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Normally and Exponentially Distributed Points *
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N destinations in the plane {P; : j=1,. . ., N} are given as independent random variables with
specified probability densities, and the problem is to find the location of the point £ which minimizes
the expected sum of the Euclidean distances PP,

In this paper. upper bounds for the minimizing sum of distances are found in terms of solutions to
corresponding deterministic problems and the first and second moments of the probability densities.
Three commonly occurring classes of bivariate probability densities: (A) normal, (B) exponential. and
(C) symmetric exponential, are then considered. Numerical tests are presented which show that in all
cases, Steffensen’s iteration is effective in accelerating convergence. Finally it is shown that in contrast
to the deterministic case. P need not be in the convex hull of the means of P; and a sufficient condition
is given for P to be in this convex hull.

Key words: Always convergent algorithms; exponentially distributed points; facility location; location
theory: normally distributed points: numerical analysis; optimization; stochastic Weber problem.

1. Introduction

A probabilistic extension of the classical Weber (Steiner) problem was introduced in [3]' and
[6]. N destinations in the plane, {P;:j=1,. . ., N}, are given as random variables with specified
probability density functions. It is desired to find the location of a point P with Cartesian coordinates
@= («, B) which minimizes the expected sum of the Euclidean distances PP;. A possible application
of this problem to minimizing capital costs in water quality management is given in [6]. For sim-
plicity we restrict ourselves in what follows to £2.

Specifically, let P; be a random variable with probability density function ¢;(%;), ;= (x;,
yi),j=1,. . .,N,wherex;eS; C E2.S;isthe sample space of P;. Denote by |[x —x;| = [ (x —x;)*+
(y—1y;)*]"2 the Euclidean distance between ¥= (x, y) and zj. The expected value of PP; is then

E(|lx—2x;) :f f |x—%;| b (%;) dx;dy; and we wish to minimize the objective function
St
J

(%) = 2\ ﬁjfﬁ X — %] (%)) dx;dy; (1)

L

over %, where the B; are given, positive weights.

In this paper S;=S for j=1, . . .. N; that is, all P; are in the same sample space. We also
restrict P to S. It was shown in [6] under mild assumptions on ¢; that (%) is strictly convex, and
that the minimizing point P is unique. An iterative algorithm for finding P was obtained formally
by setting Vi (a) =0, by “solving” this equation in the form = H(«), and then by passing to the
iteration scheme x"*+'= H (x") which this suggests. Specifically,
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[ [EE8 e
| n_— (7) _
= H(x") n=0,1,2

ffuangm’ o (2)

where é¢= (¢, m) and G(&) = 23_i¢_i (€). The algorithm was shown in [6] to be a descent method

yn+1—

which is globally convergent to P and convergence was shown to be linear, locally. Although the
considerations in [6] are for S= E2, the same proofs apply with minor variations when S= [0, )
X [0, =).

In this paper. we first obtain upper bounds for

= min (%) (3)

i€S

in terms of the solutions to corresponding deterministic problems with the new destinations at the
means of the random variables P;. It is of interest to note that these bounds involve only the first
and second moments of ¢;(x;). We also give a sufficient condition for P to be contained in an as-
sociated convex hull. This is important because whereas in the classical deterministic problem P
is always in the convex hull of the destinations (see [5] and [7]), a corresponding statement for the
probabilistic problem is not necessarily true, as we demonstrate later with a counterexample.

Next we consider three specific classes of probability density functions:

(A) S=FE*and ¢, (x;) =

2

Xj— M)
— el y
oy, Vi) o i (C2))

=0\ 135 [P Vi My 2
) ) ) )
& < Oux; Ty; Oy;

J
the bivariate normal density function,
(B) S= [0, ©)x[0, ). and
$j (%) = Nrjhy; exp {‘}‘Ijxj —Ay;Yi I
the bivariate exponential density function, and

(C) S=E? and

1
1 )\xi,-)‘.u.,- exp {— )\-l‘j |X.i - 0-1],- |_ }‘.1/_,- J Yi— 6.1/_; | i3

¢, (%)) =
a bivariate exponential density function with mean at (0x;,0y,) and standard deviation (\/ﬁ/ Naj,s
\/E/)\_,,’. ). In each case we seek the minimizing xe€S.

A major part of this paper deals with a special case of (A), namely the symmetric bivariate
normal density when x; and y; are independent (p;=0), and oy =0y =05,j=1,. .., N. In
this case, which is of considerable practical importance, all integrals appearing in (1) and (2)
can be evaluated in closed form in terms of products of exponentials and modified Bessel Functions
of orders 0 and 1. This may be very useful in practical computations, since tables or subroutines can
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then be used instead of time-consuming numerical quadrature. We also prove that in this case P is
in the convex hull of the means of the destinations w;= (M. py;). which we denote by cof{u;}.
By means of a simple counterexample with N=2 we show that even if p;=0, when o, # o,
P need not be in co{u;}. In the general case in (A) where the density is asymmetric, all double
integrals are reducible to single integrals. This is also true for (B) and (C).

Finally, it was suggested in [6], that since convergence is locally linear in (2), Steffensen’s
iteration [4] for acceleration of convergence should be effective. We report the results of randomly
generated numerical examples which confirm that this is indeed the case. We also compare our
upper bound for ¥ with its true value for some numerical examples.

