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1.  Introduction 
 
      Discrete-time sampling of signals is the method used today to obtain or acquire a digitized waveform or 
replica of the signal. However, the time discretization process may introduce both amplitude and timing 
errors into the digitized replica because of the non-ideal behavior of the sampling instrument’s timebase 
electronics and/or improperly selected sampling parameters. In this paper, we will focus on the timing 
errors. These errors may be deterministic errors, which are caused by timebase gain errors and non-
equispaced sampling instants, and stochastic errors, which are caused by trigger jitter and noise on the 
trigger signal. Consequently, the effects of sampling on the discretized replica must be understood to assess 
the information quality of those data. In this paper, the effect of non-equispaced sampling instants and 
timebase gain (expansion or contraction) on the accuracy of the temporal and spectral information 
contained in the digitized replica of a repetitive signal is examined. In addition, because record epochs are 
frequently used in waveform acquisition that are not equal to the signal period, the effect of sub-period 
epochs on the information content of the digitized replica relative to that of the signal is examined. 
      The effects of timebase error in sampling have been examined in part by a variety of different 
researchers [1-11]. Crochiere and Rabiner [1] provide a review of interpolation and decimation of 
discretized replicas, which is relevant to understanding the effect of timebase gain errors on the spectrum of 
the replica. Papoulis performs a sampling error analysis that includes the effects of record truncation and 
aliasing, but not the effects of non-equispaced sampling instants [2]. A description of aliasing can also be 
found in most texts concerned with signal processing [12]. Aliasing can be avoided, in most cases, if the 
data sampling rate is fast enough to capture all level (or amplitude) transitions in the signal (see Sec. 2). In 
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some cases, however, aliasing may occur if the signal has not settled to its initial value before the 
waveform is terminated at the end of the epoch. However, under certain conditions, these abrupt waveform 
terminations may be dealt with effectively [13-16]. Jenq has written a series of papers dealing with the 
effect of non-equispaced sampling instants on the discrete spectrum of the digitized replica [3-5] where his 
focus was on the periodicity of timebase errors. The effects of jitter and trigger signal noise on the digitized 
replica will not be considered here because they may be equivalently described as a low-pass filter [17] and 
dealt with accordingly. Amplitude variations that are not caused by the timebase are also not addressed 
here. 
      The purpose of this paper is to establish a model that accurately describes the digitized replica of a 
signal that is acquired by discrete-time sampling of that signal. This model is compared to those previously 
developed and then used to demonstrate consistency among all the models discussed. We will be primarily 
concerned with periodic or repetitive signals but will point at application to waveforms of single events 
(such as those acquired with transient digitizers or oscilloscopes set to trigger on a single event). The 
discrete spectra of the time-domain waveforms will be used for the comparison of the different models 
because the spectra allow a comparison of both magnitude and phase. The time-domain replicas are not 
compared because this comparison would be limited to certain waveform parameters (such as transition 
duration, settling time, etc.) and the selection of the parameter is dependent on the type of signal being 
measured. 
      In Sec. 2, four different models are presented and compared to models previously developed by other 
researchers. The four models are of increasing complexity and represent different ways of interpreting the 
discretized replica. These different models represent not only different ways of interpreting a measurement 
process, but also different measurement processes, such as real-time and equivalent-time sampling. The 
reason for presenting the different models is to show that they all produce a consistent description of the 
measurement result. An examination of the errors caused by non-equispaced sampling instants is given in 
Sec. 3. 
      The application for which this work is pulse signal measurement and analysis, where the pulse may be 
either step-like (the replica of the windowed signal has different steady-state levels on either side of the 
level transition) or impulse-like (the replica of the signal has the same steady-state level on either side of 
the pulse). Specifically, the concern is with the information fidelity of waveforms having epochs exceeding 
10 s and that also require high sampling rates, > 109 samples/s, to capture the fast transients occurring in 
these waveforms. These waveforms often describe the output of electro-shock weapons (ESW). This 
analysis has broad applicability because step-like and impulse-like pulses not only describe ESW signals, 
they are the basis signal transmission in information, communication, and computer technologies. 
Furthermore, the spectrum of these pulses can be computed without introducing artifacts: the spectrum of 
an impulse-like waveform can be computed directly and that for a step-like waveform can be computed 
after a modification to accommodate for the record truncation discontinuity [16]. It will be assumed that the 
signal has been sampled properly so that the waveform spectrum does not exhibit aliasing effects and that 
the record truncation problem, if it exists, has been remedied. Typically the instruments that are used to 
acquire the digitized replicas exhibit timebase errors and amplitude noise. The amplitude noise of the signal 
is not considered here other than to say that signal noise will limit the amount of amplitude improvement 
that can be observed or resolved in a non-equispaced-corrected replica compared to an uncorrected replica. 
We will not address correcting a waveform for non-equispaced sampling instants because this would 
require the development of an uncertainty analysis which is beyond the scope of this paper. 
 
