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Documentation and Assessment of the Transport Property Model for Mixtures
Implemented in NIST REFPROP (Version 8.0)

Justin Chichester and Marcia L. Huber

National Institute of Standards and Technology*
Boulder CO USA 80305-3328

In this report, we describe an extended corresponding states model for
viscosity and thermal conductivity of mixtures implemented in Version 8 of the
NIST computer program REFPROP. The model is a modification of a one-fluid,
extended corresponding states (ECS) model for thermal conductivity and viscosity
originally developed by Ely and Hanley (Ind. Eng. Chem. Fundam., 1981, 20:323-
332). We apply the model to selected mixtures representative of the fluids available
in the NIST 23 database REFPROP (v8), such as refrigerants and natural gas
constituent fluids, and present comparisons with experimental data. Comparisons are

given for gas, liquid, and supercritical conditions.

Keywords: extended corresponding states; natural gas; refrigerants; thermal conductivity;

viscosity.

* Physical and Chemical Properties Division, Chemical Science and Technology Laboratory.
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1. Introduction

The NIST Reference Fluid Thermodynamic and Transport Properties Database,
NIST23 (REFPROP) [1], provides thermophysical properties for 84 pure fluids and for
mixtures of up to 20 components. For pure fluids, it contains equation of state formulations
for the thermodynamic properties, and models or correlations for the viscosity and thermal
conductivity. The references for the individual pure fluid formulations are provided in the
program itself through the “fluid information” screen. For mixtures, there is presently only
one model available for the thermal conductivity and viscosity. It is based upon the extended
corresponding states concept. In 1981, Ely and Hanley published a one-fluid, extended
corresponding states model for viscosity [2], and in 1983 applied the model to thermal
conductivity [3]. Since that time, there have been several modifications to the Ely-Hanley
method, each improving upon the original model [4-10]. Variations of this model have been
successfully implemented in two older NIST databases, NIST4 (Supertrapp) [11] and
NIST14 (DDMIX) [12], and most recently in NIST23 (REFPROP) [13]. In this report we
will describe the formulation used in the most recent version of the REFPROP computer
program [1] and give comparisons with experimental data for the viscosity and thermal
conductivity of selected mixtures of interest, including refrigerant mixtures and natural gas

mixtures.



2. Viscosity Model
2.1 Pure Fluids

In the extended corresponding states model used here, we represent the viscosity of a
pure fluid as a sum of a dilute gas and a residual contribution, and apply a corresponding

states principle to the residual contribution only [2],

(T, p) =1 (D) +An(T, p) =1 (T)+Any(Ty, p)F, (T, p), )

where the superscript * denotes a dilute gas value, and the subscript 0 denotes a reference
fluid value. The viscosity of the reference fluid is evaluated at a conformal temperature and

density 7y and py given by

T,=T/f )

and
Py = ph. (3)

The quantities f'and /4 are called equivalent substance reducing ratios, and relate the
reference fluid to the fluid of interest using a ratio of critical parameters (denoted by the

subscript ¢) and functions of temperature and density known as shape functions 6 and @,

TC
/= T, 0 4)
and
h=Peoy. 5)
P



The shape factors can be considered functions of both temperature and density. For
small, nonpolar, almost-spherical molecules they are nearly unity and can be thought of as
functions to compensate for deviations from a spherical shape. Different approaches have
been taken to determine shape factors [4, 5, 8] usually depending on the amount and quality
of p,V,T information available for the fluid; in this work, we generally have available
accurate formulations for the thermodynamic properties of the pure fluids, either in terms of
a Helmholtz free energy equation or a p¥'T equation of state (EOS), and we use a form of the
“exact” shape factor method [4]. It is a requirement in this method to first determine the

thermodynamic shape factors.

The dilute-gas viscosity in Eq. (1) is given by the Chapman-Enskog theory [14]

S\mk,T ©)

()= 16762Q%°

where the dilute-gas viscosity is #*, m is the molecular mass, k3 is the Boltzmann constant,
and T is the absolute temperature. We will further assume that a Lennard-Jones 12-6
potential applies, and use the Lennard-Jones collision diameter for o. Neufeld et al. [15]

gave the following empirical correlation for the calculation of the collision integral a*?

QB = 1.16145(T%) ™ 1.0.52487¢ 7" 42.16178e 247" 7

2

with the dimensionless temperature 7* = kg7/¢&, and ¢ the minimum of the Lennard-Jones

pair-potential energy. The range of validity of this empirical correlation is 0.3 < 7* < 100.

