塔里木克拉通形成以来的背景热史研究

曹厚臻, 何丽娟, 张林友. 2019. 塔里木克拉通形成以来的背景热史研究. 地球物理学报, 62(1): 236-247, doi: 10.6038/cjg2019L0802
引用本文: 曹厚臻, 何丽娟, 张林友. 2019. 塔里木克拉通形成以来的背景热史研究. 地球物理学报, 62(1): 236-247, doi: 10.6038/cjg2019L0802
CAO HouZhen, HE LiJuan, ZHANG LinYou. 2019. Inversion of background thermal history since the formation of the Tarim Craton. Chinese Journal of Geophysics (in Chinese), 62(1): 236-247, doi: 10.6038/cjg2019L0802
Citation: CAO HouZhen, HE LiJuan, ZHANG LinYou. 2019. Inversion of background thermal history since the formation of the Tarim Craton. Chinese Journal of Geophysics (in Chinese), 62(1): 236-247, doi: 10.6038/cjg2019L0802

塔里木克拉通形成以来的背景热史研究

  • 基金项目:

    国家重点研发计划(2016YFC0601005), 国家自然科学基金(41574075)资助

详细信息
    作者简介:

    曹厚臻, 男, 1994年生, 硕士研究生, 构造地质学专业, 从事地热学数值模拟研究.E-mail:caohouzhen@mail.iggcas.ac.cn

    通讯作者: 何丽娟, 女, 1968年生, 研究员, 博士生导师, 从事岩石圈构造-热演化模拟研究.E-mail:ljhe@mail.iggcas.ac.cn
  • 中图分类号: P314

Inversion of background thermal history since the formation of the Tarim Craton

More Information
  • 塔里木盆地是一个典型大型叠合盆地,发育在太古代-早中元古代的结晶基底之上,具有稳定克拉通性质.现今地表热流为43 mW·m-2,平均地温梯度为21℃·km-1,莫霍面温度为550℃,较低的热流背景值指示塔里木盆地经历了一个长期冷却加厚的过程.然而对于这样一个长期冷却过程,之前的研究都只停留在显生宙阶段,并未获得塔里木显生宙以前的热史.本文以塔里木地区已有的地热数据作为约束,依据地幔动力学模型设置底部边界条件,利用正演拟合的方法,反演出塔里木的背景热史,填补了该区域古生代以前热史研究的空白.结果表明,塔里木克拉通自形成以来背景热流不断降低(由85 mW·m-2降至43 mW·m-2),岩石圈持续加厚(由130 km加厚到190 km),在长时间尺度下,塔里木克拉通总体的热演化模式为长期冷却加厚,这与世界上其他典型克拉通的热演化规律类似.显生宙以来受到短期局部的构造-热事件影响,塔里木克拉通在长期冷却的趋势下叠加了约20~40 mW·m-2的热扰动.

  • 加载中
  • 图 1 

    地球内部温度演化模式图

    Figure 1. 

    Model showing temperature evolution in the earth

    图 2 

    正演拟合反演塔里木热史演化

    Figure 2. 

    Thermal history evolution of Tarim derived from forward modeling

    图 3 

    正演拟合反演塔里木不同地质年代的温度-深度曲线与热岩石圈厚度确定

    Figure 3. 

    Temperature-depth curves of different ages in Tarim from forward modeling and thermal lithosphere thickness determination based on two models

    表 1 

    塔里木盆地温度场正演拟合参数设置

    Table 1. 

    Geothermal parameters of Tarim basin for forward modeling

    分层 沉积层S 地壳C 地幔M
    深度/km 0~8 8~45 45~190
    热导率k/(W·m-1·K-1) 2.3 2.5 3.2
    比热容Cp/(J·K-1·kg-1) 1000 1000 1000
    密度ρ/(kg·m-3) 2300 2700 3300
    生热率Ai0/(μW·m-3) 1.13 0.51 0.02
    热流/(mW·m-2) 9 19 15
    热流贡献率/% 21 44 35
    现今地温梯度/(℃·km-1) 20.7±2.9
    现今大地热流/(mW·m-2) 42.5±7.6(~43)
    现今莫霍面温度/℃ 500~600
    注:数据来源(范桃园和安美建, 2009; 刘绍文等, 2017).
    下载: 导出CSV

    表 2 

    利用不同方法获得塔里木岩石圈厚度

    Table 2. 