 
2.  Models of the Sampled Signal 
 
      The measurement of a continuous-time signal with modern equivalent-time or real-time sampling 
instrumentation yields an amplitude- and time-discretized replica of that signal. Errors in the time-
discretization process will affect the accuracy by which the discretized replica represents the input signal. 
The replica, fn, can be described by: 
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( ) ( ); 0,1,..., 1n d nf f t t n n Nδ ατ= − − ∆ = −       (1) 
 
where f(t) is the continuous-time signal, δ is the Kronecker delta function ( ( ) ( )0 1, 0 0t tδ δ= = ≠ = ), ϑd is 
the ideal equispaced interval between successive samplings, ∀  is the timebase gain coefficient (ideally α = 
1), )n are the deterministic corrections that represent the deviations of the actual time intervals from ∀ϑd, 
and N is the number of acquired data used to represent the signal. There may be N unique values of )n for 
any N-point waveform. The )n are reproducible for a given epoch and delay setting of the trigger but may be 
unique for each unique epoch or delay setting. Amplitude noise and jitter (where it will be assumed the 
jitter is random and normally distributed) will not be considered here. However, the effect of jitter from a 
finite number of averages will contribute to the uncertainty in )n and these uncertainties should be 
propagated in an error analysis of any method used to correct for timebase errors. 
      Four different models describing the digitized replicas are now presented and compared to each other 
and to other models developed previously by other researchers, which will show consistency among the 
model results. These models provide different insight into the construction of the waveform as well as its 
spectrum. The effect of an observation window (or of windowing) on the spectrum of f(t) will be 
considered in Sec. 3. 
 
2.1  Model 1 
 
      The most common model of the discrete-time sampling process is to consider the waveform as the 
summation of many (n) sequences, where each sequence has only one nonzero value [18]. In this model 
(see Fig. 1), signal discretization is accomplished through a repetitive sampling function, rd(tn), where 

 

( ) ( ),d n d
n

r t t n nδ ατ
∞

=−∞

= − + ∆∑   

 (2) 
,n dt n nατ= + ∆  

 
and ∀ϑd is the period between sampling instants. For an equivalent-time sampler, n is incremented by one 
only after each trigger event that the sampler is ready to accept. The signal is sampled at the instants given 
by rd(tn), and this sampling provides an average signal value for each sampling instant. The waveform is 
then constructed by placing these average signal values at their corresponding instants in time. 
 
 

 
 
Fig. 1. Functional diagram of Model 1. A repetitive signal, f(t), is sampled at intervals defined by rd(tn) to yield a series of 
subsequences, each with one nonzero value. These subsequences are then summed to yield the sampled waveform, fn. 
 
 
The digitized replica can be written as: 

 
( ) ( ).n d nf f t r t=       (3) 

 
The sampling occurrence function, rd(tn), behaves like a mask to allow only those time instants, the tn, at 
which f(t) will be recorded to give fn. The discrete spectrum of fn, Fk, is denoted by: 
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where fn = f(n∀ϑn+)n) and it is assumed in this model that the signal period is equal to the waveform epoch. 
The angular frequency is equal to 2π/ϑp where ϑp = N∀ϑd. The second line in (4) is a result of the integrand 
in (4) being nonzero only when t = n∀ϑn+)n. Equation (4) is identical to the results of Papoulis [18] with 
appropriate substitutions. Model 1 is very simple and, although it provides the correct solution, does not 
provide any insight into how f(t) is created, the effect of sampling on the replica, synchronization 
requirements, and how spectrum discretization comes about. However, Model 1 is commonly used to 
describe the discretized replica and, as will be shown later, is accurate except for a scale factor. 
 
2.2.  Model 2 
 
      Model 2, shown in Fig. 2, which is similar to [1] but more complete than (4) is to explicitly show how 
f(t) is generated. 

