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Young’s modulus and Poisson’s ratio have been measured simultaneously on a series of particulate
composites containing volume fractions of filler up to 0.50. The composites consisted of small glass
spheres imbedded in a rigid epoxy polymer matrix. The measured values were compared with theoreti-
cal values calculated from current theories. A recently generalized and simplified version of van der
Poel’s theory provided the best agreement. It predicted values of Young’s modulus for composites
with filler volume fractions up to 0.35. Measured values of Poisson’s ratio exhibited scattering, but
were consistent with values calculated from van der Poel’s theory.
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1. Introduction

It has been known for some time that the addition
of a particulate filler to a polymeric material can greatly
affect the elastic properties of the resulting composite.
The effect is a mechanical one complicated by several
superimposed effects of a chemical and physical
nature. The pure mechanical effect is best understood.
It is accounted for in terms of the local strain distor-
tions due to dissimilarities between the matrix and
filler material. Various theories have been propounded
to explain it, and reviews of these theories are available
[1-3].

In order to test these theories good data are needed
for a series of macroscopically homogeneous and
isotropic composites containing various known amounts
of filler. The filler and matrix materials should be
isotropic, and the two elastic constants necessary to
characterize each of them should be known. These
two elastic constants should preferably be obtained
by simultaneous measurements on the same specimen
in order to minimize effects due to viscoelasticity and
specimen variation.

There are a number of physical and chemical
effects that must be considered in choosing an ap-
propriate composite system for testing. The rubber-
carbon black system for instance is complicated by the
following effects [4—6]: The small carbon particles

'Figures in brackets indicate the literature references at the end of this paper.
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present in large numbers bond to the rubber molecules
and significantly increase the degree of crosslinking
of the rubber matrix; the carbon particles associate
together in long chains thus producing a structure
effect; and the filled rubber composite softens after
a previous deformation. For these reasons this system
does not provide a satisfactory test of theories dealing
with the mechanical effect.

In some cases the presence of the filler particle may
induce crystallization, crosslinking or other structural
changes in the surrounding shell of polymer matrix,
thus introducing an additional phase with consequent
changes in mechanical properties [7—11]. This effect
should be avoided by using a filler which adheres
firmly to the matrix, but does not exercise a long-range
influence on the matrix structure. In addition the filler
particle dimensions should be large enough that the
total filler surface area is comparatively small.

The room temperature behavior of a composite
formed at elevated temperatures may be affected by
frozen-in stresses due to differences in the thermal
expansion properties of the matrix and filler material
[12]. In cast composites this effect can be reduced by
gelling at room temperature, and cooling slowly after
any post cure at elevated temperatures.

The shape and orientation of the filler particles may
cause the composition to be anisotropic, but this
effect is easily avoided by using spherical filler
particles.

Previous checks of the theories have met some



of the above criteria in various ways. For those com-
posites consisting of a rigid filler imbedded in a rubbery
matrix of Poisson’s ratio 0.5, the shear modulus of the
composite increases as the volume fraction of the filler
is increased. This effect is analogous to the increase
in viscosity of a suspension of particles in a liquid
[13], so that viscosity data such as those provided by
Eilers [14] can be used in a partial check of the theories.

Data are also available on composites with a rubbery
matrix, but these data are usually incomplete in that
only one elastic constant is measured as a function
of the volume fraction of filler. In these cases the
dependence on filler content of the other constant, that
is needed to characterize an isotropic material, cannot
be checked. Schwarzl et al. [15] and Waterman [16]
however, have provided complete data on a composite
system consisting of NaCl crystals imbedded in a
rubbery polyurethane matrix, and have compared them
with the predictions of van der Poel’s theory [17].
Additional data on this material have been provided
by Nicholas and Freudenthal [18]. Payne [6] has
measured the shear moduli of composites consisting
of natural rubber filled with glass spheres, whiting and
a ‘“‘nonstructure” carbon black, and has given a
valuable discussion of this system.