The factor F;, in Eq. (1) is found by using the expression



1/2
M
F = 1/2h—2/3 el
n f ]\40

; (8)

where M is the molar mass of the fluid and M, is the molar mass of the reference fluid. The
model as developed to this point is predictive, and does not use any information on the
viscosity of the fluid (except for the dilute-gas piece that requires Lennard-Jones ¢ and o).
The functions f'and /4 are found from thermodynamic data and are described in Klein et al.
[9]. In order to improve the representation of the viscosity, an empirical correction factor
may be used if there are experimental viscosity data available. We then evaluate Eq. (1) at

o, instead of py, where [9]

Lo, (T,p)=po (T, Py (p,), )

and yis a polynomial in reduced density o, = p/p. of the form

w(p) =Y cpl
k=0

(10)

where the coefficients ¢, are constants found from fitting the experimental viscosity data. As
indicated in Eq. (1), in order to evaluate the viscosity of a particular fluid, the value of the
residual viscosity of a reference fluid is required. It is not necessary to use the same
reference fluid for all fluids. However, when the model is used in a predictive mode, it is
best to select the reference fluid that is most similar in chemical nature to the fluid of
interest. The reference fluid should also have a very accurate equation of state and viscosity

surface. When using pure fluid experimental viscosity to essentially “correct” the viscosity,



the choice of reference fluid is not as important, since an empirical correction factor

determined from data is applied, as in Egs. (9) through (10).
2.2 Mixtures

The extension of the model to mixtures is similar to that presented for pure fluids, but
involves an extra step. First, one represents the properties of the mixture in terms of a
hypothetical pure fluid (denoted here by the subscript x) that is obtained through the use of

mixing rules,

S (11)
h, = XX by (12)
j=1 =l
and combining rules,
fij =\]fifj (l_ki/',fn) (13)
(h Vs g 1/3)3
h, = IT’(I—&,-,M), (14)

where we introduce binary interaction parameters k;;, 5, and k;; 5, that can be determined by

fitting mixture experimental data when available. Otherwise, they are set to zero.



The iterative method used to determine f; and 4; by use of equations of state is
described in detail in the manuscript of Klein et al. [9]. In that work, the authors note that
although the procedure for finding the shape factors is straightforward, it is complicated in
practice and the iterative procedure can fail at both high densities and very low densities. In
addition, we noted some failures with fuel mixtures in the supercritical region that occurred
with the use of the Helmholtz equations of state, but did not occur with a much simpler
equation of state such as the Peng-Robinson. We suspect that this might be due to in part to
the iterations entering the two-phase region where the Helmholtz equations can have very
complicated behavior. To partially alleviate this problem, we assume that at some high
temperature, here selected as 1000 K, the individual pure-fluid shape factors will have a

limiting value of

fi=1= (15)
= (16)
¢.J

where the subscript x denotes the mixture and j denotes the pure fluid. In the fluid region
where the compressibility factor (z=p/pRT) of the fluid mixture is above 0.3, and the
temperature is above the critical temperature of the mixture, we linearly interpolate the
value of the f; and 4; between its limiting value in Egs. (15) through (16) and the value at the

critical temperature.

We assume that the viscosity of the mixture obeys a corresponding states principle,

(T, p,x) =0 (T,.x)+ An(T, p,x) = 17" (T.x) + A (T, p,) F, (T, p), (17)



where the factor F, for mixtures is found with

_ opl/29-2/3 1/2
Fn_fx hx gx

) (18)
Z inxjﬂ;/zh;BM;u
1/2 i=l =l
g = 1127473
S h, (19)
2 (20)

PTUM+1M,

For the dilute gas viscosity, binary interaction parameters k;;, and k;;. may be used, where

o, =(1—ky,0)1/o;o-j 1)

gl ky =1k, )\/(%- Thg)e; Tky) - (22)
When there are sufficient dilute-gas viscosity data available, these parameters are

obtained by fitting experimental data. Otherwise, they are set to zero.