 
Fig. 2. Functional diagram of Model 2. The pulse output is repeated every τp intervals and then filtered by s(t), which represents the 
impulse response of the measurement instrument. This signal is then sampled as defined by rd(tn) to yield the sampled waveform fn. 
 
 
In Fig. 2, the p(t) is the input pulse, s(t) is the sampler impulse response or sampler function, and rp(t) is the 
input signal repetition function which can be written as:  
 

( ) ( ) ,p p
k

r t t kδ τ
∞

=−∞

= −∑      (5) 

 
where ϑp is the signal period. We will assume here that ϑp is constant. Examples of p(t) and s(t) are as 
follows. The input signal, p(t), can be obtained from an arbitrary pulse generator where rp(t) is the 
programmable repetition rate. The p(t) may also be a time-varying repetitive current or voltage signal that 
is the result of the interaction of a transducer with some physical event. The s(t) is the sampling aperture 
and is fixed by the sampling instrument. 
      The spectrum of the fn described by model 2 is given by: 
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Equation (6) shows explicitly how spectrum discretization arises whereas (4) did not. The first line shows 
that the replica is the result of a convolution of p(t) with rp(t) (defined by the summation over k), followed 
by a convolution with s(t), and then a multiplication by rd(tn) (defined by the summation over n). Line 2 is 
obtained from line 1 by performing the convolution of s(t) with p(t) to get f(t), this was not shown in Model 
1. Knowing how f(t) is created is also helpful in understanding its discrete spectrum. Line 3 is obtained by 
performing the Fourier transform of rp(t) and line 4 is obtained by considering only the frequencies allowed 
by rp(t), namely those frequencies for which ω = kωp = 2πk/ϑp, and by doing a change of variables (“t-T” is 
replaced by an arbitrary variable “Z” which is not shown, and then “Z” is subsequently replaced by “t”). 
Line 5 (the last line) is obtained by considering only the time instants allowed by the kronecker-delta in line 
4, that is, when t = n∀ϑd+)n, and then substituting ϑp = N∀ϑd. The constant “2π” in the numerator is 
eliminated because the fourier transform of a product of two time-domain signals is the convolution of their 
spectra divided by 2π [19]. It is assumed in (6) that )n is unbiased, that is, ∀  is chosen so that 
 

1

0
0

N

n
n

−

=

∆ =∑      (7) 

 
and |) n| < ∀ϑd for all n. 
      Model 2 is more complete than Model 1 because it shows how spectrum discretization arises and how 
the pulse and sampler interact to form the measured signal f(t). However, because the data is described to 
be contained in only one sequence, Model 2 still does not accurately represent an equivalent-time sampler. 
However, Model 2 does describe a non-averaging real-time acquisition of a repetitive signal. If rp(t) is 
removed from the model, then this would describe a single-sweep real-time acquisition of a transient (or 
single-event) signal. 
 
2.3  Model 3 
 
      Model 2 is similar to Model 1 but follows more closely to the analysis of Jenq [3]. Model 3 is more 
representative of the equivalent-time sampling process than Models 1 or 2. Model 3 assumes there are N 
subsequences each consisting of N entries and all N spectra of the N subsequences are summed. This is 
similar to Model 1 except that here all interactions leading to fn are now considered (see Fig. 3). Model 3 is 
different from Model 2 in the interpretation of the sequence fn: Model 2 describes fn as one sequence of N 
nonzero terms whereas Model 3 describes fn as N subsequences and each subsequence has only one nonzero 
term. Whereas Jenq allowed for many nonzero entries for a given subsequence, only one nonzero entry per 
subsequence is allowed here. Jenq’s allowance provides for periodicity within the subsequences that he 
used to examine the effect of the periodicity of timebase errors on the spectrum of the replica. For an 
equispaced reconstruction of a non-equispaced sampled replica, this restriction is not necessary. Each 
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Fig. 3. Functional diagram of Model 3. The pulse output is repeated every τp intervals, ideally sampled at instants given by (t-τp-tn), 
and filtered by s(t) to yield a series of subsignals each representing the p(t) at the given instant. These subsignals are subsequently 
integrated at intervals given by τd to yield a series of subsequences, each of which has only one nonzero element. The subsequences 
are then summed to yield the sample waveform, fn. The asterisk indicates a convolution process. 
 