When the polymer matrix is in the leathery or glassy
state, one can no longer assume as in the rubbery case
that Poisson’s ratio of the matrix is close to 0.5. Yet,
unless two elastic constants are known for the matrix
material, and reasonable values of the constants can
be assumed for the filler, theoretical predictions for the
composite’s elastic behavior can only be approximate.
In much of the data for glassy-matrix composites the
constants of the components are not completely
specified, and in most cases only one constant char-
acterizing the composite (i.e. Young’s modulus or
shear modulus) is measured as a function of filler
content. Some useful but usually incomplete data are
available [17, 19-22]. More data on glassy-matrix
composites are desirable, and for this reason the work
reported here was undertaken.

2. Materials

The system of composites studied consisted of glass
spheres imbedded in and adhering to a glassy epoxy
matrix. A series of such materials was fabricated, each
member containing a different volume fraction of
glass spheres.

The matrix material was formed from the diglycidyl
ether of bisphenol-A (DGEBA) hardened with a
stoichiometric amount of triethylenetetramine (TETA).
The DGEBA resin used (DER-332, Dow Chemical
Co.)? was almost pure monomer with an epoxy equiva-
lent weight 172-178. The glass transition temperature

2Certain commercial equipment, instruments or materials are identified in this paper
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of the hardened polymer as determined by dilatometry
was 120 °C. The density determined by hydrostatic
weighing was 1.187 g/cm? for material stored 185
days at 24 °C and 54 percent R.H.

The filler material consisted of glass spheres with
a distribution of diameters in the range 1 to 30 wm.
The glass was an optical crown glass, soda lime type,
with a silica content not less than 60 percent (Standard
Class IV Unispheres No. 4000, Cataphote Corp.). The
manufacturer specifies an approximate Young’s
modulus for this glass of 7.6 X 101° Pa (11 X 106 Ib/in?)
as measured on a bulk sample. Poisson’s ratio for soda
lime glass, given in the literature [23], is 0.23. The
density of this glass as determined with a pycnometer
is 2.392 g/cm?.

Before use the glass spheres were cleaned by passing
them near the poles of a powerful permanent magnet
a number of times to remove iron impurities. They
were washed twice in boiling distilled water and twice
in boiling isopropanol, and dried overnight under
vacuum at 130 °C. The dried spheres were coated with
the coupling agent +y-aminopropyltriethoxysilane
(A1100, Union Carbide Corp.) as follows: A given
weight of spheres was added to an equal weight of
freshly prepared 1 percent-solution of A1100 in water.
The slurry was stirred for 15 min, filtered, and washed
with an equal amount of water. The spheres were then
dried overnight under vacuum at 130 °C, and then
lightly ground in a mortar to break up agglomerations.

Before use the DGEBA monomer was deaerated in a
vacuum oven for at least 1 hour at 60 °C. A weighed
amount was transferred to a flask, the glass spheres
added, and the slurry stirred under vacuum for an
hour to remove air introduced with the spheres. The
TETA hardener was added, and the mixture rapidly
stirred under vacuum for 5 minutes. The mixture
then was carefully poured into a mold formed from
clamped glass plates separated by spacers and sealed
with rubber tubing. The plates had previously been
treated with a mold release a t.

The mold was sealed and i..e comcus allowed to
cure for 16 hours at room temperature. Before gelling
occurred the mold was rotated at 1 rpm in order to
prevent the glass spheres from settling. The material
was post cured in an unclamped mold for 24 hours at
75 °C followed by 8 hours at 150 °C. The oven was then
turned off and the cured composite allowed to come
to room temperature overnight in the oven. According
to reported research on similar materials [24, 25] this
should produce an almost completely cured resin
with only minimal strains introduced by the molding
process.

