自适应非结构有限元MT二维起伏地形正反演研究

韩骑, 胡祥云, 程正璞, 杨炳南, 蔡建超, 韦伟. 自适应非结构有限元MT二维起伏地形正反演研究[J]. 地球物理学报, 2015, 58(12): 4675-4684, doi: 10.6038/cjg20151228
引用本文: 韩骑, 胡祥云, 程正璞, 杨炳南, 蔡建超, 韦伟. 自适应非结构有限元MT二维起伏地形正反演研究[J]. 地球物理学报, 2015, 58(12): 4675-4684, doi: 10.6038/cjg20151228
HAN Qi, HU Xiang-Yun, CHENG Zheng-Pu, YANG Bing-Nan, CAI Jian-Chao, WEI Wei. A study of two-dimensional MT inversion with steep topography using the adaptive unstructured finite element method[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(12): 4675-4684, doi: 10.6038/cjg20151228
Citation: HAN Qi, HU Xiang-Yun, CHENG Zheng-Pu, YANG Bing-Nan, CAI Jian-Chao, WEI Wei. A study of two-dimensional MT inversion with steep topography using the adaptive unstructured finite element method[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(12): 4675-4684, doi: 10.6038/cjg20151228

自适应非结构有限元MT二维起伏地形正反演研究

详细信息
    作者简介:

    韩骑,女,1990年生,硕士研究生,主要从事大地电磁二维起伏地形正反演研究.E-mail:hanqi426@gmail.com

    通讯作者: 胡祥云,男,1966年生,教授,主要从事电法勘探理论及应用研究.E-mail:xyhu@cug.edu.cn
  • 中图分类号: P631

A study of two-dimensional MT inversion with steep topography using the adaptive unstructured finite element method

More Information
  • 在山区进行MT勘探时,用规则网格有限元方法模拟起伏地形会受到限制.本文采用非结构三角网格可以有效地模拟任意二维地质结构,如起伏地形、倾斜岩层和多尺度构造等.正演引入自适应有限元方法,其在网格剖分过程中能根据单元误差自动细化网格,保证了正演结果的精度.将自适应有限元与Occam算法结合,且引用并行处理技术提高正反演计算速度.通过对比两个理论模型,讨论了地形对MT正演响应的影响;其次进行了不同地电模型带地形反演展示了本文算法的正确性和适用性;最后将该方法应用于实测MT数据处理,证明了自适应非结构有限元方法是复杂地形下处理MT数据的有力工具.
  • 加载中
  • [1]

    Chen L S. 1981. Application and improvement of finite element method in forward calculation of geo-electromagnetic field. Geophysical Prospecting for Petrole (in Chinese), (3): 84-103.

    [2]

    Coggon J H. 1971. Electromagnetic and electrical modeling by the finite element method. Geophysics, 36(1): 132-155.

    [3]

    Constable S C, Parker R L, Constable C G. 1987. Occam's inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3): 289-300.

    [4]

    Franke A, Börner R U, Spitzer K. 2007. Adaptive unstructured grid finite element simulation of two-dimensional magnetotelluric fields for arbitrary surface and seafloor topography. Geophysical Journal International, 171(1): 71-86.

    [5]

    Gao J H, Tong T G, Qiang J K, et al. 2010. A magnetotelluric study of geothermal resources in Kaifeng depression, He'nan Province. Geophysical and Geochemical Exploration (in Chinese), 34(4): 440-443.

    [6]

    Ghaedrahmati R, Moradzadeh A, Fathianpour N, et al. 2014. Investigating 2-D MT inversion codes using real field data. Arabian Journal of Geosciences, 7(6): 2315-2328.

    [7]

    He M X, Hu X Y, Ye Y X, et al. 2011. 2.5D controlled source audio-frequency magnetotellurics Occam inversion. Progress in Geophysics (in Chinese), 26(6): 2163-2170, doi: 10.3969/j.issn.1004-2903.2011.06.033.

    [8]

    Hu X Y, Peng R H, Wu G J, et al. 2013. Mineral exploration using CSAMT data: Application to Longmen region metallogenic belt, Guangdong Province, China. Geophysics, 78(3): B111-B119.

    [9]

    Key K, Weiss C. 2006. Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example. Geophysics, 71(6): G291-G299.

    [10]

    Key K, Ovall J. 2011. A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling. Geophysical Journal International, 186(1): 137-154.

    [11]

    Li R, Tang J, Dong Z Y, et al. 2014. Deep electrical conductivity structure of the southern area in Yunnan Province. Chinese Journal of Geophysics (in Chinese), 57(4): 1111-1122, doi: 10.6038/cjg20140409.

