2010年春季南极固定冰反照率变化特征及其影响因子

杨清华, 刘骥平, 孙启振, 雷瑞波, 张林, 孟上. 2010年春季南极固定冰反照率变化特征及其影响因子[J]. 地球物理学报, 2013, 56(7): 2177-2184, doi: 10.6038/cjg20130705
引用本文: 杨清华, 刘骥平, 孙启振, 雷瑞波, 张林, 孟上. 2010年春季南极固定冰反照率变化特征及其影响因子[J]. 地球物理学报, 2013, 56(7): 2177-2184, doi: 10.6038/cjg20130705
YANG Qing-Hua, LIU Ji-Ping, SUN Qi-Zhen, LEI Rui-Bo, ZHANG Lin, MENG Shang. Surface albedo variation and its influencing factors over costal fast ice around Zhongshan station, Antarctica in austral spring of 2010[J]. Chinese Journal of Geophysics (in Chinese), 2013, 56(7): 2177-2184, doi: 10.6038/cjg20130705
Citation: YANG Qing-Hua, LIU Ji-Ping, SUN Qi-Zhen, LEI Rui-Bo, ZHANG Lin, MENG Shang. Surface albedo variation and its influencing factors over costal fast ice around Zhongshan station, Antarctica in austral spring of 2010[J]. Chinese Journal of Geophysics (in Chinese), 2013, 56(7): 2177-2184, doi: 10.6038/cjg20130705

2010年春季南极固定冰反照率变化特征及其影响因子

详细信息
    作者简介:

    杨清华,男,1983年生,副研究员,主要从事极地海冰和大气研究.E-mail:yqh@nmefc.gov.cn

  • 中图分类号: P733

Surface albedo variation and its influencing factors over costal fast ice around Zhongshan station, Antarctica in austral spring of 2010

  • 2010年春季至夏季在中山站附近的固定冰面开展了固定冰反照率观测.在春夏过渡期,观测期间的表面反照率呈下降趋势,平均反照率从9月的0.80下降到12月的0.62,整个观测期间的平均值为0.70.雪厚是影响反照率变化的重要因子,融化前期的反照率受表面温度影响较大,干雪期反照率对表面温度并不敏感.降雪可通过增加表面雪厚和减小表面积雪粒径显著增加反照率,云层则可通过吸收入射太阳光中的近红外波段增加反照率,降雪和阴天反照率可比晴天观测平均增加0.18和0.06;吹雪则可通过改变积雪光学厚度导致反照率发生显著变化.受太阳天顶角变化和积雪变性的共同影响,晴天或少云时的反照率在上午随太阳天顶角呈准线性递减,下午则几乎不发生变化;最高值、最低值分别出现在凌晨和下午.本文提出了一组分别表述厚干雪、薄干雪和湿雪反照率日变化的参数化方案,通过太阳天顶角的线性函数隐式考虑进了积雪变性的影响.相比常数反照率方案,该参数化方案能有效提高对反照率日变化的估算能力.
  • 加载中
  • [1]

    Kwok R, Rothrock D A. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958—2008. Geophys. Res. Lett., 2009, 36: L15501, doi: 10.1029/2009GL039035.

    [2]

    Cavalieri D J, Parkinson C L. Arctic sea ice variability and trends, 1979—2010. The Cryosphere, 2012, 6(4): 881-889, doi: 10. 5194/tc-6-881-2012.

    [3]

    Parkinson C L, Cavalieri D J. Antarctic sea ice variability and trends, 1979—2010. The Cryosphere, 2012, 6(4): 871-880, doi: 10. 5194/tc-6-871-2012.

    [4]

    Bracegirdle T J, Connolley W M, Turner J. Antarctic climate change over the twenty first century. J. Geophys. Res., 2008, 113: D03103, doi: 10.1029/2007JD008933.

    [5]

    Vihma T, Johansson M M, Launiainen J. Radiative and turbulent surface heat fluxes over sea ice in the Western Weddell Sea in early summer. J. Geophys. Res., 2009, 114: C04019, doi: 10.1029/2008JC004995.

    [6]

    Weiss A I, King J C, Lachlan-Cope T A, et al. Albedo of the ice-covered Weddell and Bellingshausen Sea. The Cryosphere Discuss., 2011, 5(6): 3259-3289.

    [7]

    Wendler G, Moore B, Dissing D, et al. On the radiation characteristics of Antarctic Sea Ice. Atmos.-Ocean, 2000, 38(2): 349-366.

    [8]

    Massom R A, Hill K L, Lytle V I, et al. Effects of regional fast-ice and iceberg distributions on the behaviour of the Mertz Glacier polynya, East Antarctica. Ann. Glaciol., 2001, 33(1): 391-398.

    [9]

    World Meteorological Organization. WMO sea-ice nomenclature. Terminology, codes and illustrated glossary, Geneva Secretariat of the World. Meteorological Organization, Technical Report, 1970, 259, 147 pp.

    [10]

    Fedotov V I, Cherepanov N V, Tyshko K P. Some feature of the growth, structure and metamorphism of East Antarctic landfast sea ice. Antarctic sea ice physical processes, interactions and variability, Antarct. Res. Ser., AGU, 1998: 141-160. doi: 10.5194/tcd-5-2437-2011.

    [11]

    Heil P, Gerland S, Granskog M A. An Antarctic monitoring initiative for fast ice and comparison with the Arctic. The Cryosphere Discuss., 2011, 5(5): 2437-2463.

    [12]

    Lei R B, Li Z J, Cheng B, et al. Annual cycle of landfast sea ice in Prydz Bay, East Antarctica. J. Geophys. Res., 2010, 115: C002006, doi: 10.1029/2008JC005223.

    [13]

    Grenfell T C, Perovich D K. Spectral albedos of sea ice and incident solar irradiance in the Southern Beaufort Sea. J. Geophys. Res., 1984, 89(C3): 3573-3580.

    [14]

    Pirazzini R. Surface albedo measurements over Antarctic sites in summer. J. Geophys. Res., 2004, 109: D20118.

    [15]

    Grenfell T C, Warren S, Mullen P C. Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. J. Geophys. Res., 1994, 99(D9): 18669-18684.

    [16]

    Curry J A, Schramm J L, Perovich D K, et al. Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations. J. Geophys. Res., 2001, 106(D14): 15345-15355.

    [17]

    Perovich D K, Grenfell T C, Light B, et al. Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res., 2002, 107(C10): 8044, doi: 10.1029/2000JC000438.

    [18]

    Pirazzini R, Vihma T, Granskog M A, et al. Surface albedo measurements over sea ice in the Baltic Sea during the spring snowmelt period. Ann. Glaciol., 2006, 44(1): 7-14.

    [19]

    Barry R G. The parameterization of surface albedo for sea ice and its snow cover. Prog. Phys. Geogr., 1996, 20(1): 63-79.

    [20]

    Liu J P, Zhang Z H, Inoued J, et al. Evaluation of snow/ice albedo parameterizations and their impacts on sea ice simulations. Int. J. Climatol., 2007, 27(1): 81-91.

    [21]

    Warren S G. Optical properties of snow. Rev. Geophys., 1982, 20(1): 67-89.

    [22]

    Bradt R E, Warren S G, Worby A P, et al. Surface Albedo of the Antarctic Sea Ice Zone. J. Climate, 2005, 18(17): 3606-3621.

  • 加载中
计量
  • 文章访问数:  1804
  • PDF下载数:  2195
  • 施引文献:  0
出版历程
收稿日期:  2012-12-07
修回日期:  2013-06-20
上线日期:  2013-07-20

目录