2. Upper Bounds for ¢

An upper bound for (3) follows from Schwarz’s inequality. Since ¢;(x;) = 0, and

Jf bi(x))dxdy;=1,
S

we have

P (x. »)*ZB Jf (x =&+ (y=m)* d;(&, m)dédn

zﬁ[JJ’I (x—=&)2+ (y—m)*]d; fﬂ(/f(/n] {fj (&, ”’7‘/5‘/7)]“

,Eﬁ

| —

x? = 2xpe; + E[x2] + y2 = 2ypy, + E[y?] }"’3

:Eﬁl[ (_\'*/J«_u»,')2+(f3.)_ i (r.f/i}]m
J
where p, ;= I’T‘"] = E[y;] are the respective x and y means of ¢;(x;). and where
oy =E[xf] —ul T =Ey = ,u,,/ are the respective x and y variances of (/) . This gives
) b ! _[
J] = Inlp E B [(x - /J«fj)z + (y - /«Lyj)2 ol (]'.;fz]l/;Z (4)

where 07 = o2 + o-j_. A coarser but more easily calculated upper bound follows immediately

J J
from (4):

< min 2 Bj ([(x—pay)2+ (v — py )2]2 + o))
4l
= E Bjo;+ mi\n E B [(x— e V2 E (= ,ux/l) 21112 = s Bound. (5)
J J

The second term on the right in (5) is the minimum weighted sum of the distances in a deterministic
problem with the destinations at the means of P;, and the first term is a weighted sum of the stand-
ard deviations of the P;. Note that for any ¢;(x;). the bounds in (4) and (5) depend only upon its
first and second moments.
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3. The Bivariate Normal Density Function
Assume that ¢;(x;) for j=1, . . .. Nis given by (A). We now show that
if pj=0and o,;=0y;=o;forj=1,.. . Nthenae Co{ﬁ_;}‘i":l (6)

In this case

1 ; ;
g2 L T Ray)?F (,,V,;—M.u_,)z]}- (7)

J

di(x;) = (2770')."’)‘l exp {—
We first prove two lemmas which are useful in locating a.

LEMMA 1: Suppose z; (§) are (lzﬂerennable real valued functions defined on E2,i=1 , N and
let y be a point at which 2(y) = X zy(y) is minimized. Theny € co{y,}, is assured under thefollowzng
two further assumptions:

(a) The level curves S;={y € E2|z;(y) = c} are concentric circles centered at v, that is,S;=

{7lly =¥l =r(c)}.
(b) Forsomek,Vz(y) # 0ify # yy.

PROOF: Assume, to the contrary, that ¥ ¢ co{y; }-.. Then there is a line [ containing 7y, with a

normal @, such that all y;,, i =1, . . ., N are contained in an open half plane bounded by /. For
yonl,wehave a-y=a-y=b,and a-(y; —y)>0,fori=1,. . ., , N. Now, because of (a),
- Y Vi
Y i ) - vzi( ) o pe
zi (¥ | Y l l,y _yi|
and because of (b) |Vz: (¥)| > 0. Therefore, we have
(Vz(3)-a= |Vz(¥) I;:yﬂ {a<0

which implies that z () is decreasing in the direction @ from 7y. This contradicts the assumption
that z (7 ) is minimized at y. hence ¥ € co{7:} ¥,

LEMMA 2: Suppose that the probability density function ¢;(x;) is radially symmetric about its
mean w;; that is, suppose ¢;(%;) =f;(|x;— ;| ), % € E% Then

=8 [ fo 15-E1 os@dedn ®)

satisfies assumption («) in lemma 1, with ¥, = w;.
PrOOF:  Use polar coordinates § — p;= p cos O, n — ;= p sin O in (8) to obtain

9@ =8 [ [ e—El6;@dean=p; [ [ |—E15(1E=is|)dedn

= [T o L= ey cos 017+ (y—pusy—p sin ©)11 2 () dOdp

=fxpﬂ(p)dpf [r}+ p*—2prjcos (O — ;)] d 9)
0

Whel‘eer:(x_lJ«x) + (y— my,)?,

U_}
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cos D= (x — pa;)/rj, sin®;= (y =y, )/rj. (10)

Using the periodicity of the integrand over [0, 277], and letting W = O — ®;, (9) becomes

zj(x) = foxpfj(p)dp L- [rJ?—F p?—2prjcos V]2 dW (11)

which implies that z;(%) in its dependence upon % is a function of rj, The Euclidean distance to
®j, alone. Hence, the level curves of zj(%) are concentric circles centered about @;. This proves
‘the lemma.

Now we wish to apply lemma 1 with

=8 [ [ |5—&1 6@ dean

and with ¢; (&) given by (7). It follows from [5] with N =1 that z; (x) is strictly convex on E2 Also

=]

and an easy computation shows that Vz;(i;) = 0 where g; = (/A,,-i, /.L!/’_). Since z; (x) is strictly

X —

fg &i(E) deidn,

convex, Vzj (x) # 0 if x # w; forall j=1,. . ., N. Hence z; () satisfies assumption (b) of lemma 1.
In order to show that z;(x) satisfies assumption (a) of lemma 1, observe that from (7) we have

) =1 = — i
¢ (%)) = 2ma) ' exp { > 1% — |2 }
! oy

J)

so that ¢; (%) = f; (|x; — &;]). By lemma 2, then, z;(x) satisfies condition (a) of lemma 1, with
¥;= ;. Now apply lemma 1 with y,= f; to obtain (6).

