基于远震接收函数的南极大陆冰盖厚度研究

晏鹏, 李志伟, 李斐, 杨元德, 郝卫峰, 周磊. 2017. 基于远震接收函数的南极大陆冰盖厚度研究. 地球物理学报, 60(10): 3780-3792, doi: 10.6038/cjg20171008
引用本文: 晏鹏, 李志伟, 李斐, 杨元德, 郝卫峰, 周磊. 2017. 基于远震接收函数的南极大陆冰盖厚度研究. 地球物理学报, 60(10): 3780-3792, doi: 10.6038/cjg20171008
YAN Peng, LI Zhi-Wei, LI Fei, YANG Yuan-De, HAO Wei-Feng, ZHOU Lei. 2017. Antarctic ice sheet thickness derived from teleseismic receiver functions. Chinese Journal of Geophysics (in Chinese), 60(10): 3780-3792, doi: 10.6038/cjg20171008
Citation: YAN Peng, LI Zhi-Wei, LI Fei, YANG Yuan-De, HAO Wei-Feng, ZHOU Lei. 2017. Antarctic ice sheet thickness derived from teleseismic receiver functions. Chinese Journal of Geophysics (in Chinese), 60(10): 3780-3792, doi: 10.6038/cjg20171008

基于远震接收函数的南极大陆冰盖厚度研究

  • 基金项目:

    国家自然科学基金(41531069,41574004),南北极环境综合考察与评估专项(CHINARE2016-04-02,CHINARE2017-02-03,CHINARE2016-01-03),高校基本科研业务费专项资金(2014620020201,2015644020201)联合资助

详细信息
    作者简介:

    晏鹏, 男, 1988年生, 博士研究生, 主要从事地球内部结构方面的研究.E-mail:pyan@whu.edu.cn

    通讯作者: 李斐, 男, 1960年生, 教授, 博导, 主要从事行星内部构造、重力场、GPS/重力边值、极地大地测量学等方面的教学与研究.E-mail:fli@whu.edu.cn
  • 中图分类号: P315

Antarctic ice sheet thickness derived from teleseismic receiver functions

More Information
  • 冰盖厚度是研究南极冰盖质量、建立冰盖动力学模型的基本参数,对于冰川均衡调整、冰盖物质平衡及全球气候变化研究具有重要意义.基于地震学的远震接收函数和H-Kappa格网搜索方法可以用于地震台站下方冰盖厚度的可靠探测,不仅能与冰雷达获得的冰盖厚度进行独立对比,还可以与冰雷达方法相互补充,进一步填补南极大陆冰盖厚度探测空白区.本文利用布设于南极大陆冰盖上方的流动地震台阵记录到的远震波形数据,基于接收函数方法对台阵下方的冰盖厚度进行了研究.结果显示:基于远震接收函数方法的冰盖厚度与Bedmap2冰厚格网模型相比,二者差别大多在200 m以内;少数台站差值达到600 m左右,这一差别可能与Bedmap2测线分布空区、冰雷达测深不确定性以及冰盖内部复杂波速结构等因素有关.本文研究结果表明:利用南极大陆冰盖上方的流动地震台阵,基于远震接收函数方法可以获得比较可靠的南极冰盖厚度,为独立验证冰雷达的探测结果并弥补冰雷达探测空白区提供了有效方法.同时,部分台站接收函数波形的复杂性可能暗示了南极大陆数千米厚的冰盖内部结构不是均一的,仍然存在比较复杂的内部结构变化.因此,有必要进一步利用包括接收函数波形拟合、地震面波反演等方法对南极大陆冰盖厚度及其内部精细结构进行更为深入的研究.

  • 加载中
  • 图 1 

    南极Bedmap2冰厚及本文使用冰上台站位置

    Figure 1. 

    Antarctic ice thickness from Bedmap2 database and the location of seismic stations used in this study

    图 2 

    内陆中山站-Dome A断面冰雷达测量反射空白区(崔祥斌等,2009)

    Figure 2. 

