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Equatious are derived {rom which the temperature dependence of both the specific heat and the thermal
difinsivity of a spherical sample of material can be calculated [rom observations of the time dependence of
the surface temperature and the time-rate of energy loss from the sample as it cools. The derivation takes
into account the nonuniformity of the interior temperature field of the sample, and the resnlting eqnations
can be applied not only to radiative cooling, but also to any other cooling mechanism that does not violate
the assumed spherical symmetry. The analysis excludes change of phase, but it does take thermal expan-
sion into account. To permit the making of estimates neeessary for the design ol radiative cooling ex-

periments, a universal temperature-time cooling curve is derived lor the post-transient cooling regime of a
radiating sphere of any size with arbirtrary, but constant, thermal parameters.
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1. Introduction

The analysis presented in this paper is an outgrowth of
a proposal made by J. H. Colwell [1,2] to determine the
high-temperature values of the specific heat, thermal dif-
fusivity, and total hemispherical emissivity of a spherical
sample of refractory material by making independent
optical observations of the surface temperature of the
sample and its time-rate of energy loss as it cools by free
radiation into a cold vacuum. The original proposal was
made in the context of an experiment to be conducted on
board the space shuttle, and envisaged induction heating
of the sample. With this mode of heating, the total heat
content of the spherical sample and its intcrior
temperature field at the start of the observational run
would be unknown. However, after an interval on the
order of the characteristic thermal decay time of the sam-
ple, the interior tcmperature field would settle into the
“post-transient regime’” in which the interior field would
be entirely determined by the time-dependence of the
surface-temperature. Thus, in the post-transient regime
it should, in principle, be possible to determine the
temperaturce dependence of the thermal parameters from
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a knowledge of the time dependenee of the surface
temperature and the rate of energy loss. The determina-
tion of the emissivity is a trivial matter, since it is propor-
tional to the rate of energy loss divided by the fourth
power of the surface temperature.

Stated in mathemalical terms, the cooling sample
counld be regarded as mapping the temperature-
dependent specific heat and diffusivity over into the
time-dependent surface temperature and energy loss
functions, and the analytical problem then consists of in-
verting this mapping so as to be able to express the two
unknown thermal parameters in terms of the two ob-
scrved time functions. The first step in carrying out this
inversion, the results of which are summarized in section
2, is to find the “surface-driven solution™ of the Fourier
equation for specified temperature-dependent specific
heat and thermal diffusivity. This solution is completely
specified by the time dependence of the surface
temperature, and the time rate of change of the total heat
eontent can be calculated from it. If this calculated rate
of change is then equated to the fourth power of the sur-
face temperature in aeeordance with the Stefan-
Boltzmann radiation law, a nonlinear ordinary differen-
tial equation {of infinite order) results whieh ean he
iteratively solved (in truncated form) for the ease of con-



stant thermal parameters to yield a universal
temperature versus time dependence for the post-
transient regime. This solution, which is presented in
section 3, is useful for making the various cstimates that
are necessary for the design of a radiative-cooling
calorimetry experiment. At the end of section 3 an in-
tegral equation is given that could also be used as the
basis of an iterative solution of the post-transient predic-
tive problem,

In section 4 the surface-driven solution that is sum-
marized in section 2 is inverted so as to yield expressions
for specific heat and diffusivity in terms of the observed
time-dependent surface temperature and time-rate of
energy loss. These expressiona constitute the desired
solution of the calorimetric problem. The thermal
parameters are expressed both in terms of truncated ex-
pansions whose coefficients involve higher-order time
derivatives of the observed functions, as well as in terms
of integral expressions invelving retrospective weighted
averages of the observed time-dependent functions. The
truncated expansions, which are easier to apply than the
integral expressions, ought to suffice for analyzing most
post-iransient experiments. In fact, in many experiments
the simple approximate expressions given in eqgs (44) and
(45) will be sufficiently accurate. In section 4 an estimate
of the range of validity of these simple expressions, as
well as the range of validity of the more accurate trun-
cated expansions, is given in terms of the magnitude of a
suitably scaled dimensionless temperature. The scaling
factor, which is introduced in section 3, takes the
material parameters and sphere size into account, When
these parameters have values for which the truncated ex-
pansions are not accurate, then the integral expressions
for the thermal parameters can be used as a basis for an
iterative solution of the calorimetric problem. These in-
tepral expressions could also be used to analyze a
calorimetry experiment conducted iu the transient
regime, assuming that the knowledge of the surface
temperature of the sample includes an interval {on the
order of the characteristic decay time) that precedes the
commencement of the cooling observations. For exam-
ple, if a sample were held in a constant-tcmperature oven
(of known temperature) long enough to become isother-
mal, and then suddenly removed to commence cooling
which was observed for a time interval on the order of
the characteristic thermal decay time, the integral ex-
pressions for the thermal parameters could be used to
analyze the data.

Although the analysis of this paper was carried out
with radiative cooling in mind, only in the solution of the
predictive problem in section 3 is the radiative cooling
law invoked. In the analysis of the calorimetric problem,
the cooling law is never specified. All that is assumed is

that the time dependence of the time-rate of total energy
loss by the sample is known (as is the time dependence of
the surface temperature).