The result in (6) is not trivial. In the classical deterministic problem @ is always contained in
co{ P;}¥., where P; are the given destinations (see [5] and [7]). However, in the probabilistic
case, we now show by means of a simple counterexample with N = 2, that even when the ¢; are
normal bivariate density functions with p;=0, if O # Oy, then @ is not necessarily in co{ ; }"71

Consider the problem: N =2, ¢ (x;) forj=1, 2 given by (A),

B1=B:=1,pz,=1, py;= 0, 02,= (T’U!H:l:l“l"r2:0’lu’1/2:190-«1'2:170-!1220—:

p;j = 0. In this problem co{g; }2].:12 {(x,y)|x+y=1,0 < x < 1}, the closed line segment joining

the means. From symmetry considerations, it is easy to show that for each fixed o, 0 < o < oo,
1

L B P
the minimizing point @ = («, B) satisfies = B. Therefore @ is in co{f; }._I if and only if a=g= 5

J
It also follows using Vs (@) = 0 that & satisfies Tw (e, ) =0 foreacho:
dx

R = e o

] e )]0




We give the following argument: As o — 0 it is well known (see [2]. p. 324 and [8], chapter 1,
for example) that in the sense of distributions (\//m) “Lexp {—1/2 (u—1)%o2} — 8(u—1), the
Dirac-delta function centered at u=1. In each integral of (12), one dimension of the probabilistic
problem then becomes deterministic with the corresponding coordinate of the destination fixed
at 1. Lettingo — 0in (12) we obtain

a— 1

_ a—¢§ [2g2 1/202]
fla) = W Dt (a—12° ‘IE+J Vie—12+t@—mz °
:I 20— ¢ 1 ) (13)

Via—&)z2+ (a—1)?

We now show that the unique « satisfying (13), also satisfies 1/2 < « < 1. Continuity arguments then
imply that for o sufficiently small the unique « satisfying (12) is also such that 1/2 < « < 1, i.e., for
o sufficiently small @ ¢ C(){,LTL_,—}‘;’:1 ,thereby providing a counterexample. We have

and

= _ 1, TR o
f(1>=f |} §|€75'd§=f e3¢ gg >0,
— L= =il

Hence a satisfying (12) is such that y<a< 1, which concludes the proof. (In fact a« — 0.66 approxi-

mately, as ¢ — 0, as seen from table 1.)

For purposes of illustration we have solved (12) numerically using an iterative scheme analogous
to (2). In table 1 we give « for various values of o, 0 < o < . As o goes from 0 to %, o goes mono-
tonically from 0.660 to 0. Therefore for no value of o except o=1 (wheno,, =0y, =1=0,,=0,,)
is @ in co{@;}2_ ;. This is in marked contrast to the deterministic case when & is always in the
convex hull of the destinations. We also give in table 1. 4, the bound for ¥ from equations (4),
¥ BOUND from (5), and M, the number of iterations of (2) to achieve three place accuracy. The
bound for y from eq (4) was calculated from an obvious extension of the classical iteration for solv-
ing the Weber problem (see [5], or [6], for example).

58



TABLE 1. Counterexample

a @ M U Bound for s W Bound
from (4) from (5)
1/32 0.660 i 2.123 2.450 3.415
1/16 .658 7 2.125 2.452 3.418
1/8 .650 7 2.134 2.462 3.430
i 1/4 623 7 2.173 2.500 3.476
| 1/2 567 8 2.326 2.646 3.650
1% .500* - 2.814* — 4.243
2 416 9 4.074 4.690 4.886
4 .391 11 6.969 8.367 9.660
8 .259 11 13.108 16.186 17.539
‘ 16 122 12 25.708 32.094 33.477
1 32 .043 152 51.138 64.047 65.445
64 .012 12 102.136 128.023 129.430
128 .003 12 204.202 256.012 257.422
256 .001 12 408.370 512.006 513.418
512 .000 12 816.723 1024.003 1025.42

*Computed from closed form expressions (see (24)).

YyBOUND = V2+2V1+ o2

The minimum Y(x, y) =i, in the corresponding deterministic
problem with P; at @ is: Y= \/L

3.1. Evaluation of Integrals in the Symmetric Uncorrelated Case

We now give explicit closed form expressions for the evaluation of all of the integrals in (2)
when p;=0 and Or,=0y;=0, for j=1, . . ., N. In this case ¢;(x;) is given by (7) and the right-

hand side of (2) becomes

> BN (%)
H(z)=-

> BiD;(x)

where

/V.;(f)=(27rcrf;’)"ff f Al e exp{——[(§—u.x-,,-)2+(n—uu_,-)'“’] }(1_50'7)

20

(15)

D0 = o) [* [7 L=+ G=mT v exp { =5 Te—pa) 2+ (n—p )21 | den.
(16)

We evaluate the first component of N;(x), which for simplicity we denote by N;(x). The evaluation
of the second component follows similarly. Substitute ¢ —x=p cos 0, n —y=p sin 0 to obtain

b 2 l
N;(x)= 2mo?) 'f f (x+pcosB) expi—=—[(x—pwr.+p cos 6)?2
/ o Jo 205 J

J

+(y—py;+p sin 0)?] }d@dp:KA,-(x) +L;(x). (17)

Use the notation in (10) and let
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Ji(p) =Fﬂ exp {—(pr,;/a?) cos (§—®;)}db

0
2T

:f exp {—(pr;/o?) cos V}dV¥
0

where we have substituted §—® ;=¥ and used the periodicity of the integrand. Then, we have

Ki(0)=x(2m0}) " exp (= 131203} [ “exp {= (02120115 (0) .