    Echo free zone of radio echo sounding along Zhongshan station-Dome A transect (after Cui et al., 2009)

    图 3 

    远震事件的震中分布

    Figure 3. 

    Epicenter distribution of teleseismic events used in this study

    图 4 

    理论模型合成接收函数波形对比(高斯因子4.5)

    Figure 4. 

    Comparison of synthetic P-wave receiver functions (PRFs) for theoretical model

    图 5 

    GM01、ST01、N076台接收函数随反方位角(a)、射线参数(b)分布.可以看出来自冰岩界面的Ps转换波和多次波比较清晰

    Figure 5. 

    Receiver function waveforms arranged by (a) back-azimuth and (b) ray parameter for station GM01, ST01 and N076. The converted and mutiple phases from the ice-rock interface can be indentified clearly

    图 6 

    沿测线接收函数波形与下方冰盖厚度

    Figure 6. 

    Profiles showing PRFs and the ice sheet thickness beneath the stations

    图 7 

    示例台站H-Kappa叠加扫描结果

    Figure 7. 

    H-Kappa stacking results for station GM01, N076, ST01 and E018

    图 9 

    本文接收函数与Bedmap2冰厚结果差值

    Figure 9. 

    Differences of ice thickness between Bedmap2 and PRFs obtained in this study

    图 8 

    7组冰厚模型合成接收函数H-Kappa搜索结果

    Figure 8. 

    H-Kappa stacking results for synthetic PRFs of the seven ice sheet models

    图 10 

    直接计算法(PpPs)、H-Kappa(本文)、Bedmap2冰厚格网冰厚结果比较

    Figure 10. 

    Comparison of ice thickness obtained from direct method (PpPs arrival time), H-Kappa (this study) and Bedmap2

    图 11 

    沉积层对冰岩界面震相的干扰

    Figure 11. 

    Effect of the sediment on converted phases of interest at the ice-bedrock interface

    表 1 

    接收函数正演理论模型参数

    Table 1. 

    Parameters of forward modeling models for P-wave receiver functions

    介质层 深度
    (km)
    密度
    (g·cm-3)
    VS
    (km·s-1)
    VP/VS
    冰层 3.15 0.92 1.94 1.96
    地壳 33 2.77 3.64 1.74
    半无限空间 - 3.77 4.55 1.80
    下载: 导出CSV

    表 2 

    55个台站H-Kappa结果

    Table 2. 

