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N destinations in the plane {I' j : .i = I.. .. N} are given as independe nt random variables with 
specified probability de ns ities . a nd the problem is to find the location of the point P which minimizes 
the expected sum of the Euc li d ean d is ta nces PPj . 

Tn th is paper. uppe r bou nd s for t he minimizing s um of di s tances are found in terms of so lution s to 
co rres pond ing determini s ti c problems and the first a nd second moments of the probabil it y densi t ies. 
T hree co mmo nl y occur ring classes of biva riat e probabi lity de ns ities: (A) normal. (B) ex ponen ti a l. a nd 
(e) sy mm e tri c ex pon e ntia l. a re the n co ns idered. N um er ica l tests are presente d which s how that in all 
cascs. Steffensen 's iteration is e ffective in accelerat in g convergence. Finally it is shl)wn that in con tra st 
to t he de te rmini stic case. l' need not be in the convex hull of the mean s of I'j and a s ufficient condition 
is g ive n for P to be in this convex h u ll . 

Key words: Always co nvergent a lgorithm s: ex pone ntiall y di stribut ed point s : facil ity location; location 
t he(l r y: n<>rm a ll y dist ribut ed point s: nu meri('al ana lys is: optimization ; s tochast ic Weber prob le m. 

1. Introduction 

A probabi li st ic exte nsion of th e classical Weber (Ste ine r) problem was introdu ced in [3 11 and 
[6]. N des tinations in the plane, {P j :j=l, . . " N}, are given as random variables with s pecified 
probabi lity den s ity funct ions. It is desired to find the location of a point P with Cartes ian coordin ates 
(J= (a, (3) which minim izes the expected sum of the Eucl idean distances pej • A possible application 
of thi s problem to minimizing capital cos ts in wate r qualit y mana).\eme nt is give n in [6]. For sim· 
plic ity we restrict ourselves in what fo llows to Et , 

Specifica ll y, let P i be a random variable with probability density function cpj(ij) , ij= (xjo 

YJ),j=l, . . . ,N,whereijESj CP,SjisthesamplespaceofPj,Denotebyli-ijl=[(x -xJ)2+ 
(Y -Yj)t J I/2 th e E ucl idean distance between i= (x, y) and ij. The expected value of PPj is then 

E ( Ii - ij I ) = J f. . Ii - ij I cp) (ij) dXj dYi and we wish to mini mize the objective fun ction 
.5 J 

(1) 

over i, where the f3 j are given , pos itive weights. 
I n thi s paper S j= S for j = 1, . , . , N; that is. all Pi are in the same sampl e space, We also 

res trict P to S, I t was shown in 1'6 1 under mild assumptions on (/» that t/J (x ) is strictly convex , and 
that the minimiz ing po int P is uniqu e. An iterative algorithm for findin g P was obtained formally 
by setting V' t/J (;X) = 0, by "solving" this equation in the form a = H (a). and then by passing to the 
iteration scheme ill + 1 = F! (i") wh ich this suggests. SpecificaHy. 
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n = 0 , 1, 2, .. . 

(2) 

where ~ = (~, 1) and C (t) = L f3 j ¢ j (~). The algorithm was shown in [6] to be a descent method 
j 

which is globally convergent to P and converge nce was shown to be linear. locally. Although the 
considerations in [61 are for S = £ 2, the same proofs apply with minor variations when S = [0 , (0 ) 
X [O, (0) . 

In this pape r, we first obtain upper bounds for 

0 = min 1jJ(x) (3) 
XES 

in terms of the solutions to corresponding deterministic problems with the new destinations at the 
means of the random variables Pi. It is of interest to note that these bounds involve only the first 
and second moments of ¢j(Xj). He also give a sufficient condition for P to be contained in an as· 
sociated convex hull. This is important because whereas in the classical deterministic problem P 
is always in the convex hull of the destinations (see [5] and [7]), a corresponding statement for the 
probabilistic problem is not necessarily true, as we demonstrate later with a counterexample. 