 
subsequence in this analysis will have a unique equispaced sampling interval, ϑd,n = ∀ϑd-)n, and a unique 
location, δ(t-T-tn), where its only nonzero component can be found. For the case of one nonzero entry per 
subsequence, this model description is the same as Jenq’s [3]. 
      The discrete spectrum of the fn of Model 3 may be described by: 
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 (8) 

 
The first line shows that the replica is the result of a convolution of p(t) with s(t), followed by a convolution 
with rp(t) (defined by the summation over k), and then a multiplication by rd(tn) (defined by the summation 
over n). In line 1, the n subscript in ϑd,n implies that each subsequence may have a different nominal 
sampling interval. The second line is obtained by performing the convolution of p(t) with s(t) and the third 
line by performing the Fourier transform of rp(t); the same that was done for Model 2. In the third line, the 
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term exp(-jωkϑp) is not shown because the discretization of ω causes this term to equal one for specific 
values of k and is zero otherwise (same as was done for Model 2). In line 4, ωd,n was substituted by 2π/ϑd,n. 
The fourth line results from the fact that the Fourier transform of a product of two functions in the time-
domain is a convolution of their spectra in the frequency-domain and this correctly represents the 
equivalent-time sampling process. Elimination of the constant “2π” was done as in Model 2. Also, in the 
fourth line, only that part of the spectrum of f(t) allowed by δ(ω-kωp) is shown, that is, the spectrum is 
discretized. The fifth line is obtained because the convolution of the infinite sum with a discrete-frequency 
constant value is a multiplication of the sum by that value. The last line is obtained by performing the 
summation over m and forcing the sum to normalize to one. The sum must equal one because the sum does 
not add or subtract energy from the signal. The ϑd,n is expanded in the last line to show and ∀ and )n. A 
comparison to Jenq’s results [3] shows that this result is slightly different from his. Although Jenq assumed 
that the delay between the first nonzero values of each subsequence was constant, we have not assumed 
that here. If we do make that assumption, however, then )n = 0 and the argument of the exponent in line 6 of 
(8) becomes j2πkn/N where 2πk/N is equivalent to Jenq’s “ω.” 
 
2.4  Model 4 
 
      Model 4 is the most representative of an equivalent-time sampler. Here, s(t) is applied to p(t) after the 
appropriate delay, which is ϑp + nϑd, where n is the equivalent-time sampling instant. The discrete 
spectrum for this model of an equivalent-time sampler is: 
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Fig. 4. Functional diagram of Model 4. The pulse output is repeated every τp intervals to yield a repetitive signal that is periodically 
sampled by s(t) at intervals given by τp + nτd. This results in a series of subsequences, each with only one nonzero value. These 
subsequences are then summed to yield the sample waveform, fn. 
 
 
      The description of the derivation of the solution for Model 4 is very similar to that of Model 3. There 
are a couple of differences. The primary difference between Model 3 and Model 4 is that Model 3 uses a 
truncated set of an infinitely sampled series whereas model 4 uses a limited sampled set, the latter more 
realistically representing an equivalent-time sampler. Also, in Model 4, the requirement that the pulse 
repetition rate and the sampling rate are synchronized is shown explicitly (as exhibited by the summations 
over k and m in line 3). 
      The four different models that were presented herein for interpreting the discretized replica all yield 
identical results, except for a scale factor, and these models are consistent with those presented by other 
researchers. Models 2, 3, and 4 accurately describe real-time and equivalent time sampling processes. 
Therefore, we can perform an examination of the effect of non-equispaced sampling on the replica and to 
correct, if we elect to do so, for non-equispaced sampling without worrying about the interpretation of the 
measurement process. The correction process is beyond the scope of this paper, as previously stated. 
 