    H-Kappa results of 55 stations

    台站名 经度(°) 纬度(°) 冰厚(km) VP/VS PRFs个数 冰厚(km)Hansen
    E018 157.22 -76.82 1.70±0.21 2.27±0.09 46 -
    E020 156.55 -76.73 1.98±0.31 2.58±0.06 21 -
    E030 153.38 -76.25 2.02±0.25 2.38±0.05 36 -
    N028 153.65 -78.03 1.95±0.21 2.43±0.05 31 -
    N036 151.28 -78.55 2.54±0.23 2.32±0.07 61 -
    N044 148.62 -79.07 2.84±0.32 2.29±0.03 25 -
    N060 142.6 -80 3.14±0.36 2.29±0.06 22 -
    N068 138.92 -80.39 2.92±0.23 2.15±0.03 25 -
    N076 135.43 -80.81 2.45±0.18 2.05±0.06 58 -
    N084 131.47 -81.16 2.38±0.19 2.08±0.06 28 -
    N092 126.98 -81.46 2.51±0.22 2.11±0.07 19 -
    N100 122.59 -81.65 2.49±0.21 2.06±0.08 337 -
    N108 117.61 -81.88 2.46±0.17 2.12±0.07 47 -
    N116 112.57 -82.01 1.98±0.17 2.12±0.06 20 -
    TIMW 135.27 -80.39 2.54±0.28 2.04±0.09 67 -
    GM01 104.73 -83.99 2.95±0.21 2.12±0.05 203 3.05
    GM02 97.58 -79.43 2.90±0.24 2.06±0.08 206 2.90
    GM03 85.94 -80.22 3.08±0.27 2.02±0.05 120 3.10
    GM04 61.11 -83 2.96±0.29 2.18±0.07 142 2.95
    GM05 51.16 -81.18 2.57±0.19 2.23±0.08 253 2.80
    GM06 44.31 -79.33 2.88±0.30 2.21±0.10 25 3.15
    GM07 39.61 -77.31 3.08±0.31 2.03±0.05 36 3.00
    N124 107.64 -82.07 2.16±0.15 2.34±0.08 202 2.50
    N132 101.95 -82.07 3.09±0.19 2.21±0.06 135 3.35
    N140 96.77 -82.01 2.17±0.24 2.14±0.08 504 2.40
    N148 91.51 -81.86 3.00±0.27 2.14±0.04 71 3.20
    N156 86.5 -81.67 2.28±0.26 2.15±0.10 137 2.35
    N165 81.76 -81.41 2.52±0.31 2.11±0.06 75 2.80
    N173 77.47 -81.11 2.55±0.28 2.04±0.10 103 2.45
    N182 73.19 -80.74 2.52±0.21 2.12±0.06 42 2.60
    N190 69.43 -80.33 3.14±0.34 2.12±0.03 84 3.25
    N198 65.96 -79.86 2.67±0.26 2.07±0.06 145 2.85
    N206 62.86 -79.39 2.25±0.23 2.07±0.08 66 2.40
    N215 59.99 -78.9 2.79±0.17 2.11±0.10 221 2.75
    P061 77.22 -84.5 2.92±0.21 2.03±0.07 165 2.90
    P071 77.33 -83.65 2.14±0.28 2.0±0.09 53 2.10
    P080 77.36 -82.81 2.36±0.22 2.17±0.07 138 2.35
    P116 77.05 -79.57 1.78±0.19 2.16±0.05 47 2.00
    P124 77.66 -78.87 1.53±0.21 2.07±0.04 16 1.30
    SWEI 129.36 -86.99 3.54±0.24 2.50±0.04 73 -
    BENN -117.39 -84.57 1.30±0.18 2.50±0.09 88 -
    BYRD -119.47 -80.02 2.05±0.19 2.23±0.05 103 -
    ST01 -98.74 -83.23 2.75±0.20. 2.14±0.06 49 -
    ST02 -109.12 -82.07 2.18±0.22 2.37±0.05 46 -
    ST03 -113.15 -81.41 1.82±0.21 2.13±0.08 53 -
    ST04 -116.58 -80.72 3.58±0.31 2.42±0.03 45 -
    ST06 -121.82 -79.33 3.04±0.26 2.41±0.05 78 -
    ST07 -123.8 -78.64 2.52±0.26 2.53±0.08 82 -
    ST08 -125.53 -77.95 2.26±0.22 2.53±0.07 55 -
    ST09 -128.47 -76.53 2.91±0.37 2.46±0.07 61 -
    ST10 -129.75 -75.81 1.81±0.17 2.03±0.08 22 -
    ST13 -130.51 -77.56 2.15±0.21 2.25±0, 07 69 -
    ST14 -134.08 -77.84 1.28±0.16 2.25±0.07 76 -
    UPTW -109.04 -77.58 3.21±0.27 2.22±0.04 95 -
    WAIS -111.78 -79.42 3.05±0.26 2.17±0.06 180 -
    下载: 导出CSV

    表 3 

    7个接收函数正演冰层模型

    Table 3. 