3. Thermal Conductivity Model

3.1 Pure Fluids
We start with the procedure of Ely and Hanley [3] and represent the thermal

conductivity of a fluid as the sum of translational (from collisions between molecules) and

internal (due to internal motions of the molecule) modes of energy transfer,

AT, p) = 2" (T) + A™™ (T, p). (23)



The translational contribution may be further divided into a translational dilute-gas
contribution (denoted here by a superscript *) that is a function only of temperature, a

residual contribution, and a critical enhancement,

A trans (T, p) =1 (T) + A (T, p) + A (T: p): (24)

leading to the following expression for the thermal conductivity

AT, p)=A"(T)+ A (T)+ A (T, p)+ 2™ (T, p). (25)
We use an Eucken correlation for the internal contribution

A™(T) = fTU{CP - %R} (26)

where C,* is the ideal-gas heat capacity in J/(mol-K), R is the molar gas constant [16] (8.314
472 J/(mol-K)), n* is the dilute-gas viscosity (uPa-s) as given in Eq. (6), fixt 1s set to 1.32-10°
3 and / is in W/(mrK). If sufficient dilute-gas thermal conductivity data are available, fiy is

fit to a polynomial in temperature,

fw=a,+a,T. (27)

For the dilute-gas translational contribution (in W/(m'K)) we use

15x107°Rn"

A=

; (28)

where the dilute gas viscosity #* is from Eq. (6). The residual contribution is found using

extended corresponding states:

AT, p) = 20(Ty: po)E 5 (29)

with



1/2
M
Fﬂ :f1/2h—2/3|:V0:| ) (30)

In order to improve the representation of the thermal conductivity, an empirical
correction factor may be used if there are experimental thermal conductivity data available.

We then evaluate Eq. (29) at py instead of py, where [8]

Poi (T, p) = po(T, p) x(p,)s (31)

and y is a polynomial in reduced density p. = o/p. of the form
x(p) =2 by, (32)
k=0

where the coefficients b, are found from fitting the experimental thermal conductivity data.

The critical contribution is computed using a simplified crossover model developed

by Olchowy and Sengers [17],

pC, Rk, T (

//Lcrit T, —
(T, p) 6nE

Q-9Q,), (33)

where the heat capacity at constant pressure, C, (T,p), is obtained from the equation of state,
Ro=1.03 is a universal constant [18], and the viscosity, #(7,p), is obtained from the method

described earlier. The crossover functions 2 and £ are determined by

O~ 2 Cp —CV ¢ CV 34
== c arc an(qd§)+c—(qd§) , (34)

T P P

10



2 -1

Q,=—|1-exp >
T
(ng)—l +1((qd§)pc]
3 Yo, |

(35)

The heat capacity at constant volume, C\(7,p), is obtained from the equation of state, and the

correlation length ¢ is given by

v/
fog| PP Nop(T,p)| Ty 0p(Ty.p)
0 p’ op |T T op

C

} . (36)

The partial derivative of density with respect to pressure Op/dp|r, is evaluated with the
equation of state at the system temperature 7" and a reference temperature, 7r. The reference
temperature is a value where the critical enhancement is assumed to be negligible: Tr =
1.57,. The exponents y = 1.239 and v = 0.63 are universal constants [18]. The critical
amplitudes /"and &, are system-dependent and can be determined by the asymptotic behavior
of the equation of state in the critical region. For most fluids, we set these to the fixed values
I'=0.0496 and & = 1.94 x 10" m. The thermal conductivity at the critical point itself is
infinite. The cutoff wavenumber ¢q (or alternatively, its inverse gq) is system-dependent

and determined from regression of experimental data when available or estimated [19].
3.2 Mixtures

The extension of the model to mixtures is similar to that presented for viscosity,

AT, p,x) =2 (T,x)+ A" (T, x)+ AL (T, p) + A (T, p, x) (37)
and only the residual contribution is treated with corresponding states.
MT, p,x) =2 (T,x)+ A" (T, x)+ Ay (T, po )F, (T, p) + A (T, p, x). (38)
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The internal and translational dilute-gas contributions for the mixture are found with the

empirical mixing rule,

AT ) 4 T (T = 3 & ET)M" o 39)

=1
! Z xi¢ji
i=1

with

(- kM)(1+ n/n; (M, /M)
5 (B1+M, /M)

(40)

All quantities are evaluated at the mixture temperature 7, and the dilute-gas viscosity is
found with Eq. (6). The parameter £, is an empirical binary interaction parameter for the

dilute gas region determined by fitting experimental data.