    Thickness of the Tarim lithosphere obtained by different methods

    研究者 岩石圈厚度/km 研究方法
    张家茹等(1998) 100~130 地震转换波估计
    Wang(2001) 235 上地幔温度随深度的分布来线性外推所得到的1300 ℃绝热等温温度
    朱介寿(2002) 190 地震层析成像
    Huang等(2003) 150 地震学
    An和Shi(2006) 150 地震热学方法
    刘绍文等(2017) 170~190 结合更新的岩石热物性参数、实测地表热流及地壳结构等深部构造资料计算
    下载: 导出CSV

    表 3 

    参数测试与误差分析

    Table 3. 

    Parameter test and error analysis

    模型 描述 现今地表热流/(mW·m-2) 热流误差/% 现今莫霍面温度/℃ 温度误差/%
    0 基准模型 43.105 - 597.426 -
    1 初始深度测试 209 km 41.856 2.897 573.737 3.965
    2 171 km 44.686 3.668 627.417 5.020
    3 热导率测试 沉积层 2.53 45.368 5.251 591.586 0.977
    4 2.07 40.628 5.747 603.815 1.069
    5 地壳 2.75 41.659 3.355 564.394 5.529
    6 2.25 44.610 3.492 635.172 6.318
    7 地幔 3.52 44.192 2.522 618.041 3.451
    8 2.88 41.954 2.670 575.594 3.654
    9 生热率测试 沉积层 1.243 43.630 1.219 598.289 0.144
    10 1.017 42.580 1.219 596.563 0.144
    11 地壳 0.561 44.742 3.797 614.095 2.790
    12 0.459 41.468 3.797 580.757 2.790
    13 地幔 0.022 43.205 0.232 599.313 0.316
    14 0.018 43.005 0.232 595.538 0.316
    15 初始条件测试 式(10) 43.105 0 597.426 0
    16 地壳分层测试 地壳分两层 42.474 1.465 583.362 2.354
    注:按照表 1参数设置的模型称为基准模型,编号为0,其他参数变动时的计算结果都与之对比.比较的项目为现今地表热流与现今莫霍面温度.
    下载: 导出CSV

    表 5 

    地壳生热率衰减与地壳热流变化

    Table 5. 

    Decay of crustal heat generation rate and change of crustal heat flow

    年龄/Ga 地壳生热率/(μW·m-3) 地壳热流/(mW·m-2) 地表热流/(mW·m-2) 比例/%
    4 1.40 51.81 84.90 61
    0 0.51 18.87 43.10 44
    衰减量 0.89 32.94 41.80 79
    下载: 导出CSV

    表 6 

    全球典型克拉通形成年龄与地表热流变化

    Table 6. 

    Formation age and surface heat flow changes of global typical cratons

    克拉通名称 年龄/Ga 形成时的地表热流/(mW·m-2) 现今地表热流/(mW·m-2) 数据来源
    Kaapvaal basement (S. Africa) 3.5 76.18 44 Ballard and Pollack, 1987
    Zimbabwe Craton 3.4 69.35 47 Jones, 1987
    Slave Province 3.1 82.11 51 Mareschal et al., 2004
    Wawa Subprovince 2.73 55.77 46.4 Perry et al., 2006
    Lac de Gras 2.7 63.32 46 Griffin et al., 1999
    Dharwar 3.5 62.14 38 Pandey and Agrawal, 1999
    Singhbhum 3.4 80.18 61 Pandey and Agrawal, 1999
    Bastar craton 2.7 86.35 56 Pandey and Agrawal, 1999
    Southern Granulites 2.5 77.37 55 Pandey and Agrawal, 1999
    Wyoming craton 3.4 94.70 48 Decker et al., 1988
    Ukraine 3.6 72.99 37.3 Kutas, 1997
    Sao Francisco Craton (Brazil) 3.2 57.96 42 Vitorello and Pollack, 1980
    Grenville 1.3 43.57 41 Mareschal and Jaupart, 2004
    Eastern United States (Prot) 1 45.16 42.18 Roy et al., 1968
    Baltic shield 2 83.84 61.00 Balling, 1995
    Egypt 0.9 49.23 45 Morgan, 1985
    Tarim ~3 70.58 43 This paper
    下载: 导出CSV

    表 4 

    正演拟合反演塔里木热史演化与岩石圈厚度变化

    Table 4. 