    Seven ice sheet models for synthetic receiver functions

    模型 模型1 模型2 模型3 模型4 模型5 模型6 模型7
    理论厚度(km) 2.80 2.90 3.00 3.01 3.02 3.05 3.10
    搜索厚度(km) 2.79±0.15 2.90±0.15 3.00±0.15 3.01±0.15 3.02±0.15 3.10±0.15 3.10±0.15
    下载: 导出CSV
  •  

    Ai Y S, Zheng T Y, Xu W W, et al. 2003. A complex 660 km discontinuity beneath northeast China. Earth and Planetary Science Letters, 212(1-2):63-71. doi: 10.1016/S0012-821X(03)00266-8

     

    Anandakrishnan S, Winberry J P. 2004. Antarctic subglacial sedimentary layer thickness from receiver function analysis. Global and Planetary Change, 42(1-4):167-176. doi: 10.1016/j.gloplacha.2003.10.005

     

    Andrews J, Deuss A. 2008. Detailed nature of the 660 km region of the mantle from global receiver function data. Journal of Geophysical Research:Solid Earth, 113(B6):B06304, doi:10.1029/2007JB005111.

     

    Bamber J L, Layberry R L, Gogineni S P. 2001. A new ice thickness and bed data set for the Greenland ice sheet:1. Measurement, data reduction, and errors. Journal of Geophysical Research:Atmospheres, 106(D24):33773-33780. doi: 10.1029/2001JD900054

     

    Bentley C R. 1971. Seismic evidence for moraine within the basal Antarctic ice sheet.//Antarctic Snow and Ice Studies Ⅱ, Antarctica Research Series, Vol.16. Crary A P ed. Washington, D.C.:AGU, 89-129.

     

    Budd W F. 1991. Antarctica and global change. Climatic Change, 18(2-3):271-299. doi: 10.1007/BF00139002

     

    Chaput J, Aster R C, Huerta A, et al. 2014. The crustal thickness of West Antarctica. Journal of Geophysical Research:Solid Earth, 119(1):378-395. doi: 10.1002/2013JB010642

     

    Cui X B, Sun B, Tian G, et al. 2009. Progress and prospect of ice radar in investigating and researching Antarctic ice sheet. Advances in Earth Science (in Chinese), 24(4):392-402. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200904004.htm

     

    Cui X B, Sun B, Su X G, et al. 2016. Distribution of ice thickness and subglacial topography of the "Chinese Wall" around Kunlun Station, East Antarctica. Applied Geophysics, 13(1):209-216. doi: 10.1007/s11770-016-0539-z

     

    Drewry D J. 1975. Comparison of electromagnetic and seismic-gravity ice thickness measurements in East Antarctica. Journal of Glaciology, 15(73):137-150. doi: 10.1017/S002214300003433X

     

    Drews R, Eisen O, Weikusat I, et al. 2009. Layer disturbances and the radio-echo free zone in ice sheets. The Cryosphere, 3(2):195-203. doi: 10.5194/tc-3-195-2009

     

    Evans S. 1966. Progress report on radio echo sounding. Polar Record, 13(85):413-420.

     

    Evans S, Robin G Q. 1966. Glacier depth-sounding from the air. Nature, 210(5039):883-885. doi: 10.1038/210883a0

     

    Fretwell P, Pritchard H D, Vaughan D G, et al. 2013. Bedmap 2:improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7(1):375-393. doi: 10.5194/tc-7-375-2013

     

    Gogineni S, Tammana D, Braaten D, et al. 2001. Coherent radar ice thickness measurements over the Greenland ice sheet. Journal of Geophysical Research, 106(D24):33761-33772. doi: 10.1029/2001JD900183

     

    Hanna E, Navarro F J, Pattyn F, et al. 2013. Ice-sheet mass balance and climate change. Nature, 498(7452):51-59. doi: 10.1038/nature12238

     

    Hansen S E, Julia J, Nyblade A A, et al. 2009. Using S wave receiver functions to estimate crustal structure beneath ice sheets:An application to the Transantarctic Mountains and East Antarctic craton. Geochemistry, Geophysics, Geosystems, 10(8):Q08014, doi:10.1029/2009GC002576.