The most obvious limitation of the analysis of this
paper (aside from its restriction to spherical symmetry) is
the exelusion of the possibility of phase change. That is,
the spherical sample is assumed to be either entirely solid
or entirely liguid throughout the experiment. In addition
to this limitation, the analysis incorporates two approx-
imations, the more significant being the neglect of the
spatial variation of the diffusivity in the interior of the
spherical sample. That is, the diffusivity is assumed to be
a function of the surface temperature {which is a func-
tion only of time) rather than a function of the interior
temperature (which is a function of the radial coordinate
as well as of time). It is shown in section 2 that this ap-
proximation amounts to neglecting a very small term in
the Fourier equation that has the form of an effective
heat source, but, as explained in section 3, this effective
heat source can be taken into account (if necessary) by a
simple iterative procedure. 'he other approximation,
whose effect is completely negligible, is the neglect of the
spatial variation of the mass density of the sample. That
is, the overall change in average density with
temperature is taken into account, but at each instant
the density throughout the sample is assumed to be
spatially constant. In other words, as in the case of dif-
fusivity, the density throughout the sample is assumed to
be a function of the surface temperature rather than of
the interior temperature,

The literature relevant to predictive solutions of the
Fourier equation is old, vast, and still growing [3,4].
However, this literature is almost exclusively devoted to
the initial-value approach to the problem which requires
that at some instant the interior temperature field mus
have some exactly specified form (most commonly, a
given uniform temperature). This point of view,
however, is physically inappropriate to the calorimetric
problem because what is usually known is the history of
the environment to which the sample has been exposed
(i.e., the history of its surface tcmperature), and not the
interior temperature field at any instant. It is true that, if
the sample is kept in a constant-temperature oven long
enough, its interior temperature will indeed be spatially
uniform, but this is a special case. It would be physically
more natural to replace the initial specification of the in-
terior temperature field with the specification of the sur-
face temperature history back to t = —o0, {It is shown in
section 2 that as a practical matter it is only necessary to
know the surface temperature during a very short period
of the past.) There is a well-known solution to the
Fourier equation {cf. for example p. 247 of Ref. [3)),
which has the form of a convolution of the surface
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temperature with the well-known diffusion kernel, but
this solution is inappropriate to the calorimetry problem
because it has a singularity at the center, and so (in the
absence of a point heat source) can only be used to
deseribe the temperature field in an infinite medinm sur-
rounding a spherical cavity.

The mathematical literature that is direetly relevant to
the determination of the thermal parameters from the
observed surface temperature [3-13] unfortunately has
remained within the framework of the initial-value ap-
proach. Because an arbitrarily specified time-
dependence for the surface temperature is generally in-
consistent with a previously specified initial interior
temperature field, the problem is over-specified, and cer-
tain compatibility conditions must be satisfied before the
problem is well-posed. The derivation of these conditions
has been an important theme in this literature. (The
whole question of compatibility becomes irrelevant, of
course, when the surface-driven solution is used as the
basis of the analysis.) The thermal parameters have been
expressed most commonly as the solution of an integral
equation, but the most general case considercd so far has
allowed only one of the two parameters to be an
unknown function of temperature, the other being an

unknown constant. Because these solutions are very dif-
ferent in form from the expressions given in this paper,
and because the geometry considered was planar (either
slab or semi-infinite medium) rather than spherical, no
attempt has been made to compare the results of this
paper with the previously derived expressions for the
thermal parameters.

1.1 Notation

The main analysis involves dimensionless quantities,
which are designated by bare letters, whereas the cor-
responding dimensional quantities are indicated by an
asterisk. Time-independent unit quantities {(also dimen-
sional) are indicated by a caret. The relations existing
among the three types of quantities are given in table 1
which also serves to define most of the notation. {A few
more symbols will be introduced as needed.} Table I also
shows how the various dimensional quantities depend on
the radius of the sphere. Because of thermal expansion,
both the dimensional radius R* and the dimensionless
radius R are variable, but the unit radius “é is an ar-
bitrarily chosen constant. The R-dcpendence of the
various dimensionless quantities has been defined in

TABLE 1. Basic Notatior for Calorimetric Problem .

Dimensionless Dimensional
Quantity Symbal Symbol Remarks
Radius of sphere R() R*= RI:?
Radial distance r r* = rRR 0<rs1
Gradient operator v V*= RRV .
Mass density ele) e* = Q&/R3 @ =constant
[ Veo* =0
Specific heat c(©) c* = ¢t k* = p*a*c*
Thermal conductivity k(©) k* = (k/Rk [f; = paé
Thermal diffusivity a(©) a* = R2ad k = gac
Total hemispherical
emissivity &M e* = &
Linear time t t* =4 i=R%a
Nonlinear time it) dt = alT)dt = a*dt*/ R¥?
Surface temperature Tt} T* = T‘Z'
Interior temperatire Qltr) o* = GAT (,e]r=la= T
Surface specific enthalpy hiz} h* = hh h=¢g
Interior specific .
enthalpy nie,r) n*= =, =h
Total mass M* = " R¥3g* = (3" R3gle = My
Total enthalpy H H*= M*n h = (MCT)QH H=n,,
(average specific
enthalpy)

~
»~

Independent Reference Quantities: R, é, T, ¢, a (all constant)
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such a way that the dimensionless Fourier equation is
completely independent of the effects of thermal expan-
sion. {Cf. Sec. 2.) During an observational run, R*(¢¥)
can be measured optically along with T#(¢*), and then
R(T*} can be calculated. When, for example, this R{T*)
is entered into the expression given in table I for a¥, the
contribution to the T*-dependence of o* that results
from thermal expansion is automatically taken into ac-
eount. Throughout the paper, except for section 3 that
deals with the predictive problem, it will be assumed that
R*(¢t¥), T*(t*), and dH*/dt* are given functions of ¢*
resulting from the experimental observations. From
these the dimensionless functions Rft), Tft), and Hft} =
dH/dr can be directly calculated, so it will be assumed
that these too are given functions. An overhead dot will
indicate differentiation with respect to the dimensionless
linear time t. It should usually be possible to choose the
unit time f to be a convenient multiple of some ex-
perimentally defined time interval, such as the interval
between ohservational rcadings. Diffcrentiation with
respect to the nonlinear time coordinate v will be
designated as follows: di/dr = H'Y). Although it will
often be desirable to choose g, a, and ¢ to be close to the
values of g*, a¥, and ¢* at T* = T (which means that
the corresponding dimensionless quantities will be close
to unity at the reference temperature T), this is not
necessary.

