20 Ma以来Mohns洋中脊的非对称扩张速率与地壳结构

张涛, 高金耀, 王威, 吴招才, 沈中延, 杨春国. 2018. 20 Ma以来Mohns洋中脊的非对称扩张速率与地壳结构. 地球物理学报, 61(8): 3263-3277, doi: 10.6038/cjg2018L0583
引用本文: 张涛, 高金耀, 王威, 吴招才, 沈中延, 杨春国. 2018. 20 Ma以来Mohns洋中脊的非对称扩张速率与地壳结构. 地球物理学报, 61(8): 3263-3277, doi: 10.6038/cjg2018L0583
ZHANG Tao, GAO JinYao, WANG Wei, WU ZhaoCai, SHEN ZhongYan, YANG ChunGuo. 2018. Asymmetric spreading rates and crustal structures of the Mohns Ridge since 20 Ma. Chinese Journal of Geophysics (in Chinese), 61(8): 3263-3277, doi: 10.6038/cjg2018L0583
Citation: ZHANG Tao, GAO JinYao, WANG Wei, WU ZhaoCai, SHEN ZhongYan, YANG ChunGuo. 2018. Asymmetric spreading rates and crustal structures of the Mohns Ridge since 20 Ma. Chinese Journal of Geophysics (in Chinese), 61(8): 3263-3277, doi: 10.6038/cjg2018L0583

20 Ma以来Mohns洋中脊的非对称扩张速率与地壳结构

  • 基金项目:

    国家自然科学基金"北冰洋Mohns洋中脊的非对称扩张机制研究"(41376069)、中央级公益性科研院所基本科研业务费专项资金资助项目(QNYC201503)和南北极环境综合考察与评估专项"北极海域地球物理考察"(CHINARE-03-03)项目联合资助

详细信息
    作者简介:

    张涛, 男, 1980年出生, 副研究员, 博士, 主要从事海洋地球物理研究.E-mail:Tao_zhang@sio.org.cn

    通讯作者: 高金耀, 男, 1962年出生, 研究员, 博士, 主要从事海洋地球物理研究.E-mail:jygao@mail.hz.zj.cn
  • 中图分类号: P738;P313

Asymmetric spreading rates and crustal structures of the Mohns Ridge since 20 Ma

More Information
  • 超慢速扩张的Mohns洋中脊共轭两侧的地球物理场与地壳结构具有显著的非对称性.利用我国第五次北极科学考察采集的水深、重力与磁力数据,结合历史资料,我们计算了14条垂直Mohns洋中脊剖面的扩张速率、剩余水深、剩余地幔布格重力异常(RMBA)、地壳厚度和非均衡地形.对洋中脊共轭两侧以上计算结果的进一步对比发现,Mohns洋中脊两侧整体(下文均指同一地质时刻各剖面的平均值)的非对称性呈现明显的两段性:20~10.5 Ma,相比Mohns洋中脊东侧,西侧的扩张速率更慢、地壳更厚、非均衡地形更低; 10.5~0 Ma,扩张速率、地壳厚度和非均衡地形的非对称的极性与20~10.5 Ma期间完全相反.后一阶段,整体扩张速率在西侧更快、剩余水深更浅,但是对应更薄的地壳和更高的非均衡地形.我们推断前者为冰岛沿Kolbeinsey洋中脊的作用增厚了Mohns洋中脊西侧地壳并使得洋中脊向西侧跳动,而后一阶段反映了岩浆供给减少后西侧集中的构造活动导致的更多的拉伸与隆升.沿各剖面上,10.5~0 Ma期间构造活动集中的洋中脊西侧均具有薄地壳和高非均衡地形,但构造拉伸的增加并不总是对应增快的扩张速率.岩浆在浅部更多地向东侧的分配以及洋中脊向西侧的跳动可能使得东西两侧具有相近的扩张速率.

  • 加载中
  • 图 1 

    Mohns洋中脊位置图

    Figure 1. 

    Location of the Mohns Ridge

    图 2 

    磁条带的追踪

    Figure 2. 

    Identifications of magnetic lineations

    图 3 

    扩张速率随地壳年龄的变化

    Figure 3. 

    Spreading rates versus crustal ages

    图 4 

    剩余水深随地壳年龄的变化

    Figure 4. 