Several series of composites containing volume
fractions of glass spheres up to 0.50 were prepared
by this process. The content of glass was determined
by hydrostatic weighing and found to be uniform
throughout each of the cast samples. Test specimens
of dumbbell shape [26] with 5-cm gage length, 1.3-cm



gage width and 0.5-cm thickness were prepared from
the castings, using a high-speed router. Four specimens

were obtained from each cast sample. Volume frac- | Days to | Young’s modulus Poisson’s ratio
tion of filler test
3. Procedure B
17, v
. ) . GPa

The specimens were tested on a tensile testing
machine at 0.05-cm/min rate of extension and 12.5-cm 0.0000 13 3.21-+0.09 0.426 +0.008
grip separa.tion. The state of strain in 'the uniform 8888 1(7) ﬁ ggi (l)é g%gig(l)g
narrow portion of the specimen was monitored with a 0000 13 948+ 05 370 = 009
strain gage extensometer of nominal 5-cm gage length.,

The exact value of the initial gage length was de- .0482 7 b3.35+ .06 ».430 +.012
termined in situ with a cathetometer. A transverse -0495 10 2-5§iv03 zzgig(l)g

o .0498 13 2.83 +.03 . d

extensometer employing a small linear variable

differential transformer was used to obtain simultane- 0985 13 3.19+ .03 391 +.018
ous measurements of the width of the specimen during

test. The amplified outputs of the two extensometers 1477 14 3.62+.13 -384+.010
and the load-extension curve of the tensile tester were 1965 7 374+ 04 353 007
recorded separately. Simultaneous data values were 1983 8 4.95+ 12 383+ .012
obtained by putting small simultaneous pip marks on .1992 13 3.91+.03 .370 + .008
the recorder traces by means of a pushbutton operated

M . . y P p .2486 14 4.59+ .10 374 +.007
pulse circuit.

The data were used to plot stress-strain curves and 19980 5 5.09+.07 1333 -+ .003
curves of transverse strain versus longitudinal strain 9988 12 5.02+ .11 b 373 + 004
for the specimens. The initial slope of the stress-strain ) . P —T
curve was taken as Young’s modulus of the specimen, 3480 1 S B
and the negative of the initial slope of the transverse 4015 8 6.67+ .15 318+ .012
strain-longitudinal strain curve was taken as Poisson’s _
ratio. As all of the specimens were subjected to the L4513 12 8.17+.23 ©.310 +.005
same lo_w rate of straining during data acquisition, it o8l 14 9.95+ 90 b 347 + 010
was believed that the relative effects of viscoelasticity
WOU1d be Small- Therefore viscoelastic effeCtS were a Expressed as value + probable error of a single observation. Each value is the average
not COnSidered in the Subsequent HnalySiS. of measurements on four specimens, except as noted.

YAverage of three specimens.
¢ Average of two specimens.

4. Results

During early stages of the research it was assumed
that the samples were fully cured, so that tensile
properties could be measured 1 or 2 weeks after

TABLE 1.

Results for samples tested 1 to 2 weeks after preparation®

TABLE 2. Results for samples tested approximately 200 days after
preparation® "

p.repar.ation. The results of th.ese measurements are Volume frac- | Days to | Young’s modulus Poisson’s ratio
given in table 1. Each value listed is the average of tion of filler test
measurements on the four specimens obtained from "
each cast sample, and the variation between specimens & GPa g
is expressed as the probable error of a single observa- 0.0000 198 2.99-+0.11 0.401+0.011
tion. The probable errors are of the order of 3 percent .0000 194 3.00+.05 €403 = .021
of the measured value for both Young’s modulus and -0000 190 d3~03j—:-05 d-‘*gof-%g
Poisson’s ratio. The variation from sample to sample 8232 %(9):3; gg:ﬁ '§8§:'007
however was noticeably greater, even though the extra 0701 203 341+ .08 '305+.006
samples of same filler content were made and measured .0993 207 3.75+.09 .377+.019
by the same standardized procedure. -1494 208 4.19+ .14 -366+.010
. . e

A later series of samples made and measured is gggé ggg gg?fg? ggg:g%g
listed in tab]e'2. These s.amples were teste(! 200 days :3960 208 7:94;:12 :354;:018
after preparation to see if there was an aging effect. .4960 208 12.09 .09 .330+.013
During this time the samples were stored over a
saturated solution of M (NO ) -6H.O maintained at #Expressed as value * probable error of a single observation. Each value is the average

g 3.2 & 2 . . of measurements on four specimens.

the laboratory temperature of 24 C. This pr0v1ded an »Specimens were stored at 24 °C and 54 percent R.H. before testing, except as noted.