2. Surface-Driven Solution

If the spherical sample is imagined to be immersed in
a hcat reservoir of variable temperature, then changes in
the interior temperature field are driven by the pre-
scribed changes in the surface tcmperature. Assuming
the absence of any interior heat sources, it follows that
the interior temperature field is uniquely determined by
the past history of the surface temperature up to the
present moment. In mathematical terms, this cor-
responds to the “particular” or “‘driven’’ solution of the
Fourier equation, with the surface temperature playing
the role of the “driving function.” This is not the most
general solution, because it does not include the
homogeneous solhttion which describes the decay of an
arbitrarily specified initial interior temperature field. It
is well known that the most slowly decaying term in the
homogeneous solution has a time dependence propor-
tional to exp{—nZz) where ¢ is the dimensionless time
measured in the natural time unit defined in table I.
Neglecting the homogeneous solution amounts to assum-
ing that the interior temperature field has been subjected
to no influences other than its external environment for a
pericd of time t that is long enough so that
expl—nZs)<<1,

The time-rate at which the sample exchanges energy
with its surroundings is determined by the history of the
surface temperature up to the present moment. In fact, it
is just equal to the time derivative of the total interior en-
thalpy of the sample. Thus, once the time history of the
surface temperature has been specified, the time-rate of
energy loss or gain of the sample is completely deter-
mined. The analysis of this section leads to expressions
{summarized in tables V & VI} relating the time-rate of
total energy change of the sample to the surface
temperature (or more exactly, the specific enthalpy at the
surface), and these expressions suffice for the analysis of
both the predictive and the calorimetric problems.

The dimensional Fourier equation is given in the two
forms (1a) and (1b) of table 11, the only difference being
the representation of the part of the heat flux that resulis
from radial motion caused by thermal expansion or con-
traction. In eq (la) it is represented in terms of the
material velocity v¥ at a point r* that is fixed in the
laboratory (inertiall frame, whereas in eq (1b) the motion
is taken into account by the fact that the time derivative
is taken with respect to fixed r rather than fixed r*,
where r is the dimensionless radial vector that is attached
to a particular material particle and moves with it.
Although v*, whieh is the material velocity associated
with thermal expansion or contraetion, is negligibly
small, the point to be made is that the right-hand side of
the dimensionless Fourier equation given in eq {2} is
rigorously correet, and the fact that the time derivative is
taken at constant r rather than r* does not represent an
approximation.

In eq {3) the internal enthalpy density n is introduced
in order to replace the internal temperature @. This
replacement is doubly advantageous: First, a com-
parison of eqs {2} and (4] shows that it reduces the
number of thermal parameters that appear in the equa-
tion. Second, the enthalpy density is really the quantity
of physieal interest, because the objeetive of the analysis
is to integrate it over the volume of the sample in order to
arrive at an expression for the time-rate of change of the
total enthalpy (heat content} of the sample.

Equation (4a) still contains the temperature-
dependent diffusivity al®), and this fact not only com-
plicates the equation, but also prevents it from beig
universal in the sense of having the same form regardless
of the material properties of the sample. If the diffusivity
were a funetion only of ¢ and not of r, it could be
eliminated from the equation by replacing the linear
dimensionless time z with the dimensionless nonlinear
time T as indicated in eq (5b). In fact, this device for
eliminating the diffusivity has been used before [5,6].
The same device would also eliminate a from the equa-
tion if it were a funetion of the surface temperature Tt}
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TaBLeIL. Basic Differential Equation .

Eq- No.
(labl V(i V*Q%) = g*c*[3O%/ Bt¥) o + vE » FHOM] = g¥cHaO%/ 3r*),
2 V+(k ¥ ©) = gc(d6/ 31),
(30 dn = cloide
(4abef VelaV¥n) =(3n/3t; a=k/ec: ¢ = constant
(3abj Vig+ ¥V eu=1(an/31,; dr=alTh]dt = alt)dz
(6abl w=-fL— ﬁl\]?m; V-u=qy
alT)
azlml‘ alm) 13 ¢ al®) N .

@ G T~ Ma=rg 0oy 1 g =0

=hin: (En) —1dH _ 1y
abt  [raloy=hi: (27) =19 =pm

‘ o ¥ , S I & I
{8ck H=n, = J; quzdr/ _I; erldr=3 _I; nridr

rather thamr of the interior temperature Gfr,z). Even i
the latter ease, however, introduction of a monlinear time
7 based on alT[t]} succeeds in eliminating most of the
a-dependence from the equation, as shown by eqs (3al
and (6a). What remaing in the equation is a very small ef-
fective heat source density term gz which has the form
of the divergence of an effective heat flux uz defined in eq
{6al. This heat flux vanishes at the surface of the sample,
and for this reason, when Gauss” theorem is applied to eq
(3a) Iz erder te arrive at the expression given i eq (8b)
for the time-rate of total enthalpy change, the term in-
volving u makes ne contribution. Therefore, because eq
(8D} leads to the equation (eq {19} of table V) from which
the rest of the analysis follows, it 1s evident that, at least
to first order, the introduction of the nonlinear time v has
succeeded in reducing the preblem to the solution of the
universal equation that results if q 4 = @ ir eq (7). The
analysis of this paper is based on this approximation. If
more accuracy should be required, then the solution for
nlr.7) that is given in eq (9} or eq (12) of table ITT could
be substituted into the right-hand side of eq {7), and an
additive eorreetion te n could be found which in turn
would lead to an additive correction to H which could be
introduced into the ecalorimetric equations of sectiorz 4.
The way this would be done is explained in section 5.
The solution to eq (7} (with (0 on the right-hand side}
that satisfies the houndary condition stated in eq {8a) can

be writter In the formr of eq (9} in table EII. The
polynomials p {r} are characterized by the property
stated in eq {10a), and can be generated by suceessive in-
tegration. The first four polynomials are given ineq (11,
and are plotted io figure 1. The faet that eq (9) does in-
deed satisfy eq (7} (with @ emr the right-hand side} can he
directly confirmed using the property stated in eq (I (al.