Reference to [1], p. 376, 9.6.16 or 9.6.19 shows that
J5(p)=2aly(prilo?)

where [} is the modified Bessel function of the first kind of order k. Reference to [1], p. 487,11.4.31
then gives

K;(x) = (xfo;) (m[2)* exp {—r3[4a;}H o{r}/405}. (18)

In order to evaluate L;{x) note that

L)) = 2mr3) " exp {=rif203} [ exp (= p1205 1M, (p)dp (19)
where

M;(p) :f:” cos 6 exp {(—prj/o?) cos (§—D;)}db.
Let 6 —®; =V, use the peridoicity of the integrand and refer to[1], p. 376,9.6.19, to obtain
M;(p)=—2m((x—pa;)rj)I{prjlai}.
Substituting in (19), this gives
Ly(p) == (=pay)lry) exp {= 131203} | o5 ["p exp {=pti2o} il prifatidp |

Integrating by parts in the last integral, we obtain

Li(p) == ((x—pax;)/r;) exp {—1320 }}.

| —Idorilas} exp { =pti2e;

" (o) f “exp {—p2/2a;}1;{prj/o;}dp]. (20)
0 0

p=

The integrated term vanishes at p=0 since [,(0) =0. At p=2 we use I;(z) ~ e*(27z) "2 (see
[1], p. 377, 9.7.1) to show that the integrated term vanishes there too. The expression in (20) can
be further simplified by using 217 =1,+1, (see [1], p. 376, 9.6.26). This simplification combined with
use of [1], p. 487, 11.4.31 gives
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Li(p)=— ((x—ps)20)) (w[2)"* exp {—r3/4a3} (Lo{r3/4a5} + 1 {r3/403}). (21)

Substituting (18) and (21) in (17) gives the explicit closed form expression for a typical double
integral in (14),

N;j(x)= (20;) '(7/2)"? exp {—r:f/él(rf;’}((x+ul-.}.)10{rf/4o'lf} — (x—pr ) i{ri/4a3)) }. (22)
Calculations completely analogous to those which gave K;(x) in (18) also yield
D;(x)=o;"(m/2) " exp {=r3/da?)]o{ri/da?}. (23)

(22) and (23) are the closed form expressions required for the iterative algorithm (2), in this special
case.

The equation for the minimizing x, x=H (x) can now be written as

1
B E Bio ;' exp {—r3ldo}} ((2+ @) o{r}fdo?} — (x— ;) [ {r}/do3})
= (24)
2 Bjo it exp {—rifda?}o{rldo?}
J

It is of interest to note that (24) can be rewritten in the equivalent form

N
= Niflr, (25)
k=1

where

_ Broy ! exp {—rifdoit Uolri/doi} + 1 {r/40}})
N
2 o' exp {—r.';’/llo’f}(1(>{r“lf’/4~(r.‘,‘-’}+[| {r;’/‘kr;’})

J=

A

satisfy 0 < A, <1, 2X,= 1. Therefore (25) is a closed form expression (in terms of %) for ¥ as a
convex combination of @, with constants A;,. We proved earlier that in the case of bivariate normal
density functions with x; and y; independent and o ;= oy ;= ;. such a combination always exists
since ¥ € co {  }N_,.

It is also possible to evaluate the objective function W (%) in (1) without numerical quadrature.

We have
b =380t [ 1n-Elew { Sie-m 1 faem

= 2 (%)
7

and
zj(x) =B; (2ma3) ' exp {—rj’/-?(f}”}f p*Jj(p) exp {—p*20%} dp
=pBjo* exp {—r}/207} fx po(pri/o?) exp {—p*/202} dp. (26)
0

61



Refer to [1] p. 487, 11.4.31 and differentiate with respect to the parameter a? appearing there.
This gives a closed form expression for the integral in (26), and (26) then becomes

2 (%) = (Bjlo;) (m/2) ' exp {—r?/40? ) ((r312) (Io(r2 /40
+1i(r;/4a?)) toilo(ri/4a?)).
3.2. Evaluation of Integrals in the General Case

To conclude our analysis of the bivariate normal density function we now show that even in
the general case (when the density is not symmetric and uncorrelated), all of the double integrals
appearing in (1) and (2) can be evaluated as single integrals in terms of error functions. The iteration
in (2) then becomes considerably more efficient because only single integrals need be evaluated
by numerical quadrature, using subroutines available for the calculation of the error function.

In the general case ¢;(x;) is given by (A) and the right-hand side of (2) becomes

S BiN¥ (x)

Hz)=1—"— (27)
where

N;k (%)= (27T()',,-jo'_,lj \/1_—'0-;),1‘

J

f; f;?[(x—f)H (y—=m)2] "2 exp {—2\/1—1—_—/)—’ [( §;5” )

(G2 () (5 Jasar

Orx Oy Oy
J J J

D;" (%)= (2770'.1-j(71/j Y l_p_?)_l'

f;/; [(x—&)2+ (y—m)*] 12 exp {—2\/%}2 [( g(_r,#l’ )

(522 (35220 (525 foon. o

O'J'j (T-'lj O'yj

Again, we evaluate only the first component of /V’;‘(X) which, for simplicity, we denote by N ().
The evaluation of the second component follows similarly. Substitute, as before, ¢ —x=p cos
n—y=p sin 6. The exponent in brackets in (28) and (29) then becomes

o

{(x—y,fj-i-p cos 0)2_2pl<x—p,,-j+p cos H) (_’)’_/.L”j"'p sin ()>+<y—;,¢!,j+p sin ())2]
J

Tr. (0 20 3%

Ty.
Y J !IA,

Ty;

Bj\* :
:PZA.i+2pB./+f7‘:AJ(P+_J> —trT
A»,’ A ’
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where

A= A4,(0) _cos* 0 2pjcos 6 sin H+si112 0

> 2
Tz Tr 0y Ty

(x—pr.) cos 6 (x—pr.) sin 04+ (y—puy,) cos 6 (y—puy.) sin
B;=B;(0)= . —pi ‘ ‘ + :

2 2
; TrOy. o
T x0y; uj

— 2 — = = 2
. (x “-".x) o, (x—pa ) (¥ My‘,)_{h()f My‘,-> ‘

i
Ox; Ozi0y; Yj

Note that 4;=4,(0) is never zero for 0 <o, oy; <. N*(x) now becomes

Ni (%)= 2mo. oy, VI—p3) 'exp {—rf/(2V] —pﬁ)}f(; exp {B3/(24;V1—p3)}P;(0)d6
where

P;i(0) :fx (x+pcos 0) exp {—A;(p+B;/A4;)2(2V] Ap;’)}dp.