    Thermal history evolution and lithosphere thickness variation of Tarim derived from forward modeling

    时代 年龄/Ga 背景热流/(mW·m-2) 岩石圈厚度/km
    太古代Archean 4.0~2.5 85~65 102/128~139/162
    元古代Proterozoic 2.5~0.54 65~47 139/162~167/188
    显生宙Phanerozoic 0.54~0 47~43 167/188~172/190
    注:岩石圈厚度:102/128,其中102、128分别表示岩石圈厚度的上下限.
    下载: 导出CSV
  •  

    An M J, Shi Y L. 2006. Lithospheric thickness of the Chinese continent. Physics of the Earth and Planetary Interiors, 159(3-4):257-266. doi: 10.1016/j.pepi.2006.08.002

     

    Arndt N, Lesher C M, Barnes S J. 2008. Komatiite. Cambridge University Press.

     

    Artemieva I M, Mooney W D. 2001. Thermal thickness and evolution of Precambrian lithosphere: A global study. Journal of Geophysical Research: Solid Earth, 106(B8):16387-16414. doi: 10.1029/2000JB900439

     

    Ballard S, Pollack H N. 1987. Diversion of heat by Archean cratons: a model for southern Africa. Earth and Planetary Science Letters, 85(1-3):253-264. doi: 10.1016/0012-821X(87)90036-7

     

    Balling N. 1995. Heat flow and thermal structure of the lithosphere across the Baltic Shield and northern Tornquist Zone. Tectonophysics, 244(1-3):13-50. doi: 10.1016/0040-1951(94)00215-U

     

    Beck J V, Blackwell B, Clair C R.1985. Inverse Heat Conduction: Ill-posed Problems. New York: A Wiley-Interscience Publication.

     

    Davies G F. 2009. Effect of plate bending on the Urey ratio and the thermal evolution of the mantle. Earth and Planetary Science Letters, 287(3-4):513-518. doi: 10.1016/j.epsl.2009.08.038

     

    Decker E R, Heasler H P, Buelow K L, et al. 1988. Significance of past and recent heat-flow and radioactivity studies in the Southern Rocky Mountains region. Geological Society of America Bulletin, 100(12):1851-1885. doi: 10.1130/0016-7606(1988)100<1851:SOPARH>2.3.CO;2

     

    Fan T Y, An M J. 2009. Discussion on thickness of the Tarim craton lithosphere and its mechanism. Geological Review (in Chinese), 55(3): 329-334. http://d.old.wanfangdata.com.cn/Periodical/OA000004252

     

    Ge X H, Ma W P, Liu J L, et al. 2013. Prospects of researches on regional tectonics of China. Geology in China (in Chinese), 40(1): 61-73.

     

    Griffin W L, Doyle B J, Ryan C G, et al. 1999. Layered mantle lithosphere in the Lac de Gras Area, Slave Craton: Composition, structure and origin. Journal of Petrology, 40(5):705-727. doi: 10.1093/petroj/40.5.705

     

    Grigné C, Labrosse S, Tackley P J. 2005. Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth. Journal of Geophysical Research: Solid Earth, 110(B3): B03409, doi: 10.1029/2004JB003376.

     

    He L J, Wang J Y. 2007. Tectono-thermal modeling of sedimentary basins: review and outlook. Progress in Geophysics (in Chinese), 22(4), 1215-1219, doi: 10.3969/j.issn.1004-2903.2007.04.029.

     

    He L J, Xu H H, Wang J Y. 2011. Thermal evolution and dynamic mechanism of the Sichuan Basin during the Early Permian-Middle Triassic. Science China Earth Sciences, 54(12):1948-1954. doi: 10.1007/s11430-011-4240-z

     

    He L J, Huang F, Liu Q Y, et al. 2014. Tectono-thermal evolution of Sichuan basin in early Paleozoic. Journal of Earth Sciences and Environment (in Chinese), 36(2): 10-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201402004

     

    Herzberg C, Asimow P D, Arndt N, et al. 2007. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochemistry Geophysics Geosystems, 8(2): Q02006, doi: 10.1029/2006GC001390.