2.5  Pulse and Sampler Synchronization, Sampling Intervals, and Spectrum Discretization 
 
      It is worth expanding on the topic of pulse and sampler synchronization to understand the requirements 
for obtaining a sensible waveform. To show pulse-sampler synchronization, f(t) may be written 
symbolically as a convolution of the sampler response function, s(t); the sampler repetition function, rs(t); 
the pulse output function, p(t); and the pulse repetition function, rp(t); that is, 
 

( ) ( ) ( ) ( ) ( ) ,s pf t s t r t p t r t= ∗ ∗ ∗      (10) 
 
where the “*” indicates a convolution. The rs(t) describes the time interval between successive sampling 
events. The convolution process shown in (10) becomes a multiplication of spectra in the frequency 
domain, that is: 
 

( ) ( ) ( ) ( ) ( ) ,p sF P R S Rω ω ω ω ω=      (11) 
 
where P(ω), S(ω), Rp(ω), and Rs(ω) are the spectra of p(t), s(t), rp(t), and rs(t). Equation (11) can be 
simplified because the products P(ω)Rp(ω) and S(ω)Rs(ω) are discrete, that is, 
 

( ) ( ) ( ) ( ) ,s s
m

S R S mω ω ω δ ω ω
∞

=−∞

= −∑     (12) 

 

( ) ( ) ( ) ( ) ,p p
L

P R P Lω ω ω δ ω ω
∞

=−∞

= −∑     (13) 
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where ωs = 2π/ϑs and ωp = 2π/ϑp. From (11), (12), and (13), we can see that the frequency components of 
F(ω) with nonzero magnitudes are found only at integer multiples of ωp or ωs: therefore, F(ω) is discrete. 
Moreover, (11), (12), and (13) show that Tp and Ts must be related by a rational number for F(ω) to contain 
useful data, that is, the signal and the sampling instants must be synchronized, which agrees with 
observation. The effect of windowing the signal is to artificially change rp(t) and this will be discussed in 
Sec. 3. 
      Equation (10) and the subsequent text regard continuous-time measured signals, that is, there is no 
sampling. For a time-discretized replica, there is additional discretization in the spectrum caused by rd(tn). 
The rd(tn) describes the delay in the occurrence of subsequent sampling events relative to a common instant 
in the measured signal. The product of rd(t) and f(t) yields fn (see Eq. 1), which has a discrete spectrum. To 
understand how rd(tn) affects fn, (see Fig. 5) the spectrum of rd(tn) must be examined. The spectrum of the 
error-free rd(tn) is: 
 

( ) ( ),d d
m

R mω δ ω ω
∞

=−∞

= −∑     (14) 

 
where ωd = 2π/ϑd. Recall that a product of two functions (rd(tn) and f(t)) in the time-domain becomes a 
convolution of their corresponding spectra in the frequency domain. Consequently, the allowed spectral 
values of the Fk, which is the discrete Fourier transform of fn, are found at the nonzero values of 
F(ω)*Rd(ω). The frequency spacing of this convolution is given by the frequency spacing of F(ω) (which 
has frequency spacings of ωp and ωs) and that of the sampling repetition function, which has a spacing of 
ωp. Furthermore, the convolution F(ω)*Rd(ω) is also periodically repeated every ωd (See Fig. 6). Therefore, 
if the product P(ω)S(ω) extends beyond ∀ωd/2, then frequency information from adjacent spectral periods 
will overlap. In Fig. 6, these spectral periods do not overlap. This overlap of adjacent spectral periods 
causes an error, called aliasing, that affects both Fk and fn. To prevent or minimize aliasing, ϑd should be 
decreased thereby increasing ωd. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Periodically repetitive waveform showing waveform period, ϑp, and an integer number, m, of sampling intervals, ϑd. 
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Fig. 6. The spectrum of the waveform in Fig. 1 showing the frequency intervals, ωd and ωp, caused by the sampling interval, ϑd , and 
waveform period, ϑp. 
 
 
If any of ϑp, ϑd, and ϑs show some random behavior, then the distributions associated with those random 
behaviors will effectively appear as jitter. Consequently, these distributions will individually or collectively 
act to low-pass filter f(t) and can be dealt with accordingly [17]. 
 
 
3.  Record Errors 
 
      In this section we will examine errors caused by non-equispaced sampling and sub-period (windowed) 
epochs. For sub-period epochs, impulse-like and step-like waveforms will be considered separately. Several 
investigators have examined and measured the errors in the timebase of waveform recorders [20-23] and 
developed methods to correct for these errors [24]. 
 