As indicated in eg (12}, the solution can also be ex-
pressed in terms of the odd-order Bernoulli polynemials
By, 1lx) where x = ¥%l{l-r}. The properties of these
polynomials that are necessary to verify that eq (12} is in-
deed the desired solution of eq (7} are stated in eqs (13}
and (14i. (See for example, pp. 804-811 of Ref. [14] or
pp. 19, 25-29 of Ref. [15].)

An explicit expression for H'Y = dH/dt in terms of
ko) = dok fdr® can be derived by substituting eq (12} into
the left-hand side of eq (8b) and using the relation stated
in eq {16) of table IV hetween the even-order Bernoulli
numhbers By and the Riemann Zeta function £(2n). The
resulting relatiom is given in eq (19) of table V. Using the
numerical values for &2n} that are given in table I'V, eq
(20} results, which can be then inverted ta yield eq (21),
which will play a important role in section 4.

The expansion given in eq (19 assumes that iz} is an
analytic function all of whose derivatives exist. If io ad-
dition it remains finite for all 7, it can be shown that eq
t19} is eguivalent to the integral eguation piven in eqs
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TABLE 111, Surface-Driven Solution for Interior Enthalpy Density .

» Cf Fig.1

-

Eq. No )

9ab)  nird) = i) + %’:1 (=1 p,{r) A (x) ; B0 = dnp/des

{10ab) d%rp,)/dri = —1rp, yor Vi, = —p,_,

(11a)  p, = (1~r2)/6

(11b)  py = (7—10r2 + 3r%/360

(11c) p3 = (31 — 49r2 + 2174 - 3r9)/15,120

(11d)  p, = (381 — 620r2 + 294r% — 60r5 + 5r%)/1,814,400

(12a,b) nlr,7) = hi7) —}E_ 2=t By ybd) hH1) 5 x =1 (1)
n=1 (2p+4 1)

(13B,b) [B_g_,,.,.l(x)],:ﬂ = an+1(%' =0: [B2n+1{x)],.=1 = B2n+1(0) =0

2
(4ab) Barit lnt1Byle), ¢ Batibd 1 2n+1)(2n)By, _,ix)
dr dr?

(22a) and (23) of table VI. The kernel I' of the convolu-
tion integral defined in eq (23) is an effective memory
function that weights the very recent past most heavily
and totally forgets events that happened more than half
a natural time unit in the past. This memory function is
defined by eq (24} and is plotted in figure 2. Its argu-
ment is defined by eq (27a), and as shown in eqgs (27b
and c) can be expressed in terms of «l¢} and the dif-
ference {t—¢') between the present time t and some past
time ¢’ . Figure 2 shows that for { less than 0,1 natural
time units the simple function T~ defined by eq (25b) is
essentially indistinguishable from I. For larger ¢, the
first term in the summation of eq (24) should serve to
represent [ with sufficient accuracy for most purposes.
As eq (26) indicates, the normalization of I is such that if
h'2) is constant, then the retrospective weighted average
h'2) defined by eq (23) will just be equal to A%, If,
however, h'2) varies drastically during half a natural time
unit, which could be the case when a sample first starts
to cool, then the weighted average h'“Me) will differ
markedly from the instantaneous value h'?{¢). In such a
case the integral eq (22a) will be more aecurate than the
equivalent truncated expansion given in eq (20). The
series expansion (19) can be derived from the integral
equation defined by eqs (22a) and (23b] by expressing

A2t —¢) as a Taylor expansion about T, integrating by -
parts, and making use of the definition of {(2n) given in

eq (15)in table I'V.

Finally, it should be noted that it is evident from eq
(23b) that when A2N1] is differentiated with respect to T,
the differentiation can be taken inside the integration,
from which it follows that eq (22b) resulis from differen-
tiation of eq (22a), Obviously, an infinity of such equa-
tions can be generated by repeated differentiation.

TABLE 1V, Riemann Zeta Function for Even-Integer Argument .

Eq. No.
{15} ¢2rl=Xx . m~2n
m=

_ _ (=1-"42r)! ¢(2n)
ﬂ 6) an = [an{.‘!)]x=0 - 2271_1 nzn
2 ¢i2n)/n2R ¢(2n)
2 1/6 1.64493
4 1/90 1.08232
6 1/945 1.01734
8 1/9450 1.00407
10 1/93,555 1.00099
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TABLE V. Total Rate of Energy Loss: Differential Representation.

Eq. No.

{17a,b,e} HV =gH/dv; H=sdH/dt; HV = H/alp)

(18ab) AV = (TN = cl&)T)/ alt) ; AW = d=h/dr
199  HY9=-65% | =1pg(2a)/m2e] A
n=
__ 2
(200 HW{q) = g1 = .1%;112) + 5% B3 — 1_5173 B4 .
(21) W) = HID + L g2 - G B + 2 W+
TABLE VL. Total Rate of Energy Loss: Integrel Representation.

Eq. No.
(22a,b) HY = pth) — 4 R HO = p2) - i BB ; ete
(23a,b) R = [ ' Fr—r') HO(r Ydr' = fo‘” M) hDir—tde
24 Q=903 (mn)2 expl-~(mm?2g

i (CE. Fig. 2)
(252)  T(E) =T(Y for 0€2<0.1
{25b) T8 = 15[1-3(2VE7n -4
26ab) [ Fe—t')r = [ Fodt =1

J Z
(27a) (=17 = v alt”)dt”
. ey’ ) = i (—l)n —at

(2T} ey =) 52:0 T (dPa/de8)g—¢' )P
(27e)  Has 2=2') = alede—z') = § dlede—2)2 + }aleMe—")3 — ...