     

    Herzberg C, Gazel E. 2009. Petrological evidence for secular cooling in mantle plumes. Nature, 458(7238):619-622. doi: 10.1038/nature07857

     

    Herzberg C, Condie K, Korenaga J. 2010. Thermal history of the Earth and its petrological expression. Earth and Planetary Science Letters, 292(1-2):79-88. doi: 10.1016/j.epsl.2010.01.022

     

    Huang Z X, Su W, Peng Y J, et al. 2003. Rayleigh wave tomography of China and adjacent regions. Journal of Geophysical Research: Solid Earth, 108(B2): 2073, doi: 10.1029/2001JB0016.

     

    Jaupart C, Mareschal J C. 1999. The thermal structure and thickness of continental roots. Lithos, 48: 93-114. doi: 10.1016/S0024-4937(99)00023-7

     

    Jessop A M. 1990. Thermal Geophysics. Developments in Solid Earth Geophysics. London: Elsevier.

     

    Jones M Q W. 1987. Heat flow and heat production in the Namaqua Mobile Belt, South Africa. Journal of Geophysical Research: Solid Earth, 92(B7):6273-6289. doi: 10.1029/JB092iB07p06273

     

    King S D. 2005. Archean cratons and mantle dynamics. Earth and Planetary Science Letters, 234(1-2):1-14. doi: 10.1016/j.epsl.2005.03.007

     

    Korenaga J, Jordan T H. 2003. Physics of multiscale convection in Earth′s mantle: Onset of sublithospheric convection. Journal of Geophysical Research: Solid Earth, 108(B7): 2333, doi: 10.1029/2002JB001760.

     

    Korenaga J. 2006. Archean Geodynamics and the Thermal Evolution of Earth. Archean Geodynamics and Environments, 164(7):7-32. http://adsabs.harvard.edu/abs/2006GMS...164....7K

     

    Korenaga J. 2008. Urey ratio and the structure and evolution of Earth′s mantle. Reviews of Geophysics, 46(2): RG2007, doi: 10.1029/2007RG000241.

     

    Korenaga J. 2013. Initiation and evolution of plate tectonics on Earth: Theories and observations. Annual Review of Earth and Planetary Sciences, 41:117-151. doi: 10.1146/annurev-earth-050212-124208

     

    Kutas R I. 1997. Investigation of heat flow in the territory of the Ukraine. Tectonophysics, 41(1-3):139-145. http://www.sciencedirect.com/science/article/pii/0040195177901858

     

    Li J W, Li Z, Qiu N S, et al. 2016. Carboniferous-Permian abnormal thermal evolution of the Tarim basin and its implication for deep structure and magmatic activity. Chinese Journal of Geophysics (in Chinese), 59(9):3318-3329, doi: 10.6038/cjg20160916.

     

    Li M J, Wang T G, Chen J F, et al. 2010. Paleo-heat flow evolution of the Tabei Uplift in Tarim Basin, northwest China. Journal of Asian Earth Sciences, 37(1):52-66. doi: 10.1016/j.jseaes.2009.07.007

     

    Liu S W, Li X L, Hao C Y, et al. 2017. Heat flow, deep formation temperature and thermal structure of the Tarim Basin, northwest China. Earth Science Frontiers (in Chinese), 24(3):41-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201703004

     

    Mareschal J C, Jaupart C. 2004. Variations of surface heat flow and lithospheric thermal structure beneath the North American craton. Earth and Planetary Science Letters, 223(1-2):65-77. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.epsl.2004.04.002/

     

    Mareschal J C, Nyblade A, Perry H K C, et al. 2004. Heat flow and deep lithospheric thermal structure at Lac de Gras, Slave Province, Canada. Geophysical Research Letters, 31(12):L12611, doi: 10.1029/2004GL020133.

     

    Mareschal J C, Jaupart C. 2006. Archean thermal regime and stabilization of the cratons. Archean Geodynamics and Environments, 164:61-73. doi: 10.1029/GM164

     

    Michaut C, Jaupart C. 2007. Secular cooling and thermal structure of continental lithosphere. Earth and Planetary Science Letters, 257(1-2):83-96. doi: 10.1016/j.epsl.2007.02.019

     

    Michaut C, Jaupart C, Mareschal J C. 2009. Thermal evolution of cratonic roots. Lithos, 109(1-2):47-60. doi: 10.1016/j.lithos.2008.05.008

     