The residual contribution for the mixture requires calculation of a mixture F with

1/29 -2 1/2
F f h /3 /

g, (41)
172
gm:M_é”Z”: S () — 2| () 42)
x fxl/zh;m o i j\J i l/gi+l/g_/. ij ,
with g; found with
2
ﬂ«r T: -
8 =Mo M fjhj4/3' (43)
//Lj(Tj:pj)

Similar to the procedure for the calculation of the viscosity, we use the combining rules

12



Ji = \ Jif i L=k 1) (44)

1/3 173 P
i = U=k
8 : (45)

where we introduce binary interaction parameters k;;; and k;; », that can be determined by

fitting experimental data when available. Otherwise, they are set to zero.

As observed for pure fluids, there also is an enhancement of the thermal conductivity
observed near the critical point; however, theory for mixtures is not as well developed as for
pure fluids. In REFPROP 8 we make a simple approximation where we obtain the
parameters necessary for the simplified Olchowy-Sengers model (Egs. 33 through 36, above)

by taking a mole fraction average,

T, =15 xT, (46)
i=l1

4y =D X4, (47)
i=1

= (48)
f=Yné (49)

The other parameters y , v are universal and are unchanged from their pure-fluid values. The
thermodynamic properties are evaluated at the mixture 7'and p, not at scaled values, and the
mixture 7¢, p. and p. are used. In addition, at the critical point the thermal conductivity of a

pure fluid is infinite [20]; for a mixture, theory and experiment suggest that a finite value is

13



achieved [21]. Therefore we have imposed a somewhat arbitrary upper limit (100 % of the

background value) on the magnitude of the enhancement possible in a mixture.

4. Results

We tested the model on a limited set of mixture data containing both refrigerant
mixtures and hydrocarbon mixtures. When possible, we obtained binary interaction
parameters to improve the representation of the data. The parameters were obtained by least
squares regression of experimental data. The resulting values for the binary interaction
parameters for both the dilute and residual viscosity are given in Table 1 below. These
binary interaction parameters are contained in the file HMX.BNC that is distributed with the
REFPROP computer program.* In addition, we provide a list of the Lennard-Jones 12-6
parameters for pure fluids in REFPROPS in Table 2. References for these values are
provided, however, often it was necessary to estimate the values. The estimation methods of
Chung et al. [22] and a corresponding-states estimation method [7] were used.

Table 3 gives the deviations of the model compared with experimental data for
selected binary systems. We use the following definitions for average absolute deviation

(AAD), bias, and root-mean-square (RMS) deviation:

n cal
44p =103y (50)
noo |1, P
n cal
Bas =% (’7——1] (51)
n IS\n™

and
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n cal 2 n cal 2
RMS?> _@[Z(L_lj ]_(@Z(nt__ln ) (52)
n =\ n IZ\n"

In general, the model represents the viscosity of the mixtures to within 5 % to 10 %. One
notable exception is the data for the CO,/decane system measured by Cullick and Mathis
[23]. The model does not represent this system well even with the use of interaction
parameters. This is probably due to the large size differences between the molecules. It has
been noted previously [24] that one-fluid corresponding states types of models have
difficulties representing systems where the molecules differ greatly in size. The trend of
increasing deviations as the size difference between the molecules increases is also
demonstrated by the data of Aucejo et al. [25] in the systems of pentane with increasingly
larger alkanes, with the largest deviations observed for the pentane/dodecane system. Further
work in this area is needed.

There also are large discrepancies between the model predictions and the viscosity
data of Heide [26] for the binary mixture of R143a and R125. This system has also been
studied by Laesecke [27] and is represented well by the model, so we suspect that there may

have been an experimental problem with the Heide [26] data for this system.
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Table 1a. Values of interaction
cryogen and hydrogen mixtures.