0

We now show that P () can be evaluated in closed form. For each fixed 0, let

f—< +&)(“A-‘ )”l- 30)
T\ Nevi—p2 /) &

then

Pi(9) = (2V1—p%/A )"

J
(24;V 1—p3) 12

j [(X_% cos 9>+ (2V1—p3/4;) "2 (cos O)t]e “dt

B

= (m Vl—pf/ZAj)l/z(x—% cos 0) erfc {Bj/(QA_ix/l_—p;};)n/z}
J :

+ (VI=p3/d;) (cos 0) exp {=B(24,VT— )}

where erfc is the complementary error function (defined, for instance, in [1], p. 297).
Similarly, for the terms in the denominator of (27), we have

D} (@)= @mos oy, VI—p}) ' exp {=r}/(2VI=p3)} f T exp {B2124,VT=p710,(0)d8
where
Q.i((’):Jxexp {=A4,(p+B;/4;)*/(2V1—p3) }dp
= (mV1—p3/24;)"? erfc {B,/(24;,V1—p3)"2}.
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Aslo, to evaluate s (x) in (1) we have

U(x) =2 2(%) 31)
where
—2p; ( f;:.rj> (n;:j«'/.; )+ (P—;—:Ji'ii)z ] } dédn.

This leads to
2T
25(5) = B,(2m0 04 VT= )t exp {=rHRVI=pD)} [ exp (B3] QAVT= 53 IR, (0)d
) N 0
where

R;(0) :prz exp {—A;(p+B;/4;)?/(2V1—p3) }dp.

Use the substitution (30) to obtain

R;(0) = (2\/1__75/,4_1)1/31*

B (24, V1= p?) 2

(2V1—p2t2_25_,<2\/1—p§)I/ZH_ﬁ\

. )e*'zdt.
A; A; A; A3

Integration by parts in the first term then gives

V1—p2 B2
~—1—”i+—’> erfe {B/(24;VI—p3)12}

Ri(0)= @VI=g3A )| (V) (~—H—d

B; (2VI—p3\ 12
—gf<—7“'&> eXP{—Bﬁ/(ZA.;Vl—pﬁ)}]-
Ji J

4. The Bivariate Exponential Density Function

In this case all double integrals appearing in (1) and (2) can be reduced to single integrals.
Using the notation in (14) we have

W@ =raha, [* [T = £+ = m) 1= exp (s + hyym) Y

)

D/(f) = /\.I'.I—/\Jl.i J'

0

- J:o [(x =&+ (y = m)*] 2 exp {=(As;€ + Ny;m) }dédm.

We consider only the first component of N;(%) which we denote by N;(x). Let £ —x = p cos O,
n—y=psin O, F=2x%+y2, cos O = —x/F, sin ® = —y/f. Thus, tan ® = y/x and 7 < 6 < 37/2.
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Then we obtain

/2 o 5 —x/cos O 27 (—y/sin O
Nj(x) = NajAy, { <f f +f f —l-ﬁ f ) ((x+ pcosO)
’ : 0 0 w2 JO (S] 0

exp {—)\IJ. (x+pcosO) — Ay; (¥ + psin©) })dpdO }

/2 [ O [-x/Cos® [2m [—y/sin®
= Nz Ay exp {—xA:—yAy. } [(f f +f f +f_ f ) ((x+ pcosO)
S J J 0 0 /2 Jo 6 Jo

exp {—p()\(,-j cos O + Ay, sin O) })DpdO ]

= N Ay; exp{—xAr;=yAy; } [NVij() + Noj(2) + Ny;(2) ] (32)
Now let
rp= NG A W=0—;
cos ®; = N, /r; sin ®; = Ay, /r;.

Then

Nij(x) =J:) ) J(,x (x+p cos ©) exp {—prj cos (O—D;)} dpdO

|
=

f”/'—’ dO J‘”"—' cos OdO
0

o rems O—) "y e 0- @)

x ("% dV 1 J’"“""j cos (VW+d;) dV

T

J

o cos?\W

e 2
—0; cos WV r? i

J

D+ /2 mw/2d
" sec \lfd‘lf-f-i., {COS (Djf 7 secVWdW —sin (DJ-f : 7 sec WV tan ‘l’d‘l’]
—d rs ~®;

(1)

J J J

X Ay Nej ( Tit Nz 1
=(—+5")log| -— =) |+ ~ (Ay;— A
<rj+r;‘¥‘) Og|:)\yj<rj_)\yj>:| )\xjf}( v~ Aay)

and
[C) x/ cosO .
N._,j()z)zf/ f (x+p cosO) exp {—p(Asj cosO+ Ay sinO)} dpdO
72 J0

9 1—exp { ﬁ) (rj cos ((—)—Cl)j)}
rjcos (O—®;)

dO

=X

/2

0
+j cos@(l—[exp{ Cozerj cos (8—@;)} ] [— Cozerj cos (8—@;)4—1] ) doO
/2 r: cos® (@ —®;)
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2 —y/sin 6
Ns; f)=f~ f (x + p cos O) exp{—p()\_,-i cos@—k)\yj sin O) }dpd©
" i

Yy
. JZ" 1 —exp {sin g i cos (OF (D_,-)}de
0 ricos (O —d;)
‘ y y
Zn('”“'9<1_[6"‘){;"16”“’“ (6 —d)) }] [ e AR (9—<D,,-)+l:|)d9
- = = .
fﬂ 13 cos? (O6—d;)