    Morgan P. 1984. The thermal structure and thermal evolution of the continental lithosphere. Physics & Chemistry of the Earth, 15:107-193. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0079-1946(84)90006-5/

     

    Morgan P. 1985. Crustal radiogenic heat production and the selective survival of ancient continental crust. Journal of Geophysical Research: Atmospheres, 90(S02): C561-C570. doi: 10.1029/JB090iS02p0C561

     

    Nyblade A A, Pollack H N. 1993. A global analysis of heat flow from Precambrian terrains-Implications for the thermal structure of Archean and Proterozoic lithosphere. Journal of Geophysical Research: Solid Earth, 98(B7):12207-12218. doi: 10.1029/93JB00521

     

    Pandey O P, Agrawal P K. 1999. Lithospheric mantle deformation beneath the Indian Cratons. The Journal of Geology, 107(6):683-692. doi: 10.1086/314373

     

    Perry H K C, Jaupart C, Mareschal J C, et al. 2006. Crustal heat production in the Superior Province, Canadian Shield, and in North America inferred from heat flow data. Journal of Geophysical Research: Solid Earth, 111(B4): B04401, doi: 10.1029/2005JB003893.

     

    Pollack H N, Hurter S J, Johnson J R. 1993. Heat Flow from the Earth's Interior: Analysis of the Global Data Set. Reviews of Geophysics, 31(3): 267-280. doi: 10.1029/93RG01249

     

    Puchtel I S, Humayun M, Campbell A J, et al. 2004. Platinum group element geochemistry of komatiites from the Alexo and Pyke Hill areas, Ontario, Canada. Geochimica Et Cosmochimica Acta, 68(6):1361-1383. doi: 10.1016/j.gca.2003.09.013

     

    Qiu N S, Reiners P, Mei Q H, et al. 2009. Application of the (U-Th)/He thermochronometry to the tectono-thermal evolution of sedimentary basin—a case history of well KQ1 in the Tarim basin. Chinese Journal of Geophysics (in Chinese), 52(7): 1825-1835, doi: 10.3969/j.issn.0001-5733.2009.07.017.

     

    Qiu N S, Wang J Y, Mei Q H, et al. 2010. Constraints of (U-Th)/He ages on early Paleozoic tectonothermal evolution of the Tarim Basin, China. Science China Earth Sciences, 53(7): 964-976. doi: 10.1007/s11430-010-4004-1

     

    Qiu N S, Chang J, Zuo Y H, et al. 2012. Thermal evolution and maturation of lower Paleozoic source rocks in the Tarim Basin, northwest China. AAPG Bulletin, 96(5): 789-821. doi: 10.1306/09071111029

     

    Qiu N S, Zuo Y H, Chang J, et al. 2015. Characteristics of Meso-Cenozoic thermal regimes in typical eastern and western sedimentary basins of China. Earth Science Frontiers (in Chinese), 22(1):157-168. http://d.old.wanfangdata.com.cn/Periodical/dxqy201501013

     

    Roy R F, Blackwell D D, Birch F. 1968. Heat generation of plutonic rocks and continental heat flow provinces. Earth and Planetary Science Letters, 5:1-12. doi: 10.1016/S0012-821X(68)80002-0

     

    Sobolev A V, Hofmann A W, Kuzmin D V, et al. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316(5823):412-417. doi: 10.1126/science.1138113

     

    Sotin C, Labrosse S. 1999. Three-dimensional thermal convection in an iso-viscous, infinite Prandtl number fluid heated from within and from below: applications to the transfer of heat through planetary mantles. Physics of the Earth and Planetary Interiors, 112(3-4):171-190. doi: 10.1016/S0031-9201(99)00004-7

     

    Thakur M, Blackwell D D. 2010. Thermal Stabilization Temperature of the Archean Cratons. //AGU Fall Meeting. AGU Fall Meeting Abstracts.

     

    Turcotte D L, Schubert G. 2014. Geodynamics. 3rd ed. London: Cambridge University Press.

     

    Vitorello I, Pollack H N. 1980. On the variation of continental heat flow with age and the thermal evolution of continents. Journal of Geophysical Research: Solid Earth, 85(B2):983-995. doi: 10.1029/JB085iB02p00983

     

    Wang J Y. 2015. Geothermics and its Applications (in Chinese). Beijing: Science Press.