     

    Hansen S E, Nyblade A A, Heeszel D S, et al. 2010. Crustal structure of the Gamburtsev Mountains, East Antarctica, from S-wave receiver functions and Rayleigh wave phase velocities. Earth and Planetary Science Letters, 300(3-4):395-401. doi: 10.1016/j.epsl.2010.10.022

     

    Kumar P, Talukdar K, Sen M K. 2014. Lithospheric structure below transantarctic mountain using receiver function analysis of TAMSEIS data. Journal of the Geological Society of India, 83(5):483-492. doi: 10.1007/s12594-014-0075-5

     

    Langston C A. 1979. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal of Geophysical Research:Solid Earth, 84(B9):4749-4762. doi: 10.1029/JB084iB09p04749

     

    Lawrence J F, Wiens D A, Nyblade A A, et al. 2006a. Rayleigh wave phase velocity analysis of the Ross Sea, Transantarctic Mountains, and East Antarctica from a temporary seismograph array. Journal of Geophysical Research:Solid Earth, 111(B6):B06302, doi:10.1029/2005JB003812.

     

    Lawrence J F, Wiens D A, Nyblade A A, et al. 2006b. Crust and upper mantle structure of the Transantarctic Mountains and surrounding regions from receiver functions, surface waves, and gravity:implications for uplift models. Geochemistry, Geophysics, Geosystems, 7(10):Q10011, doi:10.1029/2006GC001282.

     

    Levin V, Park J. 1997. P-SH conversions in a flat-layered medium with anisotropy of arbitrary orientation. Geophysical Journal International, 131(2):253-266. doi: 10.1111/gji.1997.131.issue-2

     

    Li F, Yuan L X, Zhang S K, et al. 2016. Mass change of the Antarctic ice sheet derived from ICESat laser altimetry. Chinese Journal of Geophysics (in Chinese), 59(1):93-100, doi:10.6038/cjg20160108.

     

    Li Z W, Hao T Y, Xu Y, et al. 2010. A global optimizing approach for waveform inversion of receiver functions. Computers & Geosciences, 36(7):871-880. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201101002054.htm

     

    Li Z W, Ni S D, Somerville P. 2014. Resolving shallow shear-wave velocity structure beneath station CBN by waveform modeling of the MW5.8 Mineral, Virginia, earthquake sequence. Bulletin of the Seismological Society of America, 104(2):944-952. doi: 10.1785/0120130190

     

    Li Z W, Ni S D, Zhang B L, et al. 2016. Shallow magma chamber under the Wudalianchi volcanic field unveiled by seismic imaging with dense array. Geophysical Research Letters, 43(10):4954-4961. doi: 10.1002/2016GL068895

     

    Luo Y, Chong J J, Ni S D, et al. 2008. Moho depth and sedimentary thickness in Capital region. Chinese Journal of Geophysics (in Chinese), 51(4):1135-1145, doi:10.3321/j.issn:0001-5733.2008.04.022.

     

    Lythe M B, Vaughan D G. 2001. BEDMAP:A new ice thickness and subglacial topographic model of Antarctica. Journal of Geophysical Research:Solid Earth, 106(B6):11335-11351. doi: 10.1029/2000JB900449

     

    Qi D H, Ren J W, Xiao C D. 1995. Progress in the research on Antarctic ice sheet in relation to global change. Acta Geographica Sinica (in Chinese), 50(2):178-184. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLXB502.008.htm

     

    Ramirez C, Nyblade A, Hansen S E, et al. 2016. Crustal and upper-mantle structure beneath ice-covered regions in Antarctica from S-wave receiver functions and implications for heat flow. Geophysical Journal International, 204(3):1636-1648. doi: 10.1093/gji/ggv542

     

    Reading A M. 2006. The seismic structure of Precambrian and early Palaeozoic terranes in the Lambert Glacier region, East Antarctica. Earth and Planetary Science Letters, 244(1-2):44-57. doi: 10.1016/j.epsl.2006.01.031

     