parameters for viscosity for selected

refrigerant,

System kijo ke kizpy Kijny Source of
data
R134a/R32 0.0437 -0.4678 -0.0645 -0.0305 [28][29] [30]
R125/propane -0.21 0.3776 0.0 0.0 [30]
R22/propane -0.1284 0.3331 0.0 0.0 [31]
R115/propane -0.2744 0.414 0.0 0.0 [31]
R32/propane 0.2857 -0.4346 0.0 0.0 [28]
R12/R22 -0.0213 0.0698 0.0 0.0 [31]
R13/R22 -0.0332 0.1389 0.0 0.0 [31]
R13B1/R22 -0.2505 0.7028 0.0 0.0 [31]
R14/R22 0.0523 -0.1194 0.0 0.0 [31]
R14/CO -0.0421 -0.0638 0.0 0.0 [32]
R22/R152a -0.1382 0.4355 0.0 0.0 [31]
R32/R124 0.0 0.0 -0.0813 -0.1158 [29]
R125/R134a -0.0045 0.0038 -0.0829 -0.0106 [28][29] [33]
hydrogen/methane -0.2744 -0.1738 0.0 0.0 [22, 34]
hydrogen/nitrogen -0.6225 0.1388 0.0 0.0 [34]
hydrogen/CO2 -0.9218 0.8531 0.0 0.0 [34]
hydrogen/oxygen -0.7661 0.3683 0.0 0.0 [34]
hydrogen/CO -0.7599 0.8536 0.0 0.0 [34]
hydrogen/helium -0.0480 -1.9733 0.0 0.0 [34]
hydrogen/argon -1.0538 0.8177 0.0 0.0 [34]
hydrogen/neon -0.6105 -0.4449 0.0 0.0 [34]
hydrogen/ammonia -0.5275 0.8419 0.0 0.0 [34]
hydrogen/ethylene -0.7131 0.8778 0.0 0.0 [34]
hydrogen/propylene -0.5744 0.7662 0.0 0.0 [34]
hydrogen/cis-butene -0.7844 0.8518 0.0 0.0 [34]
helium/argon -0.187 -2 0.0 0.0 [35]
krypton/CO -0.08889 -0.05653 0.0 0.0 [32]
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Table 1b. Values of interaction parameters for viscosity for selected natural gas
component and hydrocarbon mixtures.

System kijo ki ¢ ki sy Kijny Source of
data
methane/CO -0.0165 -0.2493 0.0 0.0 [32]
methane/CO2 -0.00677 -0.3342 0.0 0.0 [36]
methane/ethane 0.0331 -0.2549 0.0 0.0 [37]
methane/propane -0.0182 -0.0263 0.0 0.0 [37]
methane/butane 0.0030 -0.1292 0.0 0.0 [36]
methane/nitrogen -0.3594 0.9076 -0.0612 0.0398 [38]
ethane/propane 0.0557 -0.2792 0.0 0.0 [37]
ethane/butane 0.0350 -0.1858 0.0 0.0 [37]
ethane/hydrogen -0.4544 0.3877 0.0 0.0 [34]
propane/butane 0.0825 -0.3471 0.0 0.0 [37]
propane/hydrogen -0.5926 0.7304 0.0 0.0 [34]
pentane/heptane 0.0 0.0 -0.0892 -0.1474 [25]
pentane/dodecane 0.0 0.0 -0.1188 -0.4911 [25]
pentane/decane 0.0 0.0 -0.0965 -0.2775 [25]
pentane/nonane 0.0 0.0 -0.1195 -0.1610 [25]
hexane/octane 0.0 0.0 -0.0519 -0.0010 [25]
hexane/dodecane 0.0 0.0 -0.0168 -0.2999 [25]
hexane/decane 0.0 0.0 -0.0550 -0.1310 [25]
hexane/nonane 0.0 0.0 -0.0263 -0.0738 [25]
hexane/cyclohexane 0.0 0.0 -0.12 0.2243 [39]
heptane/dodecane 0.0 0.0 -0.0716 -0.1600 [25]
heptane/decane 0.0 0.0 -0.0374 -0.0677 [25]
heptane/nonane 0.0 0.0 -0.0704 -0.0117 [25]
octane/dodecane 0.0 0.0 -0.0802 -0.1160 [25]
octane/decane 0.0 0.0 -0.0299 -0.0488 [25]
nonane/dodecane 0.0 0.0 -0.0634 -0.0803 [25]
nonane/decane 0.0 0.0 -0.0671 -0.0241 [25]
decane/dodecane 0.0 0.0 -0.0499 -0.0614 [25]
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Table 2. Lennard-Jones 12-6 parameters for selected pure fluids in REFPROP v8.

Fluid ekg(K) | a(nm) Ref. Fluid ekg(K) | a(nm) Ref.