     

    Wang L S, Li C, Shi Y S. 1995. Distribution of terrestrial heat flow density in Tarim basin, western China. Chinese Journal of Geophysics (in Chinese), 38(6): 855-856. http://en.cnki.com.cn/article_en/cjfdtotal-dqwx506.018.htm

     

    Wang L S, Li C, Liu S W, et al. 2003. Geotemperature gradient distribution of Kuqa foreland basin, north of Tarim, China. Chinese Journal of Geophysics (in Chinese), 46(3): 403-407. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX200303018.htm

     

    Wang Y. 2001. Heat flow pattern and lateral variations of lithosphere strength in China mainland: constraints on active deformation. Physics of the Earth and Planetary Interiors, 126(3-4):121-146. doi: 10.1016/S0031-9201(01)00251-5

     

    Xue A M, Yang X M, Liao J J. 1993. The thermal history of sedimentary basin: Immitation methods and review. Progress in Geophysics (in Chinese), 8(2):107-116. http://www.cnki.com.cn/Article/CJFDTotal-DQWJ199302014.htm

     

    Yan L, Li M, Pan W Q. 2014. Distribution characteristics of Permian igneous rock in Tarim basin—based on the high-precision aeromagnetic data. Progress in Geophysics (in Chinese), 29(4):1843-1848, doi: 10.6038/pg20140448.

     

    Yang S F, Chen H L, Li Z L, et al. 2013. Early Permian Tarim Large Igneous Province in northwest China. Science China Earth Sciences, 56(12):2015-2026. doi: 10.1007/s11430-013-4653-y

     

    Yu J B, Zhang J, Li P H. 2012. Comparison of tectono-thermal evolution between Bachu uplift and Tabei uplift in Tarim basin. Journal of Graduate University of Chinese Academy of Sciences (in Chinese), 29(4):485-492. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyjsyxb201204008

     

    Yu J B, Zhang J, Shi B P. 2010. A study on tectono-thermal evolution history of Bachu uplift in Tarim basin. Chinese Journal of Geophysics (in Chinese), 53(5):2396-2404, doi: 10.3969/j.issn.0001-5733.2010.10.013.

     

    Zhang G Y, Zhao W Z, Wang H J, et al. 2007. Multicycle tectonic evolution and composite petroleum systems in the Tarim basin. Oil & Gas Geology (in Chinese), 28(5): 653-663. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200705017

     

    Zhang J R, Shao X Z, Fan H J. 1998. Deep sounding survey by converted waves of earthquakes in central part of the Tarim basin and its interpretation. Seismology and Geology (in Chinese), 20(1): 34-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800067420

     

    Zhu C Q, Yang S J, Li T B, et al. 2008. Geophysical characters of major faults in the Tarim Basin and the relationships with earthquake. Progress in Geophysics (in Chinese), 23(6):1685-1691. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200806004.htm

     

    Zuo Y H, Li J W, Li W Z, et al. 2015. Mesozoic and Cenozoic "thermal" lithospheric thickness evolution in the Tarim basin. Progress in Geophysics (in Chinese), 30(4): 1608-1615, doi: 10.6038/pg20150415.

     

    范桃园, 安美建. 2009.现今塔里木克拉通岩石圈厚度分析及机制探讨.地质论评, 55(3): 329-334. doi: 10.3321/j.issn:0371-5736.2009.03.003

     

    葛肖虹, 马文璞, 刘俊来等. 2013.中国区域大地构造学的研究展望.中国地质, 40(1):61-73. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201301004

     

    何丽娟, 黄方, 刘琼颖等. 2014.四川盆地早古生代构造-热演化特征.地球科学与环境学报, 36(2): 10-17. doi: 10.3969/j.issn.1672-6561.2014.02.004

     

    何丽娟, 汪集旸. 2007.沉积盆地构造热演化研究进展:回顾与展望.地球物理学进展, 22(4): 1215-1219, 10.3969/j.issn.1004-2903.2007.04.029. doi: 10.3969/j.issn.1004-2903.2007.04.029

     

    贾承造. 1997.中国塔里木盆地构造特征与油气.北京:石油工业出版社, 205-289. http://cdmd.cnki.com.cn/Article/CDMD-11415-1016190379.htm

     

    李佳蔚, 李忠, 邱楠生等. 2016.塔里木盆地石炭-二叠纪异常热演化及其对深部构造-岩浆活动的指示.地球物理学报, 59(9):3318-3329, doi: 10.6038/cjg20160916. http://www.geophy.cn//CN/abstract/abstract13058.shtml

     

    刘继军. 2005.不适定问题的正则化方法及应用.北京:科学出版社.