3. The Predictive Problem

For the purpose of estimating radiative cooling times
and the relative magnitudes of the terms in eq (21), from
which the calorimetric equations of section 4 are derived,
it is useful to solve the post-transient predictive problem
for the case of constant parameters. In such a case the
simplifications indicated in eqs (28a-d) of table VII oc-
cur. All of the equations of tables V and VI are still valid.
In particular, H = H'U must satisfy eq {19), but in addi-

tion it must satisfy the Stefan-Boltzmann radiation law
which means that the left-hand side of eq {19) must be
replaced by T* multiplied by a proportionality constant
involving the Stefan-Boltzmann constant ¢* = §. It is
easy to show that if the unit temperature 7' is defined as
shown in eq (29b}, the proportionality constant on the
left side of the specialized form of eq (19} will by unity,
with the result that the equation has the form given in eq
(31). A significant feature of this equation is that it is
universal in the sense that it applies to spherical samples
of all sizes made of any material whose thermal
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r

Figure 1. Dimensionless polynomials p_ (r) defined in eqs {11a-d). F16URE 2. Dimensionless kernel T{£) in convolution inlegral defined in

eq (23), and approximate kernal (2 defined in eq (25b),
both as [unctions of the dimensionless argument {= 1 — "

TaBLE V1L Eguations for Predictive Problem.

Eq. No.
(28abedl c=a=k=R=c=p=lLit1=6n=04si=T
{29a,b) T=T%/T; T'= (k/R58)1/3 = (k*/R#*o*c¥)1/3 = (gka*c*/R¥oke)1/3
(30a,b) H=dH/dt = —3T%; (8n/8r),—, = (86/8r),_,=—T*
(31) Ti= 23 |10 [242n)/n2mdn T/ e

n=
(32) T4=_l£+Ld_2T___ 2 a7 ;'34_71_

3 dr 45 dr2 945 did 4725 dr?t 0T
{33a.,b) dT/dt = =3T*1-§ T3 +ATO + W19+ .. .]; dH/dr = ~ 3T*
{34a,b) d2T/di2 =36 TT(1-LL 73 + 276+ ...] ; d2H/di2 =36T7[1-4T% + 5 T0 + ..]
(35a.b) d3T/dt3 = - 756 TW[1— B8 134 ] ; d3H/d3 = —T56TI0[1-8 18 + ]
(36a,b) diT/det = 22,680 T3 — . .. 1 d4H/dt = 22,680 T13 — . ..
(387) HT)= (T3 ~1)~&In T+ 20 - T9)

. (CE. Fig. 3)

(38) T =[(1+ 9 -4 (1+9)— 18 .t 11/3
(39) T = - 170+ [ 7 rio Te-gag s
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parameters are constanots. It is possible to solve this
equation by truncating it at the fourth derivative as
shown in eq (32), and solving the truneated equation for
dT/dt in terms of T by starting with the approximation
dT/dr = —3T* and iterating until a self-consistent set of
expressions for the [irst four derivatives results. These
expressions are given in eqs (33a-36al. By differentiating
eq (30a) and making use of eqs (33a-36a), the expres-
sions for d®H /dt" given in eqs (34b-36b) can be derived.
The 8 expressions in egs (33-36) will be used in section 4
to estimate the range of validity of the calorimetric for-
mulas derived there. Numerical estimates indicate that
these expressions are aceurate to within 1% so longas T
£V, For larger T, it would be necessary to include
higher order terms in the expansion given in eq {31), and
the numerical estimates indieate that for T > 3/4 the
convergence is so slow that this expansion has no prac-
tieal ntility. Correspondingly, the calorimetrie equations
derived in seetion 4 that are based on eq (21}, which is
derived from eq (19), cannot be expected to be accurate,
even in a post-transient experiment, if the dimensionless
surface temperature T based on the unit temperature
defined in eq (29b) is larger than Y. If the sphere size
and thermal parameters are suchb that T'> 14, then it will
be necessary to use equations based on the integral equa-
tion defined by eqs (22a) and (23). In order to give a feel-
ing for what sphere sizes and which materials will satisfy
the condition T < 14, the dimensionless temperatures
T peliing corresponding to the respective melting points of
tungsten {3650 K)} and uranium dioxide (3150 K) are
given in table VI1I for sphere radii that approximate the
upper and lower limits that wounld most probably be con-
sidered for radiative-cooling calorimetry experiments. It
is evident from this chart that for most praetical post-
transient experiments, it should be possible to use
ealorimetrie relations derived from the truncated expan-
sion given in eq (21). Only in the ease of a large sample
(R = 1 cm) of a poor thermal conduetor (such as uraninm
dioxide) might it be necessary to use an integral relation
in order to analyze the results of a post-transient experi-

TaBLE VIII. Representative Values for Unit Time and

Unit Temperature.
Tungsien Uranium Dioxide
fi 0.1em lem  Olem lem
2 0.03sec  3nec 2 sec 200 gec
7 37,000K 17,000K 8I00K 3800K
T*cting 3650K  3650K  3150K  3150K
Tudting 1 0.2 0.4 0.8
P=R%sa T=ws/Ro0'\/3 = (gse/Ron/3

0.5
0.3
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fog t

FIGURE3. Universal temperature-time curve

radiative cooling.
ment. It ought to be noted, however, that this might be
neeessary even in the case of a smaller sample of a better
conductor if the observations are based on a transient-
type experiment.