R11 363.6 0.5447 Estimated ammonia 386 0.2957 [40]

R12 297.24 | 0.5186 | Estimated argon 143.2 0.335 [41]

R13 204.00 | 0.4971 [42] butane 280.51 0.573 [43]

R14 164.44 | 0.4543 [44] coO 91.7 0.369 [12]

R32 289.65 | 0.4098 | Fitto [45] CO2 251.196 | 0.3751 [46]

R115 201.90 | 0.5876 | [47] cyclohexane 297.1 0.6182 [43]

R116 226.16 | 0.5249 | Estimated H20,D20 809.1 0.2641 [43]

R124 275.80 | 0.5501 [48] decane 490.51 0.686 [49]
R125 249.00 | 0.5190 | [50] dimethyl ether 395 0.4307 [43]
R141b 370.44 | 0.5493 | Estimated ethane 245 0.4362 [51]
R142b 27820 | 0.5362 | [52] ethanol 362.6 0.453 [43]
R218 266.35 | 0.5800 | Estimated ethylene 224.7 0.4163 [43]
R227¢ca 289.34 | 0.5746 | Estimated H2S 301.1 0.36237 | [43]
R236¢ca 318.33 0.5604 | Estimated helium 10.22 0.2551 [43]
R236fa 307.24 | 0.5644 | Estimated heptane 400 0.64947 | [12]
R245ca 34544 | 0.5505 Estimated hexane 399.3 0.5949 [43]
R245fa 329.72 | 0.5529 | Estimated hydrogen 59.7 0.2827 [43]
RC318 299.76 | 0.5947 | Estimated isobutene 332 0.5026 | Estimated
R113 376.035 | 0.6019 | Estimated isohexane 395.2 0.5799 Estimated
Krypton 178.9 0.3655 [43] isopentane 341.06 0.56232 | [12]
Methane 174 0.36652 | [53] isobutane 307.55 0.46445 | [54]
Methanol 481.8 0.3626 [43] nitrogen 98.94 0.3656 [41]

N20 232.4 0.3828 [43] nonane 472.127 | 0.66383 | [49]

Neon 32.8 0.282 [43] oxygen 118.5 0.3428 [41]
neopentane | 191 0.644 [55] propane 263.88 0.49748 | [56]
Octane 452.09 | 0.63617 | [49] R23 24391 0.4278 [57]
Pentane 341.1 0.5784 | [12] R41 24488 | 0.4123 | Estimated
Propylene 298.9 0.4678 | [43] R114 323.26 | 0.5770 | Estimated
R22 284.724 | 0.4666 | fitto [58]
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We also made comparisons of the viscosity prediction of the REFPROP model for
multicomponent mixtures. Comparisons with a ternary refrigerant mixture R32/R125/R134A
measured by Laesecke et al. [28] are presented in Table 4 and Figures 1a-c. In the Figures,
the percent deviation is defined as 100*(calculated value-experimental)/experimental. Two
different compositions 0.33/0.33/0.34 and 0.3/0.1/0.6 mole fraction of R32/R125/R134a
were measured from 246 to 340 K at pressures up to 2853 kPa with average absolute
deviations of less than two percent. The estimated uncertainty of this data is given by the
author as 2.4 %. We also made comparisons with several natural gas mixtures. Figures 2a-c
show the deviations between the REFPROP model and experimental data for several
different natural gas mixtures as a function of density, pressure and temperature. Schley et
al. [65] measured two different natural gases at pressures to 20 MPa. The "L" gas is a low
calorific gas with a relatively high content (9.75 mole %) of nitrogen; the high calorific "H"
natural gas contains only 1.5 % nitrogen. Both samples are represented well by the
REFPROP model. We note that a binary interaction parameter for methane/nitrogen
viscosity was added to the REFPROP program after the initial release of Version 8 in April
2007; this parameter significantly improved the results for the high-nitrogen natural gas.
Carr [66] measured three natural gas samples. Sample 1 is a high-ethane natural gas (73.5
mole % methane, 25.7 % ethane, 0.6 % N, and 0.2 % propane), Sample 2 is a high-nitrogen
natural gas (73.1 % methane, 15.8 % N, 6.1 % ethane, 3.4% propane, 0.8 % helium, 0.6 %
n-butane and 0.2 % isobutane) obtained from a transmission line, and Sample 3 is a
simulated low-ethane natural gas (95.6 % methane, 3.6 % ethane, 0.5 % propane and 0.3 %
N3). With the exception of the Sample 1 gas at pressures above 20 MPa, the model