     

    刘绍文, 李香兰, 郝春艳等. 2017.塔里木盆地的热流、深部温度和热结构.地学前缘, 24(3): 41-55. http://d.old.wanfangdata.com.cn/Periodical/dxqy201703004

     

    邱楠生, Reiners P, 梅庆华等. 2009. (U-Th)/He年龄在沉积盆地构造-热演化研究中的应用——以塔里木盆地KQ1井为例.地球物理学报, 52(7): 1825-1835, doi: 10.3969/j.issn.0001-5733.2009.07.017. http://www.geophy.cn//CN/abstract/abstract1100.shtml

     

    邱楠生, 汪集旸, 梅庆华等. 2010. (U-Th)/He年龄约束下的塔里木盆地早古生代构造-热演化.中国科学:地球科学, 40(12): 1669-1683. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201012005.htm

     

    邱楠生, 左银辉, 常健等. 2015.中国东西部典型盆地中-新生代热体制对比.地学前缘, 22(1): 157-168. http://www.cqvip.com/QK/98600X/201501/662674867.html

     

    汤良杰. 1996.塔里木盆地演化和构造样式.北京:地质出版社, 1-113.

     

    汪集旸. 2015.地热学及其应用.北京:科学出版社.

     

    王良书, 李成, 施央申. 1995.塔里木盆地大地热流密度分布特征.地球物理学报, 38(6): 855-856. doi: 10.3321/j.issn:0001-5733.1995.06.019 http://www.geophy.cn//CN/abstract/abstract4245.shtml

     

    王良书, 李成, 刘绍文等. 2003.塔里木盆地北缘库车前陆盆地地温梯度分布特征.地球物理学报, 46(3): 403-407. doi: 10.3321/j.issn:0001-5733.2003.03.019 http://www.geophy.cn//CN/abstract/abstract1538.shtml

     

    薛爱民, 杨小毛, 廖静娟. 1993.沉积盆地地热史模拟方法及简要述评.地球物理学进展, 8(2):107-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000519701

     

    闫磊, 李明, 潘文庆. 2014.塔里木盆地二叠纪火成岩分布特征——基于高精度航磁资料.地球物理学进展, 29(4):1843-1848, doi: 10.6038/pg20140448.

     

    于靖波, 张健, 史保平. 2010.塔里木盆地巴楚隆起区构造-热演化历史研究.地球物理学报, 53(10):2396-2404, doi: 10.3969/j.issn.0001-5733.2010.10.013. http://www.geophy.cn//CN/abstract/abstract3339.shtml

     

    于靖波, 张健, 李培海. 2012.塔里木盆地巴楚隆起与塔北隆起构造-热演化的对比分析.中国科学院大学学报, 29(4):485-492. http://d.old.wanfangdata.com.cn/Periodical/zgkxyyjsyxb201204008

     

    张光亚, 赵文智, 王红军等. 2007.塔里木盆地多旋回构造演化与复合含油气系统.石油与天然气地质, 28(5): 653-663. doi: 10.3321/j.issn:0253-9985.2007.05.017

     

    张家茹, 邵学钟, 范会吉. 1998.塔里木盆地中部地震转换波测深及其解释.地震地质, 20(1): 34-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800067420

     

    朱传庆, 杨书江, 李同彬等. 2008.塔里木盆地主要断裂的地球物理特征及与天然地震的关系.地球物理学进展, 23(6):1685-1691. http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz200806005

     

    朱介寿. 2002.中国及邻区地球三维结构及动力学研究. //中国地球物理学会年刊2002.北海: 中国地球物理学会.

     

    左银辉, 李佳蔚, 李文正等. 2015.塔里木盆地中、新生代"热"岩石圈厚度演化.地球物理学进展, 30(4): 1608-1615, doi: 10.6038/pg20150415.

  • 加载中

(3)

(6)

计量
  • 文章访问数:  2525
  • PDF下载数:  559
  • 施引文献:  0
出版历程
收稿日期:  2018-04-18
修回日期:  2018-10-20
上线日期:  2019-01-05

目录