1936, doi:10.6038/cjg20130615. http://www.geophy.cn//CN/abstract/abstract9577.shtml

     

    张小红, 郭斐, 郭博峰等. 2012.利用高频GPS进行地表同震位移监测及震相识别.地球物理学报, 55(6):1912-1918, doi:10.6038/j.issn.0001-5733.2012.06.012. http://www.geophy.cn//CN/abstract/abstract8699.shtml

  • 加载中

(8)

计量
  • 文章访问数:  3547
  • PDF下载数:  725
  • 施引文献:  0
出版历程
收稿日期:  2018-02-07
修回日期:  2019-04-01
上线日期:  2019-08-05

目录