represents the data well. The Assael et al. [67] natural gas is a 5 component mixture of
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methane, ethane, propane, CO;, and nitrogen ( 84.8, 8.4, 0.5, 5.6, and 0.66 mol %
respectively) at pressures up to 14 MPa and is represented with an average absolute
deviation of less than two percent, but shows systematic deviations with the largest
deviations at the lowest temperatures. Systematic deviations are even more pronounced in
the data from Langelandsvik et al. [68] who measured the viscosity of natural gas samples
from three different locations in the North Sea. The primary constituents in gas 1 are:
methane 90.2 %, ethane 6.3 %, propane 0.8 % and CO, 1.8 %; in gas 2: methane 80.0 %,
ethane 9.3 %, propane, 5.0 %, CO, 2.2 %; and in gas 3: methane 92.2 %, ethane 4.4 %,
propane 0.5 %, CO, 1 %. REFPROP shows systematic negative deviations for all the
Langelandsvik et al. [68] samples with the deviations increasing as the pressure increases at
the lowest temperatures. It was noted in the Langelandsvik et al. [68] manuscript that there
are unexplained differences between the measurements of Schley et al. [65] and the work of
Langelandsvik et al. [68]. The REFPROP program is in better agreement with the

measurements of Schley et al. [65].

The thermal conductivity model was tested on a limited set of thermal conductivity
mixture data containing both refrigerant mixtures and hydrocarbon mixtures. When possible,
we obtained binary interaction parameters to improve the representation of the data. The
resulting values for the binary interaction parameters for both the dilute and residual thermal

conductivity are given in Table 5 below.
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Table 5. Values of interaction parameters for thermal conductivity for selected
systems.

System ki kiip Kijni Data source
methane/CO2 -0.15 0.0 0.0 [69][70]
methane/CO -0.07 0.0 0.0 [71]
methane/propane -0.2 0.0 0.0 [72]
methane/ethane -0.12 0.0 0.0 [73]
R22/R142b -0.76 0.0 0.0 [74]1[75]
R32/propane 0.18 -0.08 0.09 [76]
R32/R134a 0.08 -0.09 0.1 [76]
R32/R125 0.0 -0.15 0.16 [77,781[79]
R134a/propane 0.07 -0.04 0.20 [76]

Comparisons for both binary and multicomponent mixtures were made. The results
are summarized in Tables 6-8 below. Most systems that do not contain data near the critical
region have deviations of less than 5 % with the notable exception of the binary system
R32/R125 measured by Kim et al. [80], which shows deviations over 10 %. Since this same
binary system was measured by other researchers [77-79] and the model agrees well with the
experimental data, there must be an unexplained problem with the data of Kim et al. [80]
for this binary system. Perkins et al. [76] made extensive measurements on binary mixtures
containing R32, R125, R134a, and propane. The measurements covered the gas, liquid and
some near-critical points. Figures 3a-d show the deviations for Perkins et al. [76]
measurements as a function of density. The REFPROP model represents the data well except
for points where the critical enhancement is significant; in these cases the model
significantly underestimates the thermal conductivity.

Roder and Friend [73] made extensive measurements on the thermal conductivity of a

binary mixture of methane and ethane for three different concentrations (0.7, 0.5, and 0.35
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mol fraction methane) over a range of conditions that included regions where the
enhancement is significant. Sakonidou et al. [21] also measured the methane/ethane system
in the critical region. Figures 4a-d show the percent deviations of the data from the model
with and without the critical enhancement. The figure demonstrates the improvement seen
when the enhancement term is included; however, it also demonstrates that the present
model is not adequate, and further work in this area is needed.
5. Conclusions

We describe a modified corresponding states model based on an extended
corresponding states model originally developed by Ely and Hanley [2, 3] for the viscosity
and thermal conductivity of mixtures. The model has been implemented in the computer
program REFPROP [1], version 8, available from NIST. Comparisons with selected mixture
data for viscosity and thermal conductivity are presented. The model represents the viscosity
and thermal conductivity of mixtures to within 5 to 10 %, except for mixtures containing
large size differences, where the deviations are larger. A model for the thermal conductivity
of mixtures in the critical region is also implemented, and although it provides some
enhancement to the thermal conductivity, comparisons with experimental data indicate that
the model significantly underpredicts the thermal conductivity in the critical region, and

further research in this area is recommended.