Entirely analogous calculations give

T2 [x O —x/cos O 27 —y/sin ©
D (x) = Az Ay, . Sy
: J 0 0 /2 Jo o Jo

(exp{ — )\_,-j (x+ pcos O) —)\,,j (y+psin©O)}) dpd@)

= Aa; Ay, €xp = XNy y}\,,j} 7.’_log ~ —Lr —
y \ T My

d O

x
+J.§l p{ )Ser,coq(e <1>)}
o cos (O—0;)
l—ep{ yer,(()s(e (D)}

+f6 ri cos (O — ®;) G,

In order to evaluate iy (x) use the notation in (31). where now

) =y f ’ f o G A=

= BiArjAyexp {— xhzj— y}\,,j}L(f) f j(’f( 0 j f.m

(p*exp{— p(Az;cos0O+ \y;sinO) })dpdO)]

=BAr; Ayjexp {— xha— YAy} [20(X) + 25(%) + 255(2) ]

Now we have

N 2dO z do 2[5
zy(#) _fo (Azj cos O+ Aysin )7 =2 fo ri cos® (O —®;) B r} f‘x»_l. sectd W

1 ;A Aay (it Aa
R et
rP ANy} N ’_ Ayj \1j—Ay;
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X - X )
52— [exp {A() rj cos (O— (l)_,-)HK“—)Ser_,- cos (O—d;) +1)>+ l]df)

CcOSs

22j(X) = J; r"/.‘(',ns"‘(() —®d;)

y - o
i(x) = f:ﬂ ° [exp {m)rj cos (();(DJ)}][(COS};)U O 1>- * l]de .
23j(%) = r}‘ cos*(9— D;)

O

5. The Bivariate Symmetric Exponential Density Function
In this case all the double integrals appearing in (1) and (2) can be reduced to single integrals.
Using the notation in (14) we now have

Ni(f) = (1/4))‘1‘1'}‘-'/.;' [; J’; f_[(x S R S R }‘wj)f - 01'j|_ }\yj|”f) - 9yj|}d§d7l

Do) = ey [ [ 1= &9+ = m21 1 exp {hall = 0 hag I — ) den
Consider only the first component of N;(%) which we again denote by N;(x). We have

r’V/(.f) - (1//1<))\.l'_//\!/_[ (f A”j :/ f’f_g, 1 exp {7 }\,,(H:’_f) _}\;/‘I-(H!/‘,.*’Y))}dg(ln
$J'7 f f ’f_{;‘ Lexp {_)\.r»}.(f/.,-i_f) _)\.,,./(7)— H”i) fdédn
[T E e o h =00 = ha (00, ) by

JVJ'ZA[XH-’Z“E' "exp {_ )\-l'/(’f* 9.:-(,-) _)\!/.,-("’I‘()uv,-)}df‘hl>

== (1/4‘))\‘1'_,-)\1/]' (NI/ (‘7) +N2_i(x) +N:i_i(f) I N;_,‘(i))-

Now let §—x=p cos 0, n=y=p sin 0, R5= (0., —x)*+ (8,,—¥)* cos 0= (0., —x)/R;, sin
0;= (()_,,).—y)/R_/. The limits of integration are determined differently depending upon whether

(cos 6, sin ;) is in the first, second, third, or fourth quadrant. We illustrate the procedure by
calculating NV, ;(x) assuming that (cos 6;, sin ;) is in the first quadrant. We then have

6

bRTE (R (3
N,j(x)=exp {— )\‘,-j(ﬁ,,i—x) —)\_,,/.(Hg,i—y)} : {f f +J' f +f j
J J ¢ e 7 Jo 0 —m JO

2

((x+p cos 0) exp {p(A,; cos O+ Ay, sin ) })dde}
Now let r5= )\:-;,j+ )‘?U" cos ;= )\,,»j/r‘,- , sin @ ;= )\.,,J_/r_, to obtain

Nij(x)=exp {—Az;(0r;—

]

Hj l(i('usHl-/ms(f T I{jsinﬁj/sinﬁ —1r/2 'S
: + +
—m/2 JO Hj 0 - 0

((x+p cos 0) exp {prjcos (6—D;)}) dpdb.

x) _)\1/.;(01/_,-#)’)}
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The integration with respect to p can be performed explicitly in each term to give

Nlj(f)zeXp{_/\rj(orj_X)_)\yj(ay_}’)}

% cos 0;
[ exp{RjCO—Sérj cos (6—®d;) } ]—l

N rjcos (0—d;)

cos 0 cos 0; R; cos 0;
) <1_<_Rj—'—rj cos (0—@;)—%—1) exp{ —————— 7 GOR (0-<Dj)}) do

+r;f’ cos? (0 —d; cos 6 cos 6

m sin 0
4 B [exp{RjSlTejrjcos(ﬂ—(Dj)}]—l
rjcos (0—®;)

V5

0 5 0 1 o
co5 (1—<—Rj LR rj cos (0—‘D;)+1> exp{Rj sin 0, rj cos (0—(131)}) do

r; cos? (0—D;) sin 6 sin 6

+xr'7—‘;)\,,--log</\_wilirj+)\l-j )_A!IJ_A..J'J'. (35)
;T Ay Lrj Ay )\Ijr;’.

" - - o ™
T'he last two terms have been evaluated by transforming the range of integration to [ 0, 5] and

then proceeding as in (33) and (34). Similar expressions are obtained for N, (%), N3; (%), N4j (%)
and for the analogous terms in D; (x). The objective function (%) in (1) is evaluated analogously
except that the integrand with respect to p is of the form p? exp (4p). with 4 independent of p.