    Siegert M J, Carter S, Tabacco I, et al. 2005. A revised inventory of Antarctic subglacial lakes. Antarctic Science, 17(3):453-460. doi: 10.1017/S0954102005002889

     

    Sun B, Siegert M J, Mudd S M, et al. 2009. The Gamburtsev mountains and the origin and early evolution of the Antarctic ice sheet. Nature, 459(7247):690-693. doi: 10.1038/nature08024

     

    Tang X Y, Sun B, Li Y S, et al. 2009. Some recent progress of Antarctic ice sheet research. Advances in Earth Science (in Chinese), 24(11):1210-1218. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200911004.htm

     

    Wei Z G, Chen L, Li Z W, et al. 2016. Regional variation in Moho depth and Poisson's ratio beneath eastern China and its tectonic implications. Journal of Asian Earth Sciences, 115:308-320. doi: 10.1016/j.jseaes.2015.10.010

     

    Wittlinger G, Farra V. 2012. Observation of low shear wave velocity at the base of the polar ice sheets:evidence for enhanced anisotropy. Geophysical Journal International, 190(1):391-405. doi: 10.1111/gji.2012.190.issue-1

     

    Wu Q J, Zeng R S. 1998. The crustal structure of Qinghai-Xizang plateau inferred from broadband teleseismic waveform. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 41(5):669-679. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199805010.htm

     

    Xu S B, Mi N, Xu M J, et al. 2014. Crustal structures of the Weihe graben and its surroundings from receiver functions. Science China:Earth Sciences, 57(2):372-378. doi: 10.1007/s11430-013-4719-x

     

    Zheng T Y, Zhao L, Chen L. 2005. A detailed receiver function image of the sedimentary structure in the Bohai Bay Basin.Physics of the Earth and Planetary Interiors, 152(3):129-143. doi: 10.1016/j.pepi.2005.06.011

     

    Zheng T Y, Zhao L, Zhu R X. 2008. Insight into the geodynamics of cratonic reactivation from seismic analysis of the crust-mantle boundary. Geophysical Research Letters, 35(8):L08303, doi:10.1029/2008GL033439.

     

    Zhu L P, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research:Solid Earth, 105(B2):2969-2980. doi: 10.1029/1999JB900322

     

    崔祥斌, 孙波, 田钢等. 2009.冰雷达探测研究南极冰盖的进展与展望.地球科学进展, 24(4):392-402. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200904004.htm

     

    李斐, 袁乐先, 张胜凯等. 2016.利用ICESat数据解算南极冰盖冰雪质量变化.地球物理学报, 59(1):93-100, doi:10.6038/cjg20160108. http://www.geophy.cn/CN/abstract/abstract12092.shtml

     

    罗艳, 崇加军, 倪四道等. 2008.首都圈地区莫霍面起伏及沉积层厚度.地球物理学报, 51(4):1135-1145, doi:10.3321/j.issn:0001-5733.2008.04.022. http://www.geophy.cn/CN/abstract/abstract390.shtml

     

    秦大河, 任贾文, 效存德. 1995.揭示气候变化的南极冰盖研究新进展.地理学报, 50(2):178-184. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB502.008.htm

     

    唐学远, 孙波, 李院生等. 2009.南极冰盖研究最新进展.地球科学进展, 24(11):1210-1218. doi: 10.3321/j.issn:1001-8166.2009.11.005

     

    吴庆举, 曾融生. 1998.用宽频带远震接收函数研究青藏高原的地壳结构.地球物理学报, 41(5):669-679. http://www.geophy.cn/CN/abstract/abstract3915.shtml

     

    徐树斌, 米宁, 徐鸣洁等. 2013.利用接收函数研究渭河地堑及其周边地壳结构.中国科学地球科学, 43(10):1651-1658. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310009.htm

  • 加载中

(11)

(3)

计量
  • 文章访问数:  2013
  • PDF下载数:  628
  • 施引文献:  0
出版历程
收稿日期:  2016-09-20
修回日期:  2016-12-05
上线日期:  2017-10-05

目录