We thank our NIST colleagues Dr. Richard Perkins and Dr. Daniel Friend for
their helpful comments. JC acknowledges a Professional Research Experiences Program

(PREP) undergraduate fellowship at NIST.
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+ Mix1 0.33/0.33/0.33
® Mix2 0.3/0.1/0.6

% Deviation

200 220 240 260 280 300 320 340 360
Temperature, K

Figure 1a. Percent deviation of viscosity as a function of temperature for a mixture of
refrigerants R32, R125 and R134a.
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¢ Mix1 0.33/0.33/0.33
® Mix2 0.3/0.1/0.6

% Deviations

10 11 12 13 14 15
Density, mol/L

Figure 1b. Percent deviation of viscosity as a function of density for a mixture of
refrigerants R32, R125 and R134a.
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< Mix1 0.33/0.33/0.33
® Mix2 0.3/0.1/0.6

% Deviations

10 510 1010 1510 2010 2510 3010
Pressure, kPa

Figure 1c. Percent deviation of viscosity as a function of pressure for a mixture of
refrigerants R32, R125 and R134a.
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® Assael et al. 2001

B Carr 1953 Natural Gas 1

A Carr 1953 Natural Gas 2

X Carr 1953 Natural Gas 3

X Schley et al. 2004 Natural Gas H

® Schley et al. 2004 Natural Gas L

+ Langelandsvik et al. 2007 Natural Gas 1
- Langelandsvik et al. 2007 Natural Gas 2
= Langelandsvik et al. 2007 Natural Gas 3

% Deviation

0 5 10 15 20
Density, mol/L

Figure 2a. Percent deviation of viscosity as a function of density for selected natural gas
mixtures.
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¢ Assael et al. 2001

B Carr 1953 Natural Gas 1

A Carr 1953 Natural Gas 2

X Carr 1953 Natural Gas 3

X Schley et al. 2004 Natural Gas H

® Schley et al. 2004 Natural Gas L

+ Langelandsvik et al. 2007 Natural Gas 1
- Langelandsvik et al. 2007 Natural Gas 2
= Langelandsvik et al. 2007 Natural Gas 3

% Deviation

0 10000 20000 30000 40000 50000 60000 70000 80000
Pressure, kPa

Figure 2b. Percent deviation of viscosity as a function of pressure for selected natural gas
mixtures.
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¢ Assael et al. 2001

B Carr 1953 Natural Gas 1

A Carr 1953 Natural Gas 2

X Carr 1953 Natural Gas 3

X Schley et al. 2004 Natural Gas H

® Schley et al. 2004 Natural Gas L

+ Langelandsvik et al. 2007 Natural Gas 1
- Langelandsvik et al. 2007 Natural Gas 2
= Langelandsvik et al. 2007 Natural Gas 3

% Deviation

200 250 300 350 400 450 500
Temperature, K

Figure 2c. Percent deviation of viscosity as a function of temperature for selected natural
gas mixtures.
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% Deviation

¢ propane 0.3/R32 0.7
®mpropane 0.7/R32 0.3

0 2 4 6 8 10 12 14 16
Density, mol/L

Figure 3a. Percent deviation of thermal conductivity as a function of density for binary
mixtures of propane and R32.
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% Deviation

¢ 0.3 R32/0.7 R134a
m 0.7 R43/ 0.3 R134a

0 5 10 15
Density, mol/L

Figure 3b. Percent deviation of thermal conductivity as a function of density for binary
mixtures of R134a and R32.
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% Deviation

¢ 0.3 propane/0.7 R134a
M 0.7 R134a/0.3 propane

0 2 4 6 8 10 12
Density, mol/L

Figure 3c. Percent deviation of thermal conductivity as a function of density for binary
mixtures of propane and R134a.
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% Deviation

¢ 0.3 R125/ 0.7 R134a
m 0.7 R125/ 0.3 R134a

0 2 4 6 8 10 12
Density, mol/L

Figure 3d. Percent deviation of thermal conductivity as a function of density for binary
mixtures of R125 and R134a.
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Figure 4a. Percent deviation of thermal conductivity as a function of density for binary
mixtures of methane and ethane near the critical region with a critical enhancement term
in the model.
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Figure 4b. Percent deviation of thermal conductivity as a function of density for binary
mixtures of methane and ethane near the critical region without a critical enhancement
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Figure 4c. Percent deviation of thermal conductivity as a function of temperature for
binary mixtures of methane and ethane near the critical region with a critical
enhancement term in the model.
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