6. Numerical Results and Discussion

For ¢;(x;) given by (A), (B), and (C) we have performed a large number of numerical compu-
tations to find the minimizing P, and . In [6], we presented an example illustrating the locally
linear convergence to P for the case (A), bivariate normal density functions. We do the same here
for the case (B), exponential density functions, and the case (C), symmetric exponential density
functions. We also show how the use of Steffensen’s iteration [4], accelerates the convergence.
In order to emphasize the contrast between this probabilistic problem and the corresponding
deterministic one, we indicate those cases in which x ¢ co { i} )_, with an asterisk. Comparisons
are also made between 1, the bound for ¥ from (4), and ¢ BOUND from (5).

Problem No. 1 below exhibits a typical set of data used in one of a series of problems studied
numerically for case (B), the bivariate exponential density function. In this problem N=20, and the
bj(x;) forj=1,2, . . ., N were taken as bivariate exponential density functions whose values of
A:; and Ay; were generated randomly. The weights B; were also generated randomly. The iteration

was terminated when | xu1—x, | <10~* and | ypi1 —ya | <1074 %o was chosen to be

2 .X}.—-l

J

B;
2 Bj
J=1
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where A; l:()\-"/! R }\ul_‘). M in table 3 is the number of iterations required to achieve the desired

accuracy. The computer used for all calculations was the CDC Cyber 72.

Problem No. 1

Aej i 1360 356 13.59 1033 630 537 15.76 1643 4.78  8.94
6.68 17.18 739 1590 031 7.03 19.88 1286 14.85 10.94

Ay;: 797 1621 878 882 1501 250 0.18 1035 18.61 8.07
18.00 736 7.87 290 940 11.18 10.76 6.54 13.61 12.66

Bi: 906 87 985 794 282 883 239 247 941 5.70
736 9.00 094 050 1.27 0.13 649 572 4.28 9.22

The method of numerical solution employed is to use (2). This is discussed in more detail in [6].
Here we simply wish to illustrate the same kind of linear local convergence for the bivariate ex-
ponential density function as was shown in [6] for the bivariate normal density function. In table 2,
we show this local convergence.

TABLE 2. Local convergence—bivariate exponential density function

n Xn Yn Xn—a Yn— 3 [Za—a| Xf” s [.Y(fi

| 0.326081 0.144027 —0.071494 0.049108 0.08673 0.5442
2 354470 114142 —.043105 .019223 04720 5983
&) 370288 .102158 =R027292 .007239 102824 6317
4 379962 .097750 —.017613 1002831 01784 6373
o 386272 096122 —.011303 001203 01136 .6356
6 390370 .095491 —.007205 .000572 .00722 6191
7 393015 .095225 —.004560 .000306 00447 .6398
8 .394707 .095100 —.002868 .000181 100286 .6049
9 .395790 1095028 —.001785 .000109 00173 .6300
10 396482 .094985 —.001093 .000066 00109 5963
11 .396925 .094958 —.000650 .000039 00065 5692
12 397207 1094941 —.000368 .000022 .00037 o130
[i3] 397387 1094930 —.000188 .000011 .00019 3684
14 397502 1094923 —.000073 .000004 00007

a=(0.397575, 0.094919).

In table 3 we indicate for 40 randomly generated problems the values of ¥, the bound on s
from (4), ¢y BOUND from (5), and whether or not % is in the convex hull of the means. An asterisk
next to the value of s indicates that % is not in the convex hull of the means of distributions. The
closeness of the bound is probably strongly dependent upon the nature of the data. For these ran-
domly generated problems, the bounds are not very close.

TABLE 3. Bounds on objective function—exponential density

N M s Bound for Y BOUND
from (4) from (5)
30 16 29.114 173.880 242.628
30 12 12.079 100.406 140.618
30 14 5.284* 55.537 75.538
30 14 25.792 202.893 284.551
30 6 12.656 77.019 106.534
30 13 21.548 347.880 490.120
30 12 17.742 118.154 165.042
30 10 9.856 81.457 112.372
30 10 7.350 61.793 83.795
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TABLE 3. Bounds on objective function—exponential
density— Continued

N M U Bound for ¢ y BOUND
from (4) from (5)
30 10 8.216 79.363 110.170
20 14 5.927 53.949 74.012
20 14 26.725 151.732 212.956
20 14 8.522 68.464 95.960
20 11 3.125 39.150 53.083
20 20 23.835 168.143 236.237
20 10 4.149 51.055 70.417
20 8 9.196* 54.956 75.920
20 14 22.643 344.637 486.403
20 9 2.400 25.562 34.767
20 6 16.436 105.702 147.579
10 10 1.121%* 12.074 15.948
10 11 3.318* 21.399 29.313
10 9 0.989* 12.832 16.929
10 10 5.497* 47.132 65.906
10 9 1.624 20.033 27.293
10 14 1.382* 13.027 17.314
10 10 4.314 28.651 39.116
10 14 5.008 43.205 59.725
10 15 1.140%* 10.676 14.489
10 13 1.773 24.635 34.190
5 5 22T 14.688 20.107
5 9 1.670* 26.527 36.952
5 7 0.240* 3.334 4.015
5 13 21.036 106.369 150.094
5 18 2.140 13.529 18.449
5 8 1.075* 18.091 25.193
5 14 2.423* 13.535 18.639
5 28 4.310 26.844 37.449
5 17 1.158* 12.988 16.715
5 15 1.438%* 8.857 12.148

Problem No. 2 below exhibits a typical set of data for the problems of case (C), the bivariate
symmetric exponential function. In this problem N=10, and the ¢;(x;) for j=1, 2, . . ., N were
taken as bivariate symmetric exponential density functions whose values of Az, Ny, 0., 0, were
generated randomly. The weights 3; were similarly generated. The iteration was terminated when
|01 — 2] < 10-*and |y,s1 —yu| < 10~% %, was chosen to be:

2 Bj0;

=

2 Bi

N
j=1

J

where 6;= (OJ-j, Oyj). M in table 5 is the number of iterations required to achieve the desired
accuracy.