A universal post-transient cooling curve ean be de-
rived by integrating eq (33a). The result is the expression
for (T} given in eq (37). This ean be inverted to yield the
expression for Tt} given in eq {38). The cooling curve
corresponding to these expressions is plotted in figure 3.
It is evident from this curve that the slope of In T versus
In ¢ is almost, but not quite, constant. In fact, this slight
variation in slope is related to the thermal conduetivity
of the sample. It can be shown that for initial and final
temperatures T;* and T(*

for post-transient

=3
- Ty - Tf"a
k* = E Roe ??f—' (40 8.)
d In T d In T
5 = 8=l {40 b,c)
dIn t*
n Ty dIn #* Tf*

This equation cannot be used for determining thermal
conductivity from observation of post-transient radia-
tive cooling, because it assumes that the specific heat is
constant throughout the cooling, whereas in all pro-
bability the In T* versus In t* curve for a real sample
would have much more curvature than the one shown
in figure 3, and most of this curvature would be caused
by the temperature dependence of the speeific heat. The
real significance of eq (40) is that it (together with Fig.
3) illastrates how difficult it is to make a reliable deter-
mination of thermal eonductivity (or difnsivity) from
observations of post-transient radiative cooling,
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especially when these observations are made for
temperagures near the lower end of the curve shown in
figure 3. In contrast, it is very easy to determine the
specific heat in this range since to a good approxima-
tion it will be given by ¢ =H/T. For an accurate deter-
mination of thermal conductivity it will probably be
necessary to use a sphere that is large enough so that
the dimensionless temperatures involved fall well above
those shown in figure 3. In such a case it would be
necessary to analyze the data using the integral expres-
sions given in section 4, rather than the truncated ex-
pansions.

It should be noted that when the expressions given in
eqs (33a-36a) are substituted into eq (9a) taking the
simplifications stated in eqgs {28a-d) into account, a com-
plete solution for the interior surface-driven solution in
terms of the surface temperature T results. If the expres-
sion for T{t) given in eq (38) is substituted into this, an
explicit expression for the interior temperature field
Oir, 1) results. If it were desired to extend the validity of
this solution to values of T larger than 14, this could be
done by using the integral equation given in eq (39} in
table VII as the basis for an iterative solution. Equation
(39) was derived from the integral equation defined by
eqs (22a) and (23), making use of eq (30al. The idea of
reducing the problem of solving for the interior
temperature field to the problem of solving an integral
equation involving only the time dependence of the sur-
face temperature is not new. It has been done for a semi-
infinite medium with a plane surface [16]. The integral
equation that resulted was derived from the diffusion
convolution integral mentioned in section 1. However,
this approach is not appropriate for the present problem
because, as noted in section 1, the diffusion convolution
integral represents the temperature field in an infinite
medium surrounding a spherical cavity, rather than the
field within a finite spherical medium.

4. The Calorimetric Problem

In adapting the expressions derived in section 2 to the
problem of deducing the specific heat and the thermal
diffusivity from observatjonal data, the choice made for
the unit temperature % can be arbitrary. It is not
necessary to use the unit temperature defined by eq (29b)
of table VII, although this choice is appropriate for the
purposes of designing an experiment, and for determin-
ing whether the various expressions derived. in section
4.1 from eq (21) are accurate, or whether it is necessary
to use the alternative integral relations discussed in sec-
tion 4.2,

Once it i3 a question of analyzing existing data,
however, it would generally be more convenient to define
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‘T\' so that the dimensionless temperature T is close to uni-
ty. If the thermal parameters are already known for the
cold end of a post-transient cooling run, then it would be
natural to choose this cold temperature as the unit
temperature, and correspondingly the unit specific heat
and unit diffusivity would be chosen to be equal to the
known valucs of these parameters at this cold
temperature. If the true values are not known, then
estimates would suffice, Nowhere in the analysis is it
assumed that these estimates are close to the true values.
For example, if one were analyzing data for samples of
different materials, it might be most convenient to make
a single choice of unit quantities to be used for all of the
different materials. .

In all of the expressions given below, H{t) = dH/dt
and T(t) are regarded as given functions of time that
result from independent simultaneous observations
made by two different instruments. If a reliable cooling
law exists and is known, then H can be expressed as a
function of T and eliminated from the equations. In the
case of radiative cooling, this would require that the
temperature dependence of the total hemispherical
emissivity £(T) be known.

4.1 Truncated Expansions

The calorimetric formulas, which were the principal
objective of this analysis, are given in eqs (41) and (42) of
table IX. The expression for ¢ follows directly from eq
{40), which is simply eq (21) of table V multiplied by alz}.
The expression for a was derived from the ratio of the
time derivative of eq {40a) to eq (40a) itself. Both expres-
sions for ¢ and o have the form of a power series in an ex-
pansion parameter £ = 1/15a. The coefficients of these
power series are functions of the four quantities defined
in eqs (43a-d), the leading terms of which are ratios of
different time derivatives of T and H. Equations (44)
and {45) give approximate expressions for ¢ and « that
are valid in the limiting case in which only the leading
terms in the expansions must be retained, and ¢ and «
are essentially constant.

In the discussion that follows, it will be assumed that
the unit of diffusivity & has been chosen so that for the
data under consideration the dimensionless diffusivity «
is of order unity. Then £ = 1/15. (If a different choice of
& were made, the change in £ would be compensated by
changes in the values of the quantities defined in eqs
(43a-d.) Because the expansion parameter £ involves a,
and the coefficients in the expansions for ¢ and & in-
volve ¢ and #, it is evident that eqgs (41) and (42} must be
solved iteratively, with the first iteration based on the
assumption that § = & = & = (. The range of con-
vergence of this procedure can be estimated by using the



expressions for d*T/dt" and d"H/dt® given in eqs (33-
36) of table ¥VII to evaluate all of the terms in eqs (41)
and (42). When this is done the following expressions
result:

A =—-12T3(1—%T3+§T6+...l (46a)
B=-12730-234+4 764 )  (46b)
) 25

c =252T611—%T3+...} {46c)
D =-71560T%+ ... (46d)
D-AC = 630731+ ... (47a)

A-B
AD 1260070 + ... (47b)

A-B
¢y =H/T=1+2 T8+ 21 (48)