    Residual bathymetry versus crustal ages

    图 5 

    地壳厚度随地壳年龄的变化

    Figure 5. 

    Crustal thicknesses versus crustal ages

    图 6 

    非均衡地形随地壳年龄的变化

    Figure 6. 

    Non-isostatic topography versus crustal ages

    图 7 

    整体剩余水深、地壳厚度、非均衡地形和扩张速率的对比

    Figure 7. 

    Regional residual bathymetry, crustal thicknesses and non-isostatic topography versus crustal ages

    图 8 

    20~0 Ma热点与Mohns洋中脊相对位置

    Figure 8. 

    Relative positions of hotspots and the Mohns Ridge since 20 Ma

    图 9 

    集中构造作用与扩张速率的变化模式图

    Figure 9. 

    Schematic models showing relationship between concentrated tectonic activities and asymmetric spreading rates

  •  

    Breivik A J, Faleide J I, Mjelde R. 2008. Neogene magmatism northeast of the Aegir and Kolbeinsey ridges, NE Atlantic:Spreading ridge-mantle plume interaction? Geochemistry, Geophysics, Geosystems, 9:Q02004, doi:10.1029/2007GC001750.

     

    Bruvoll V, Breivik A J, Mjelde R, et al. 2009. Burial of the Mohn-Knipovich seafloor spreading ridge by the Bear Island Fan:Time constraints on tectonic evolution from seismic stratigraphy. Tectonics, 28:TC4001, doi:10.1029/2008TC002396.

     

    Buck W R. 1988. Flexural rotation of normal faults. Tectonics, 7(5):959-973. doi: 10.1029/TC007i005p00959

     

    Cande S C, Kent D V. 1995. Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic. Journal of Geophysical Research, 100(B4):6093-6095. doi: 10.1029/94JB03098

     

    Crane K, Doss H, Vogt P, et al. 2001. The role of the Spitsbergen shear zone in determining morphology, segmentation and evolution of the Knipovich Ridge. Marine Geophysical Researches, 22(3):153-205. doi: 10.1023/A:1012288309435

     

    Crane K, Sundvor E, Buck R, et al. 1991. Rifting in the northern Norwegian-Greenland Sea:Thermal tests of asymmetric spreading. Journal of Geophysical Research, 96(B9):14529-14550. doi: 10.1029/91JB01231

     

    Crough S T. 1983. The correction for sediment loading on the seafloor. Journal of Geophysical Research, 88(B8):6449-6454. doi: 10.1029/JB088iB08p06449

     

    Dauteuil O, Brun J P. 1996. Deformation partitioning in a slow spreading ridge undergoing oblique extension:Mohns Ridge, Norwegian Sea. Tectonics, 15(4):870-884. doi: 10.1029/95TC03682

     

    Dick H J B, Lin J, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965):405-412. doi: 10.1038/nature02128

     

    Divins D. 2003. Total Sediment Thickness of the World's Oceans and Marginal Seas. NOAA National Geophysical Data Center, Boulder, CO. http://www.ngdc.noaa.gov/mgg/sedthick/sedthick.html.

     

    Dyment J, Lin J, Baker E T. 2007. Ridge-hotspot interactions:What mid-ocean ridges tell us about deep Earth processes. Oceanography, 20(1):102-115. doi: 10.5670/oceanog

     

    Eldholm O, Windisch C C. 1974. Sediment distribution in the Norwegian-Greenland Sea. Geological Society of America Bulletin, 85(11):1661-1676. doi: 10.1130/0016-7606(1974)85<1661:SDITNS>2.0.CO;2

     

    Escartín J, Smith D K, Cann J, et al. 2008. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature, 455(7214):790-794. doi: 10.1038/nature07333

     

    Fujita K, Sleep N H. 1978. Membrane stresses near mid-ocean ridge-transform intersections. Tectonophysics, 50(2-3):207-221. doi: 10.1016/0040-1951(78)90136-1

     

    Géli L. 1993. Volcano-tectonic events and sedimentation since late Miocene times at the Mohns Ridge, near 72°N, in the Norwegian-Greenland Sea. Tectonophysics, 222(3-4):417-444. doi: 10.1016/0040-1951(93)90362-N