3.1  Sub-period Epochs, Impulse-like Waveforms 
 
      If the data are obtained over an interval not equal to ϑp (a sub-period epoch) then (5) must be rewritten 
to reflect that change, namely: 

 

( ) ( ),p p p
k

r t t kδ τ
∞

=−∞

 = − − ∆ ∑      (15) 

 
where ϑp - )p is the interval over which data are taken. The values of )p may be determined using methods to 
measure timebase errors [20-23]. In (5), the signal period is ϑp and ϑp causes the spectrum of the ideal 
replica to be discretized with a discrete frequency interval of ωp = 2π/ϑp, as described in Sec. 2.5 and for 
the model given in (9). If we acquire the data over an epoch ϑp - )p, then the discrete frequency intervals 
become pω′  = 2π/(ϑp - )p). We can determine which spectral components of the windowed replica are valid, 
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that is, which spectral components of the windowed replica have counterparts in the ideal replica’s 
spectrum, by equating the mth harmonic of ωp with the nth harmonic of pω′ : 

 
2 2 .p p
p p p

m nm n or π πω ω
τ τ

′= =
− ∆

     (16) 

 
Equation (16) can be rearranged to give: 
 

1 .p

p

n
mτ

∆
= −       (17) 

 
Equation (17) can be used to determine which spectral components of the windowed replica have a 
corresponding component in the spectrum of the ideal replica. For example, if the epoch is 0.9ϑp ()p = 
0.1ϑp) then n/m = 9/10. This means that every 9th component of the windowed replica’s spectrum is valid 
because it contains the information from every 10th component of the ideal replica’s spectrum. As another 
example, let )p = 0.9ϑp. In this case, each component of the windowed replica’s spectrum is valid because it 
contains information from every 10th component of the ideal replica’s spectrum. Although each component 
in the spectrum of the windowed replica may not have a corresponding component in the ideal replica, the 
spectrum of the windowed replica may be interpolated to approximate the spectrum of the ideal waveform 
and, therefore, the waveform itself. However, resonances, etc. will make this sort of approximation 
dubious. What is commonly assumed when )p ≠ 0 is that the pulse is a single event (so that ϑp→∞ and then 
ωp→0) and that any frequency information contained in the windowed replica is also contained in the 
signal. This assumption is, of course, wrong. It is important to realize that the imposition of a sub-period 
epoch is artificial and the resultant discretized replica should not be expected to contain the same spectral 
information as the signal. However, this error is basically the introduction of false components into the 
spectrum of the windowed replica of an impulse-like signal and it is possible to determine which of these 
components are false. 
 
3.2  Sub-period Epochs, Step-like Waveforms 
 
      For brevity, we will consider equations describing continuous-time signals. However, the result is the 
same for discrete-time replicas. A sub-period epoch for a step-like waveform can be described as a 
windowed signal: 
 

( ) ( ) ( ) ( )
01,

0
Dw t Tfor

f t f t w t w t
otherwise

≤ ≤
= = 


   (18) 

 
where w(t) is the rectangular windowing function and TD is the duration of the window, TD < ϑp. The 
spectrum of f w(t) is: 
 

( ) ( ) ( ) ,wF F Wω ω ω= ∗      (19) 
 
where W(ω) is given by: 
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( ) ( )
2

2

2 sin .
2

D

D

j t

T
j t

T

D

w t e dt
W

e dt

T

ω

ω

ω

ω
ω

∞
−

−∞

−

−

=

=

 =  
 

∫

∫
     (20) 

 
From (18) we can see that the windowed signal, f w(t), has lost information relative to f(t) whenever f(t) ≠ 0 
outside the interval 0 ≤ t  ≤ TD. In addition, the spectrum of the windowed signal has been corrupted by the 
window, see (19) and (20). Therefore, truncating a signal before the signal has time to relax to its initial 
value causes distortion of the spectral content of the windowed signal relative to the input signal. This 
distortion is in addition to the introduction of false components, which occurs for windowed impulse-like 
signals. 
 
3.3  Non-equispaced Sampling Instants 
 
      The effect of non-equispaced sampling instants on the discretized replica are examined using the 
following: 
 

, ,n I n nE f f= −       (21) 
 
where fI,n is the ideal equispaced replica and fn is the non-equispaced waveform. The frequency domain 
error, using the discrete Fourier transform of (21) and using the model in (9), is: 
 

( )
2

1

,
0

.
d n

d

nj kN
N

k I n n
n

E f f e
ατπ

τ

 −∆
 −−  
 

=

= −∑      (22) 