16
+WTQ+“'

@ =1x ((34de3> =1-8713%+ 49)

When these expressions and £ = 1/15 are substituted
into the right-hand side of eq (41a), it reduces to 1 +
0{T'2) which (since the left-hand side is ¢ = 1) is just the
identity that is to be expected in view of the fact that eq
{(41a) is simply a reformulation of the same equation
from which eqs (33-36) were derived. Similarly, the
right-hand side of eq (42) reduces to 1 + 0(7T %), Thus (to
the accuracy of the truncation) the leading factors in eqs
(41a) and (42], which are now expressed by eqs (48) and
(49), are just the reciprocals of the respective square
brackets on the right-hand sides of eqs {41a) and (42}.
For this reason, the speed of convergence of the
calorimeiric formulas can be estimated by inspecting eqs
(48) and {49). These indicate acceptably rapid con-
vergence for T < 14 which, of course, is the same range
of convergence that was noted in section 3 for the val-
idity of the iterative solution of the predictive problem.
In the case of the approximate limiting expressions
given in eqs (44) and (45), all of the terms of eqs (41a)
and (42) that involve £ were thrown away. and only the
leading terms were retained. In addition, all of the terms
of eqs (43a-d) involving ¢ and & were thrown away. The
validity of this latter approximation can be answered
only on a case-by-case basis, but the validity of ignoring
the terms involving £ can be estimated by means of eqs
(48) and (49} since the terms involving T represent the
error in these formulas, because in this case the correct
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values of ¢ and & are unity. In the chart below the
magnitudes of the two leading error terms are listed for
several values of T.

443 03
T 27 YK
5 5
Yo 0.10 0.15
VA 0.013 0.019
0.1 0.0008 0.001

This chart shows that for T < V4, the error is less than 2
percent, and becomes increasingly smaller the smaller T
becomes, i.e, as T enters the extreme post-transient
regime. Even for T = ¥, the error is not so large as to
destroy the usefulness of eqs (44) and (45) for generating
the first iterative solution for ¢(z) and «lz) which is then
substituted into the right-hand sides of the more accurate
formulas given in eqs (41) and (42). If & is constant, it
follows from eq (45d) that H « exp[~15a,t]. so that in
the extreme post-transient regime a,, can be estimated by
fitting the observed function H(t) to an exponential
decay.

It should be poted that, in order to make these
estimates, it has been necessary to define the dimen-
sionless T in the manner indicated in eq (29) of table
VII. This automatically takes the sphere size and ther-
mal parameters of the sample into account. However, for
an aetual application of the calorimetric formulas of
table IX, it is not necessary to do this. One may use any
convenient scaling factor to define the dimensionless T.
The validity of the formulas would then be indicated
directly by the convergence behavior of the numerical
iteration process.

The solutions of eqs (41) and (42} are cit) and «ft).
However, because T¢z) is known from observation, these
solutions can be converted into ¢(7) and «(T), which are
the desired expressions for the temperatyre dependence
of the thermal parameters.

4.2 Integral Relations

If a numerical application of the calorimetric formulas
shows that the £ term in eq (42} is comparable in
magnitude with the £2 term, or if the £2 term in eq {41a)
is eomparable with the & term, this is an indication that
the neglected higher-order terms are not really negligi-
ble, and that the calculated functions «{t} and clz) are not
reliable, One could, of course, include higher-order terms
in the equations, but truncation must occur at some
point, so the net result would be only a slight extension of
the range of validity of the equations. Moreover, the
higher-order terms involve higher derivatives of T()



TaBLE IX. Calorimetric Problem: Truncated Expansions.

Eg. No.

(40a,b) i;= CT=H+ ]_[de__ 1 Jdg2 4 ) de_*_ ]‘
15 de 35 dr 1575 de 77

=2 po = 1E"Y e LdHY,
a’ a dt e dt

(lab) = (H/T1+Be-G 02+ EDIE+ ) £=1/130

(42) a=1 (E-4B [1—7"; AC) g2 24 A*"j’B}sﬂ+ o]

{43a) A=din kg = dInicT/a)/de = (T/T) + (& /c)— @/ al]
{43h) B=dln HY/dt = dn(H/el/dt = (H/H) - (a/a)
(43¢) C=a2HB)/HY = (H/H — 3(&/a) + [(&/a) + (&/a)?]

{43d) D=a3HY/HY = (H/H) — 6(a/a) (H/H + [15ta/ ) — Ma/allH/H) —[(@/a) + 15(a2/aP®

— 10(& a/a?)]
(44) c, = '("')E=c'=&=o = /T
, _ L. 1 C- AB =_1_(T'ii T i)

Usab)  a = ladmimino = 5 E5 5 = =0 T (T a1 )

@5e,d) —_ 1 || |ral _ —__(__)/_(_j
5 5a |75 15dt ¢ dt
TABLEX. Calorimetric Problem: Integral Relations.

Eq. No.

(50) oty = { [ — /0 — ED|— (o a) } TR/

5} E=H+1 { [(h —HV/t - I - (/) } [(F)2/E5)

. = _ [t d d h( ) .

(53) W) = j—m r F{ alt’) di’ n(: ]}d

(54) r=990 E—l (mn)~2 exp[— (mn)2f]

{55) b= _j-: alt*)dt” = alt)t—t') — %;ﬂt"t—t' P+ Falede—e 1B~ ..
(56) clt) = R &)/ Tz}

(57a,b) T = cle[T) ; «lT) = ale[T))
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and Hiz), and the error involved in extracting these fram
the experimental data becomes ever greater the higher
the order of differentiation. For these reasons, it is better
to use an iterative procedure based on eqgs (50} and (51)
of table X wbich involve the integrals defined in eqs (52)
and (53). These equations were derived from egs (22a)
and (22b) of table VL. Because A{t) = eft) Tl), eq {51)is
really an equation for ¢f¢/, but it is simpler to regard h{r/
as the unknown function and, after this has been found,
to invoke eq 136) to find c(t), and eqs (57a,b) to find c{ T}
and 2{T). The kernel I' of the integrals is defined by eqgs
154) and (55), but the approximation based on eq (25b)
and discussed at the end of section 2 would simplify the
calenlations. Inasmuch as the temperature dependence
{and hence the fime dependence) of o is usnally weak,
and (as Fig. 2 indicates) T will usually vanish in a time
interval that is short compared with the fime required for
o to change by a significant amount, in all but the most
extreme .of transient experiments it would be justified to
drop all but the first term in the expansion for £ given in
eq (55).