    [12]

    Li Y G, Key K. 2007. 2D marine controlled-source electromagnetic modeling: Part 1—An adaptive finite-element algorithm. Geophysics, 72(2): WA51-WA62.

    [13]

    Li Y G, Pek J. 2008. Adaptive finite element modelling of two-dimensional magnetotelluric fields in general anisotropic media. Geophysical Journal International, 175(3): 942-954.

    [14]

    Liu J X, He H, Liu H F, et al. 2009. 2D inversion of VES data under rolling topography and its application. Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 31(4): 293-296.

    [15]

    Liu X J, Wang J L, Yu P. 2007. Secondary field-based two-dimensional magnetotelluric numerical modeling by finite element method. Journal of Tongji University (Natural Science) (in Chinese), 35(8): 1113-1117.

    [16]

    Liu Y, Lü Q T, Meng G X, et al. 2012. Joint electromagnetic and seismic inversion survey: status and prospect. Progress in Geophysics (in Chinese), 27(6): 2444-2451, doi: 10.6038/j.issn.1004-2903.2012.06.019.

    [17]

    Lu G F, Wu X G. 2014. Application of comprehensive electrical prospecting method in the exploration of the concealed metallic deposit. Mineral Exploration (in Chinese), 5(4): 617-622.

    [18]

    Lü Q T, Shi D N, Tang J T, et al. 2011. Probing on deep structure of middle and lower reaches of the Yangtze metallogenic belt and typical ore concentration area: A review of annual progress of SinoProbe-03. Acta Geoscientica Sinica (in Chinese), 32(3): 257-268.

    [19]

    Ovall J S. 2006. Asymptotically exact functional error estimators based on superconvergent gradient recovery. Numerische Mathematik, 102(3): 543-558.

    [20]

    Rodi W L. 1976. A technique for improving the accuracy of finite element solutions for magnetotelluric data. Geophysical Journal International, 44(2): 483-506.

    [21]

    Shewchuk J R. 2002. Delaunay refinement algorithms for triangular mesh generation. Computational Geometry, 22(1-3): 21-74.

    [22]

    Siripunvaraporn W, Sarakorn W. 2011. An efficient data space conjugate gradient Occam's method for three-dimensional magnetotelluric inversion. Geophysical Journal International, 186(2): 567-579.

    [23]

    Sudha, Tezkan B, Siemon B. 2014. Appraisal of a new 1D weighted joint inversion of ground based and helicopter-borne electromagnetic data. Geophysical Prospecting, 62(3): 597-614.

    [24]

    Tong X Z, Liu J X, Guo R W. 2009. Solution strategies for complex 2D/3D magnetotelluric forward modeling based on the finite element method. Computerized Tomography Theory and Applications (in Chinese), 18(1): 47-54.

    [25]

    Wang X B, Li Y N, Gao Y C. 1999. Two dimensional topographic responses in magneto-telluric sounding and its correction methods. Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 21(4): 327-332.

    [26]

    Wannamaker P E, Stodt J A, Rijo L. 1987. A stable finite element solution for two-dimensional magnetotelluric modelling. Geophysical Journal International, 88(1): 277-296.

    [27]

    Wu G J, Hu X Y, Huo G P, et al. 2012. Geophysical exploration for geothermal resources: An application of MT and CSAMT in Jiangxia, Wuhan, China. Journal of Earth Science, 23(5): 757-767.

    [28]

    Xia X Y, Wang J X, Liu J C, et al. 2012. The application of magnetotelluric sounding to lithofacies division in oil and gas exploration of northern nanpangjiang area. Geophysical and Geochemical Exploration (in Chinese), 36(2): 174-179.

    [29]

    Zhan Y, Zhao G Z, Wang L F, et al. 2014. Deep electric structure beneath the intersection area of West Qinling orogenic zone with North-South Seismic tectonic zone in China. Chinese J. Geophys. (in Chinese), 57(8): 2594-2607, doi: 10.6038/cjg20140819.

    [30]

    Zhang J D, Yang X Y, Liu C Z, et al. 2012. The fine deep structure of the northern margin of the Dabie Orogenic Belt from gravity-magnetic-electrical-seismic combination survey. Chinese J. Geophys. (in Chinese), 55(7): 2292-2306.

    [31]

    Zhang K, Wei W B, Ye G F. 2008. The actualization of 2D finite-element magnetotelluric forwarding on Matlab. Seismological and Geomagnetic Observation and Research (in Chinese), 29(5): 83-88.