 
Clearly, if fI,n = fn, then the error is zero for En for the given n. However, for Ek = 0 for any k requires fI,n = fn 
for all n and if this is the case, then Ek = 0 for all k. 
      Another way to look at the effect of non-equispaced sampling instants is to examine the power of the 
error waveform or its spectrum. The power of the error waveform is: 

 

( )
1 1 22

, ,
0 0

.
N N

err time n I n n
n n

P E f f
− −

= =

= = −∑ ∑      (23) 

 
Equation (23) presupposes that the fn are at the correct sampling instants and, therefore, has no mechanism 
for incorporating the case of Δn ≠ 0. But as we know, Δn ≠ 0, so we need a way of examining their effects 
on fn and Fk. The spectrum of (23) may provide more information because Δn can be shown. Rewriting (23) 
for the frequency domain gives: 
 

( )( )
1 1 *2

, , ,
0 0

,
N N

err freq k I k k I k k
k k

P E F F F F
− −

= =

= = − −∑ ∑     (24) 

 
where the asterisk indicates the complex conjugate. Using the discrete Fourier transforms of fI,n and fn, and 
considering only one index of k for brevity, we get: 
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    (25) 

 
The sums in the second and third lines each equals zero because the equal magnitude terms have opposite 
polarity and cancel for the summation over both n and m. That is, 
 

         ( ) ( ) ( ) ( )2 2cos cos 0n m d n m m n d m n
d d

k kf f n m f f m n
N N
π πτ τ
τ τ

   
− + ∆ − ∆ + − + ∆ − ∆ =         

   
 

 
for all n and m where n ≠ m. Under most normal situations, fI,n ≈  fn, so that the sum over n and m in the 
fourth line will be approximately zero and can be ignored, which gives for Perr,k: 

 

1 1 1
2 2

, , ,
0 0 0

21 2 cos .
N N N

n
err k n I n n I n

n n n d

k
P f f f f

N N
π

τ

− − −

= = =

 
 ∆ ≅ + −  
  

 

∑ ∑ ∑    (26) 

 
Summing over the frequencies, gives: 
 

1 1 1 1
2 2

, , ,
0 0 0 0

22 cos .
N N N N

n
err k n I n n I n

n n k n d

k
P f f f f

N N
π

τ

− − − −

= = = =

 ∆
≅ + −  

 
∑ ∑ ∑∑    (27) 

 
Equation 27 shows the effect of non-equispaced sampling on the power spectrum error. If )n = 0 for all n, 
(27) gives the same result as that shown in (23). If fI,n = fn, (23) will equal zero but (27) will not equal zero 
unless )n = 0 for all n, which is due to the inclusion of non-equispaced sampling intervals in (27). The )n can 
be positive or negative depending on whether the actual sampling instant is greater than or less than the 
ideal sampling instant. To get an idea of the effect of )n on Perr,k, note that (27) will be sinusoidal due to )n, 
and will have the greatest values when )n = ± τd/2 and the smallest values when )n = -τd, 0, and τd. 
 
3.4  Timebase Gain 
 
      Timebase gain, causing either expansion or contraction, does not affect the waveform or its spectrum 
parameters other than for a scale factor for temporal or frequency parameters. Timebase gain can be 
determined using timebase measurement methods previously developed [20-23]. For example, if α ≠ 1, and 
it is assumed that α = 1, then temporal parameters, such as transition duration, pulse duration, waveform 
period, delays, etc., will be in error by a factor, αf, which can be given by: 
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0

,f
αα
α

=  

 
where α0 is the ideal or actual timebase gain. The timebase scale and values of temporal parameters can be 

multiplied by 1/αf to correct their values. The frequency spacing in the spectrum, which is given by 1

dNατ
, 

will also need to be corrected, which is accomplished by multiplying the value of this spacing by αf. 
 
 
4.  Conclusion 
 
      Models describing the measurement processes used to acquire time-discretized replicas of continuous-
time signals have been presented and the models were shown to yield consistent descriptions of the 
acquired waveforms. These models were also shown to be equivalent to the models previously presented by 
other researchers. The effect of sub-period recording epochs was also examined which showed that, for 
impulse-like pulse signals, some of the spectral content of the replica will accurately represent the spectral 
content of the pulse. For step-like pulse data, however, the spectral content of the replica will not represent 
that of the input signal. The error caused by non-equispaced sampling is not easy to calculate because the 
ideal replica is typically not available. However, trends in these errors can be estimated. 
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