     

    Georgen J E, Lin J, Dick H J B. 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge:effects of transform offsets. Earth and Planetary Science Letters, 187(3-4):283-300. doi: 10.1016/S0012-821X(01)00293-X

     

    Gudmundsson A, Brynjolfsson S, Jonsson M T. 1993. Structural analysis of a transform fault-rift zone junction in North Iceland. Tectonophysics, 220(1-4):205-221. doi: 10.1016/0040-1951(93)90232-9

     

    Hooft E E E, Brandsdóttir B, Mjelde R, et al. 2006. Asymmetric plume-ridge interaction around Iceland:The Kolbeinsey Ridge Iceland Seismic Experiment. Geochemistry, Geophysics, Geosystems, 7:Q05015, doi:10.1029/2005GC001123.

     

    Ito G, Lin J, Graham D. 2003. Observational and theoretical studies of the dynamics of mantle plume-mid-ocean ridge interaction. Reviews of Geophysics, 41:1017, doi:10.1029/2002RG000117.

     

    Jokat W, Ritzmann O, Schmidt-Aursch M C, et al. 2003. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge. Nature, 423(6943):962-965. doi: 10.1038/nature01706

     

    Kandilarov A, Mjelde R, Pedersen R B, et al. 2012. The northern boundary of the Jan Mayen microcontinent, North Atlantic determined from ocean bottom seismic, multichannel seismic, and gravity data. Marine Geophysical Research, 33(1):55-76. doi: 10.1007/s11001-012-9146-4

     

    Klingelhöfer F, Géli L, Matias L, et al. 2000. Crustal structure of a super-slow spreading centre:a seismic refraction study of Mohns Ridge, 72° N. Geophysical Journal International, 141(2):509-526. doi: 10.1046/j.1365-246x.2000.00098.x

     

    Kuo B Y, Forsyth D W. 1988. Gravity anomalies of the ridge-transform system in the South Atlantic between 31 and 34.5° S:Upwelling centers and variations in crustal thickness. Marine Geophysical Researches, 10(3-4):205-232. https://link.springer.com/article/10.1007/BF00310065

     

    Lawver L A, Müller R D. 1994. Iceland hotspot track. Geology, 22(4):311-314. doi: 10.1130/0091-7613(1994)022<0311:IHT>2.3.CO;2

     

    Mendel V, Munschy M, Sauter D. 2005. MODMAG, a MATLAB program to model marine magnetic anomalies. Computers & Geosciences, 31(5):589-597. http://www.academia.edu/15264081/MODMAG_a_MATLAB_program_to_model_marine_magnetic_anomalies

     

    Mendel V, Sauter D, Rommevaux-Jestin C, et al. 2003. Magmato-tectonic cyclicity at the ultra-slow spreading Southwest Indian Ridge:Evidence from variations of axial volcanic ridge morphology and abyssal hills pattern. Geochemistry, Geophysics, Geosystems, 4:9102, doi:10.1029/2002GC000417.

     

    Mosar J, Lewis G, Torsvik T. 2002. North Atlantic sea-floor spreading rates:implications for the Tertiary development of inversion structures of the Norwegian-Greenland Sea. Journal of the Geological Society, 159(5):503-515. doi: 10.1144/0016-764901-135

     

    Müller R D, Roest W R, Royer J Y, et al. 1997. Digital isochrons of the world's ocean floor. Journal of Geophysical Research, 102(B2):3211-3214. doi: 10.1029/96JB01781

     

    Müller R D, Roest W R, Royer J Y. 1998. Asymmetric sea-floor spreading caused by ridge-plume interactions. Nature, 396(6710):455-459. doi: 10.1038/24850

     

    Müller R D, Sdrolias M, Gaina C, et al. 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, 9:Q04006, doi:10.1029/2007GC001743.