¢Stored in a vacuum desiccator over anhydrous CaSOy at 24 °C.
4 Stored over water at 24 °C.

environment of 54 percent relative humidity. As a
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check on the effect of moisture two extra samples of
epoxy matrix material were prepared. One was stored
over water, and the other was stored over anhydrous
CaSOy in a vacuum desiccator.

Comparison of the values given in tables 1 and 2
shows that there is an age hardening effect. The

Young’s moduli tabulated in table 2 are slightly higher:

than the corresponding moduli in table 1. However the
measurement values obtained do not seem to have
been affected by the relative humidity of the environ-
ment. The Young’s moduli for the three samples stored
in different environments are not significantly different.

5. Discussion

The data just presented will now be analyzed with
the help of a theory due to van der Poel [17], and
compared with the predictions of other theories. Let
G represent the shear modulus, K bulk modulus, E
Young’s modulus, and v Poisson’s ratio of the com-
posite; let the subscripts f and m refer to the filler and
matrix respectively, and let ¢ represent the volume
fraction of filler. These elastic constants are inter-
related by the equations,

9KG
E=sk+¢ )
3K—26 ,
V= 6K+ 26 (2)

so that only two constants are required to characterize
the initial elastic behavior of an isotropic material.
Van der Poel’s theory provides two relationships,

(3)
(4)

and similar relationships are provided by the other
theories.

Relation (3) is also used in the theory of Kerner [27],
and is the same as Hashin and Shtrikman’s equation
for the highest lower bound of the bulk modulus [28].
However van der Poel’s relation (4) for the shear
modulus, as given in the original presentation, was
very complicated. A table of values was provided, but
this table was limited to materials for which Poisson’s
ratio of the matrix was 0.5. In addition there was an
error in the derivation. Recently van der Poel’s method
has been reexamined, the error corrected, and the
method extended for use with matrix materials having
any value for Poisson’s ratio [29]. Subsequently the
calculation of G has been simplified [30].

If the elastic constants E., vm, Ef, vy of the matrix
and filler materials are known, the corresponding
values K, Gn, K;, G; can be calculated by means

K=K(Gm, Kf» Km, (,0)
G=G(Gf» Gm, Vi, Vm, 90)

¥ 6h 0w

48

of relations (1) and (2). K and G for the composite can
be calculated as a function of ¢, using equations (3)
and (4), and the corresponding values of E and v then
can be calculated from relations (1) and (2). It is these
calculated values of E and v that are compared with
the experimental data.

In order to determine how well the theories agree
with the experimental data it is necessary to have
accurate values of E,, and v,, for use in the theoretical
calculations. The average of the measured values of
E, and v, was not regarded as sufficiently accurate,
so more accurate values were obtained by the following
extrapolation procedure: The averages of E,, and v,
were used as a first approximation, and curves of E
versus ¢ and v versus ¢ were calculated using van der
Poel’s theory. These curves were fitted to the experi-
mental data for values of ¢ up to 0.15. This was done
by shifting the curves mathematically along the E or v
axis to obtain a least squares fit with the experi-
mental data. The shape and slope of the curves was
maintained constant during the shifting process. The
intercepts of the shifted curves provided new values
of E,, and v,. The process was repeated until con-
vergence was obtained.

The values of E,, and v, obtained by this process
are: For the data of table 1, E,,=2.68X10° Pa,
vm=0.394; for data of table 2, F,,=3.01X10° Pa,
vm=0.394. It is apparent from the above values of
E, that age hardening occurred during the time
interval between tests at 10 days and 200 days after
sample preparation.