    [32]

    Zhang X, Hu W B, Yan L J, et al. 1999. Effects and correction of topography in magnetotelluric sounding. Journal of Jianghan Petroleum Institute (in Chinese), 21(1): 37-41.

    [33]

    Zhao G M, Li T L, Wang D Y, et al. 2008. Secondary field-based two-dimensional topographic numerical simulation in magnetotellurics by finite element method. Journal of Jilin University (Earth Science Edition) (in Chinese), 38(6): 1055-1059.

    [34]

    Zhao H, Liu Y, Li Y G. 2014. Adaptive finite element forward modeling for two-dimensional marine magnetotelluric fields. Oil Geophysical Prospecting (in Chinese), 49(3): 578-585.

    [35]

    Zyserman F I, Guarracino L, Santos J E. 1999. A hybridized mixed finite element domain decomposed method for two dimensional magnetotelluric modelling. Earth, Planets and Space, 51(4): 297-306.

    [36]

    陈乐寿. 1981. 有限元法在大地电磁场正演计算中的应用及改进. 石油物探, (3): 84-103.

    [37]

    高景宏, 佟铁钢, 强建科等. 2010. 开封凹陷区地热资源大地电磁测深研究. 物探与化探, 34(4): 440-443.

    [38]

    何梅兴, 胡祥云, 叶益信等. 2011. 2.5维可控源音频大地电磁法Occam反演理论及应用. 地球物理学进展, 26(6): 2163-2170, doi: 10.3969/j.issn.1004-2903.2011.06.033.

    [39]

    李冉, 汤吉, 董泽义等. 2014. 云南南部地区深部电性结构特征研究. 地球物理学报, 57(4): 1111-1122, doi: 10.6038/cjg20140409.

    [40]

    柳建新, 何欢, 刘海飞等. 2009. 起伏地形垂直电测深二维反演及应用. 物探化探计算技术, 31(4): 293-296.

    [41]

    刘小军, 王家林, 于鹏. 2007. 基于二次场的二维大地电磁有限元法数值模拟. 同济大学学报(自然科学版), 35(8): 1113-1117.

    [42]

    刘彦, 吕庆田, 孟贵祥等. 2012. 大地电磁与地震联合反演研究现状与展望. 地球物理学进展, 27(6): 2444-2451, doi: 10.6038/j.issn.1004-2903.2012.06.019.

    [43]

    陆桂福, 吴新刚. 2014. 综合电法勘查在隐伏金属矿勘查中的应用效果. 矿产勘查, 5(4): 617-622.

    [44]

    吕庆田, 史大年, 汤井田等. 2011. 长江中下游成矿带及典型矿集区深部结构探测——SinoProbe-03年度进展综述. 地球学报, 32(3): 257-268.

    [45]

    童孝忠, 柳建新, 郭荣文. 2009. 复杂二维/三维大地电磁的有限单元法正演模拟策略. CT理论与应用研究, 18(1): 47-54.

    [46]

    王绪本, 李永年, 高永才. 1999. 大地电磁测深二维地形影响及其校正方法研究. 物探化探计算技术, 21(4): 327-332.

    [47]

    夏训银, 王建新, 刘俊昌等. 2012. 大地电磁测深在南盘江北部地区油气勘探中的应用. 物探与化探, 36(2): 174-179.

    [48]

    詹艳, 赵国泽, 王立凤等. 2014. 西秦岭与南北地震构造带交汇区深部电性结构特征. 地球物理学报, 57(8): 2594-2607, doi: 10.6038/cjg20140819.

    [49]

    张交东, 杨晓勇, 刘成斋等. 2012. 大别山北缘深部结构的高精度重磁电震解析. 地球物理学报, 55(7): 2292-2306.

    [50]

    张昆, 魏文博, 叶高峰. 2008. 二维有限元大地电磁正演模拟在Matlab上的实现. 地震地磁观测与研究, 29(5): 83-88.

    [51]

    张翔, 胡文宝, 严良俊等. 1999. 大地电磁测深中的地形影响与校正. 江汉石油学院学报, 21(1): 37-41.

    [52]

    赵广茂, 李桐林, 王大勇等. 2008. 基于二次场二维起伏地形MT有限元数值模拟. 吉林大学学报(地球科学版), 38(6): 1055-1059.

    [53]

    赵慧, 刘颖, 李予国. 2014. 自适应有限元海洋大地电磁场二维正演模拟. 石油地球物理勘探, 49(3): 578-585.

  • 加载中
计量
  • 文章访问数:  1899
  • PDF下载数:  3298
  • 施引文献:  0
出版历程
收稿日期:  2015-05-28
修回日期:  2015-11-12
上线日期:  2015-12-20

目录