     

    Neumann E R, Schilling J G. 1984. Petrology of basalts from the Mohns-Knipovich ridge; the Norwegian-Greenland Sea.Contributions to Mineralogy and Petrology, 85(3):209-223. doi: 10.1007/BF00378101

     

    Olive J A, Behn M D, Ito G, et al. 2015. Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply. Science, 350(6258):310-313. doi: 10.1126/science.aad0715

     

    Olive J A, Behn M D, Tucholke B E. 2010. The structure of oceanic core complexes controlled by the depth distribution of magma emplacement. Nature Geoscience, 3(7):491-495. doi: 10.1038/ngeo888

     

    Parker R L. 1973. The rapid calculation of potential anomalies. Geophysical Journal International, 31(4):447-455. doi: 10.1111/j.1365-246X.1973.tb06513.x

     

    Pedersen R B, Rapp H T, Thorseth I H, et al. 2010. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nature Communications, 1(8):126. doi: 10.1038/ncomms1124

     

    Pilidou S, Priestley K, Debayle E, et al. 2005. Rayleigh wave tomography in the North Atlantic:high resolution images of the Iceland, Azores and Eifel mantle plumes. Lithos, 79(3-4):453-474. doi: 10.1016/j.lithos.2004.09.012

     

    Renard V, Avedik F, Géli L, et al. 1989. Characteristics of the Oceanic crust formation of the part of the Mohns Ridge, near 72°N, in the Norwegian-Greenland Sea. Morphological study and underway geophysics, Terra Cognita, 1.

     

    Sandwell D T, Smith W H F. 1997. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. Journal of Geophysical Research, 102(B5):10039-10054. doi: 10.1029/96JB03223

     

    Schilling J G, Kingsley R, Fontignie D, et al. 1999. Dispersion of the Jan Mayen and Iceland mantle plumes in the Arctic:A He-Pb-Nd-Sr isotope tracer study of basalts from the Kolbeinsey, Mohns, and Knipovich Ridges. Journal of Geophysical Research, 104(B5):10543-10569. doi: 10.1029/1999JB900057

     

    Searle R C, Bralee A V. 2007. Asymmetric generation of oceanic crust at the ultra-slow spreading Southwest Indian Ridge, 64°E. Geochemistry, Geophysics, Geosystems, 8:Q05015, doi:10.1029/2006gc001529.

     

    Stein C A, Stein S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359(6391):123-129. doi: 10.1038/359123a0

     

    Talwani M, Eldholm O. 1977. Evolution of the Norwegian-Greenland Sea. Geological Society of America Bulletin, 88(7):969-999. doi: 10.1130/0016-7606(1977)88<969:EOTNS>2.0.CO;2

     

    Torsvik T H, Mosar J, Eide E A. 2001. Cretaceous-Tertiary geodynamics:a North Atlantic exercise. Geophysical Journal International, 146(3):850-866. doi: 10.1046/j.0956-540x.2001.01511.x

     

    Tucholke B E, Behn M D, Buck W R, et al. 2008. Role of melt supply in oceanic detachment faulting and formation of megamullions. Geology, 36(6):455-458. doi: 10.1130/G24639A.1

     

    Tucholke B E, Lin J. 1994. A geological model for the structure of ridge segments in slow spreading ocean crust. Journal of Geophysical Research, 99(B6):11937-11958. doi: 10.1029/94JB00338

     

    Vogt P R, Kovacs L C, Bernero C, et al. 1982. Asymmetric geophysical signatures in the Greenland-Norwegian and Southern Labrador Seas and the Eurasia Basin. Tectonophysics, 89(1-3):95-160. doi: 10.1016/0040-1951(82)90036-1

     

    Wang T T, Tucholke B E, Lin J. 2015. Spatial and temporal variations in crustal production at the Mid-Atlantic Ridge, 25°N-27°30'N and 0-27 Ma. Journal of Geophysical Research, 120(4):2119-2142. http://onlinelibrary.wiley.com/doi/10.1002/2014JB011501/abstract

     

    Watts A B. 2001. Isostasy and Flexure of the Lithosphere. Cambridge:Cambridge University Press.

     

    Zhang T, Gao J Y, Chen M, et al. 2015. Mantle melting factors and amagmatic crustal accretion of the Gakkel ridge, Arctic Ocean. Acta Oceanol. Sin., 34(6):42-48. doi: 10.1007/s13131-015-0686-8

  • 加载中

(9)

计量
  • 文章访问数:  2009
  • PDF下载数:  344
  • 施引文献:  0
出版历程
收稿日期:  2017-09-06
修回日期:  2018-05-22
上线日期:  2018-08-05

目录