Relative moduli E/E,, for the samples are plotted as
a function of filler volume fraction in figure 1. Data
for the fresh samples (table 1) are plotted as open
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FIGURE 1. Plot of relative Young’s modulus E[E, versus volume

fraction of filler, from the data of tables 1 and 2.

Open circles, data from table 1 using E,, = 2.68 X10 Pa: solid circles, data from table 2
using En=3.01 X 10 Pa. Dash curves, theoretical values calculated using E,=2.68 X 10°
Pa; solid curves, theoretical values calculated using E,, =3.01Xx 10 Pa. H1, calculated
using Hashin and Shtrikman’s highest lower bounds for shear and bulk moduli; H2 cal-
culated using Hashin and Shtrikman’s least upper bounds for shear and bulk moduli; V,
van der Poel’s theory; B, Budiansky’s theory.
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circles, and for the age hardened samples (table 2)
as solid circles. Predicted values from the van der Poel
and Budiansky [31] theories and the least upper (curve
H2) and highest lower bounds HI1 of Hashin and
Shtrikman’s theory are shown as pairs of solid and
dashed lines. The dashed lines show predicted values
for the fresh samples (E,,=2.68X10° Pa), and the
solid lines show values for the age hardened samples
(En=3.01X10° Pa). Predicted values of Kerner’s
widely used theory are the same as those of Hashin
and Shtrikman’s highest lower bound H1, and have
been shown to be approximations to the values calcu-
lated using van der Poel’s theory [30].

It is apparent from figure 1 that the values of
relative modulus E/E,, calculated using van der Poel’s
theory are in good agreement with the measured values
for filler volume fractions up to 0.35, and give slightly
better predictions than values calculated using the
Kerner or Hashin and Shtrikman lower bound theory.
At higher filler volume fractions up to 0.50 measured
values exceed the van der Poel predictions, but are
less than those of Budiansky.

Poisson’s ratios are plotted in figure 2. Values for
the fresh samples are plotted as open circles, and
values for the age hardened samples as solid circles.
Predictions of the van der Poel, Budiansky and Hashin
and Shtrikman theories are shown as pairs of solid
and dashed lines, where the dashed lines depict values
for the fresh samples, and the solid lines depict
values for the age hardened samples. Predictions of
Kerner’s theory are the same as those of the Hashin
and Shtrikman curves designated as H1.

L 45

5

g a0

@

9

Z 350

2]

2}

g 30 <

0O 05 10 IS5 20 .25 .30 .35 40 45 50
VOLUME FRACTION OF FILLER, ¢

FIGURE 2. Plot of Poisson’s ratio versus volume fraction of filler,

from data of tables | and 2.

Open circles, data from table 1; solid circles, data from table 2. Dash curves, theoretical
values calculated using E,, = 2.68 X 10? Pa: solid curves, theoretical values calculated using
En=3.01x10° Pa. HI, calculated using Hashin and Shtrikman’s highest lower bounds
for shear and bulk moduli; H2, calculated using Hashin and Shtrikman’s least upper
bounds for shear and bulk moduli; V, van der Poel’s theory; B, Budiansky’s theory.

The order of the curves in figure 2 is reversed from
the order observed in plots of E/E, versus ¢. Thus
curve H2 calculated using Hashin and Shtrikman’s
values for the least upper bounds on K and G actually
becomes a lower bound curve for Poisson’s ratio v,
and curve H1 calculated from the highest lower bound
values becomes the upper bound curve. Also the curve
calculated from Budiansky’s theory lies below that
calculated from van der Poel’s theory. The reversal
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in the order of these curves is a consequence of the
decrease in the value of v with increasing ¢.

Although there is considerable scatter in the data,
the curve of values calculated from van der Poel’s
theory seems to provide the best fit. These results
indicate that the generalized van der Poel theory is
better than other current theories in predicting the
mechanical effect of filler on the elastic properties of
a particulate composite. As the calculations involved
in the application of this theory have now been sim-
plified [29, 30], it is hoped that the theory will be
more frequently used in the interpretation of experi-
mental data.
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