Problem No. 2
)\xj: 1.36 1753 882 5.37 4.78 18.61 6.68 18.00 290 7.03
)\_,,j: 7.97 13,59 15.89 250 1643 18.82 18.00 7.39 1.01 11.18
Oz 906 4.39 3.15 883 5.18 4.47 7.36 3.94 0.15 0.13
Oy;: 1.78 985 751 7.88 247 4.04 859 094 4.70 9.94
B;j: 811 517 282 0.09 239 570 3.68 795 127 5.38
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Local convergence for Problem No. 2 is exhibited in table 4. In table 5 we indicate the bounds and
whether or not the solution is in the convex hull of the means in the same fashion as we did for the
bivariate symmetric exponential density function. It is similar to table 3. For the problems generated
for the symmetric exponential case we never found one in the convex hull of the means.

TABLE 4. Local convergence— bivariate symmetric exponential density function

n X Yn Xn—a yn—B J2¢n — | %{%
1 0.01668185 0.04066205 0.00462450 0.03773900 0.0380213 0.3519
2 .01158224 .01629392 —0.00047511 .01337087 .0133793 .3051

3 .01210797 .00700439 .00005062 .00408134 .00408165 .3864
4 .01255962 .00441807 .00050227 .00149502 .00157714 .5018
5 .01253156 .00355670 .00047421 .00063365 .000791446 .5563
6 .01238560 .00321650 100032825 .00029345 .000440296 5251

7 .01224484 100305836 .00018749 .00013531 .000231217 4034

8 01213578 .00297353 .00007843 .00005048 .0000932711

a=(0.01205735. 0.00292305).

TABLE 5. Bounds on objective function—symmetric exponential density

N M U Bound for s i Bound
from (4) from (5)

30 13 38.195* 485.942 533.053
30 19 36.889* 609.044. 699.347
30 11 31.590* 623.526 696.993
30 14 15.391* 513.657 569.532
30 13 26.269* 850.293 978.537
30 11 3.362% 527.453 596.923
30 13 15.910* 754.403 823.259
30 28 54.418* 553.564 611.917
30 10 56.257* 723.158 801.155
30 12 7.493* 482.261 544.145
20 16 0.02035* 324.837 349.834
20 17 119.638* 503.372 565.895
20 10 5.548* SI28673 350.797
20 12 10.965* 369.864 420.667
20 16 17.922* 469.078 527.044
20 25 199.676* 682.171 762.248
20 13 72.808* 553.628 631.301
20 2 2.169* 215.444 241.296
20 9 4.340* 452.851 483.389
20 13 0.45620* 342.029 376.407
10 8 2.407* 178.300 193.276
10 17 29.185* 308.299 366.341
10 i 4.695* 107.535 117.199
10 g 0.47852* 177.145 187.936
10 12 5.742* 237.441 254.580
10 19 25.345* 205.296 240.394
10 12 9.546* 186.705 203.622
10 12 1.429* 140.736 150.786
10 20 2.901* 155.144 178.605
10 S 0.77443* 286.310 307.411
5 19 9.236* 93.932 124.836
5 25 0.00133* 49.655 55.333
&) 4 1.951* 85.311 94.246
5 19 14.127* 216.730 273.959
5 8 0.00000* 88.316 93.744
5 8 2.465* 60.637 67.276
5 17 3.493* 100.387 110.473
5 13 1.301* 80.547 85.485
5 23 30.839* 69.109 79.990
5 13 0.00000* 31.311 35.560
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6.1. Steffensen’s Iteration
A well known method for accelerating the convergence of linearly convergent iterative schemes
is Steffensen’s iteration [4]. In the case when the unknown vector is two dimensional, Steffensen’s
iteration, applied to the scheme in (2), is described as follows (see [4], p. 115 for a derivation):
Choose a vector x9= (x©, y) and construct the sequence of vectors {x*)} by the rule:
for each k=0,1, 2, . . ., set xo=x'%), and calculate x,, %,, &3 from
xn*l:H(xn) n=0, 1, 2.
Let the matrix X, be defined by
Xn Xn+1
X": ( )
Yn Yn+1
and let A denote the forward difference operator. The next iterate is given by
xte+ l):fo‘— M()(A2X4)) “1Ax.
In order to test the utility of Steffensen’s iteration in reducing the amount of calculation to
converge to any given degree of tolerance, ten, 20 destination problems and ten, 10 destination

problems were run on the CDC Cyber 72 both with and without the use of Steffensen’s iteration

TABLE 6. Effect of Steffensen’s iteration on convergence

Number of Number of Number of iterations
destinations iterations (Steffensen)
20 14 7
20 14 13
20 16 6
20 16 I3
20 17 15
20 14 6
20 12 5
20 15 5
20 15 9
20 13 6
20 14 6
10 15 12
10 15 7
10 16 6
10 16 8
10 18 9
10 12 10
10 17 10
10 116} 8
10 25 1183
10 16 7

technique. The number of iterations given in table 6 is the total number of iterations, i.e., the num-
ber reported using Steffensen’s iteration includes the three iterations required to use the method.
The problems all used a bivariate normal density function. The average ratio of the number of itera-
tions with the Steffensen method to the number of iterations without the method for the 20 problems
of table 6 was 0.571. Hence, it can be readily seen that it is quite advantageous to use the Steffensen
iteration method when performing these calculations.

We thank the reviewer for his helpful suggestions and for his careful verification of many
of the formulas presented in this paper.
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