The iteration could be started with an alt} caleulated
from eq (45) and an At} = ciz} T1) where clz) is Tound
from eq (44). These approximate functions would be
substituted into the right-hand sides of eqs (50) and {51),
which would yield new {presumably improved) approx-
imations. Qnestions of convergence and numerical
stability of this procedure have not yet been investigated.

5. Discussion

The foregoing -analysis took the temperature
dependence of the specific heat fully into account, but
the interior spatial variation of the diffusivity was
neglected. This amounted to neglecting an effective heat
source density in the Fourier equation, but it was
pointed out in section 2 that this neglected term could be
taken into account in an iterative fashion. This would
give rise to an additive correction d,n to the interior en-
thalpy density field. It was noted in section 2 that when
Gauss’ theorem is applied to the Fourier equation, the ef-
fective heat term makes no direct contribution to the
resulting equation (eq (8b) in table II). It does make an
indirect contribution, however, in the sense that it pro-
duces an additive correction to the radial derivative of
the interior enthalpy field. Thus, eq {(8b) must be re-
placed by

[Bln+ 8,1} 9rl,—q = JdH + 3, H)/dx  (58a)
where H is given by eq (8c) and J_H is given by

1
d H=73 fo (8, nr2dr . (58b)

The total time-rate of energy lass of the sample, which is
1o be identified with the observed energy flux, is given by
ﬁmt =H+ daH It is important to note that, in making
the correction to the calorimetric formulas of section
4, flm must not be substituted in place of H. The reason
for this is that these formulas were all derived from eq
{19) {or its integral equivalent given in eqs (22a) and 123),
which in turn was derived from eq (12)), which is a rela-
tion between the zncorrected interior enthalpy field and
the time-dependernice of the surface enthalpy, which is
nnaffected by the correetion because the boundary con-
ditien stated in eq {8a} continues to be valid. Thus the H
that appears in all of the formulas of section 4 must con-
tinue to refer to the average value of the uncorrected in-
terior enthalpy field, which means that the right way to
make the desired correction is to substitute the right-
hand side of

H=H,-4H (59)
wherever H appears in a formula, and to identify H ot
with the observed heat flux,

The ealorimetrie formmulas of section 4 yield clz) and
(¢} as continuous funetions of fime from which ¢(7) and
al{T) are found. If, however, spline representations of
¢(T) and o«fT) are used, then the unknowns are the spline
coefficients, whieh are constant numbers. Expressions
for the coefficients as weighted integrals involving the
observed functions Tz} and H ) conld be derived from
either the expansion or the integral forms of “the
calorimetric formulas. Because the spline coefficients are
expressed as integrals of the observed data, there would
be an auntomatic smoothing, which could be ad-
vantageous in the case of noisy data.

Although the calorimetric formulas derived in section
4 were intended 1o be used with observational data from
a single observational run using a single sample, it would
also be possible to use them with data from two different
runs over the same temperature range using a large and
a small sphere of the same material. The radius of the
small sphere would be made small enough so that the
observations would be in the extreme post transient
regime (T' < 14} where the accuracy of eq 144) for ¢
would be good. The funetional dependence for (T}
found in this way conld then be substituted into the left-
hand side of eq (41a), and data from the run with the
larger sphere could be inserted into this equation, which
'would be solved for 2. This two-sphere approach had
been suggested by Colwell [1,2] when he first proposed
radiometric calorimetry of freely cooling spheres.

Because the calorimetric formulas have been derived
from an analysis that did not require a knowledge of the
cooling law, but rather only the time-dependence of the
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total rate of heat loss (or gain), they could he applied to
any situation in which the interior temperature profile of
a sphere is determined by the changing temperature of
its external environment. For example, in the case of dif-
ferential scanning calorimetry, using the calorimetric
formulas would permit a determination of the thermal
parameters of a spherical sample even when the time-
rate of change of the surface temperature of the sample
li.e., the scanning rate) was so fast that the sample in-
terior would be far from isothermal. This would permit a
faster scanning rate, which would in turn cause larger
heat fluxes which could be measured with greater preci-
sion than the small ones that result when the scanning
rate is slow enough to keep the sample interior essen-
tially isothermal. Moreover, the differential scanning
technique would no longer be limited to the measure-
ment of heat capacitance, but could also be used for
measurements of thermal diffusivity.

Finally, because the analysis does not assume that the
measured quantities are monotonic in time, it could be
adapted to modulation calorimetry in which the sample
surface is subjected to a periodically varying
temperature and the magnitude and phase lag of the
heat flux as a function of the frequency of the
temperature variation are the measured quantities from
which the thermal properties are deduced. Although the
basic approach of this paper would still be applicable, it
would be necessary to subject the surface-driven solution
of section 2 to a Fourier analysis in order to express the
various quantities as functions of frequency rather than
of time.

It was noted in the introduction that the analysis of
this paper was the outgrowth of a proposal first made by
Dr. J.H. Colwell of the National Bureau of Standards,
and throughout the course of this work the author has
been the beneficiary of frequent very helpful conversa-
tions with Dr. Colwell.

This work was supported by the Materials Processing
in Space Division of the National Aeronautics and Space
Administration.
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