Next we consider three specific classes of probability density functions : 

(A) S = £2 and ¢j (Xj) = 

-2pj (Xj- f.L.l' j) (Yi- P"Yj) + (Yi- f.Ly))2]}, 
(I Xj (Iy) (Iy) 

the bivariate normal density function , 

(B) S = [0 , oo )x[O, (0 ), and 

the bivariate exponential density function, and 

(C) S = £2 and 

a bivariate exponential density function with mean at (8 x' ' 8 y .) and standard deviation (V2j A. x . , 
.I J .I 

V2/A. y . ). In each case we seek the minimizing XES . 
.I 

A major part of this paper deals with a special case of (A), namely the symmetric bivariate 
normal de ns ity when Xj and Yj are inde pendent (pj= 0) , and (IY j = (IYj = (Ij, j= 1, ... , N. In 

thi s case, which is of considerable practical importance , all integrals appearing in (1) and (2) 
can be evaluated in closed form in terms of products of exponentials and modified Bessel Functions 
of orders 0 and 1. This m'ay be very useful in practical computations, since tables or subroutines can 
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th e n be used instead of tim e-consuming numerical quadrature_ W e also prove that in thi s case Pi s 
in th e co nvex hull of the means of th e destinations /L j= (/-t.rj' /-t Yi)' which we denote by co {/Lj} . 

By mra ns of a s im ple co unt e rexa mple with N=2 we show that e ve n if p j= O, when (T ,r .CP(TIJ' 
.I .I 

I' need not be in co {/-ti} ' In the gene ral case in (A) where the density is asymmetric, all double 
integra ls a re redu cibl e to s in gle integrals. This is also true for (B) and (C)-

Finally, it was sugges ted in [6J, that since convergence is locally linear in (2) , Steffensen's 
ite rat ion [4 J for accelerat ion of con ve rge nce should be effective. We report the results ofrandomly 
genera ted num e ri ca l exampl es whi c h confirm that this is indeed the case. We also compare our 
upper bound fo r lfJ with its tru e va lu e for some numerical examples. 

2. Upper Bounds for 'b 

An upper bound for (3) follow s from Schwarz's inequality. Since 1>i(Xi) ~ 0, and 

J r (pAxj) dxjdYi = I , 

we have 

\/J(X, y) = t f3j J r vex - 0 2 + (Y - 1) )2 (pj(~ , 1) )d~d1) 

~ ~ f3j [J r [(x - 0 2 + (Y - 1) )2J1>i(~' 1) ) d~d1) }/2 [J Ifi(~' 'Y/ ) d~ d1) }/2 

= '" f3 j [ X2 - 2x/-t J" + E [x2J + y2 - 2y/-t!l ' + E [y2J ] 1/ 2 L... .1.1 .I J 
) 

wh e re /-t .l' i = E[Xi J , /-t Yi = E[YiJ a re th e res pec tive x and y means of 1>i(X)), and wh ere 

(T 2 = E [x 2 J - /-t ~., (T cy, = E[y2J - P; ~/ ' are the respec tive x and Y varian ces of 1» (Xi)' This gives 
.J J .I . J.I J . .I 

(4) 

where (T2 = (T2 + (T2 . A coarser but more easily calculated upper bound follows imm ed iately 
J Xj Yi 

from (4): 

~ ~ ~}sn L f3 i ([(x - /-t l'i)2 + (y - /-tYi )2 JI /2 + (T j) 
) 

= '" f3 ' (T ' + min'" f3 . [(x - /-t .,)2 + (y - II, .)2 JI /2 = \1. Bound. ~ ) .J fE:S ~ .J .J r .l ) f' (5) 

The second te rm on th e ri ght in (5) is th e minimum weighted sum of the di stances in a deterministic 
problem with the des tinations a t th e means of Pi • and the first term is a weighted sum of the stand­
ard deviations of the Pi ' Note that for any 1> j (X i )' the bounds in (4) and (5) depend only upon its 
first and second mome nts. 
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3. The Bivariate Normal Density Function 

Assume that 4> j (Xj) for j = 1, ... , N is given by (A). We now show that 

if P i = 0 and 0" Xj = O"!li = O"j for j = 1, ... , N then ct E co {,u.dr= 1 (6) 

In thi s case 

4>i (x;) = (27r0"/) - I exp { - 2~2 [(X j - J-t x) 2 + (Yi - J-t!lj)2] }. 
.I 

(7) 

We first prove two lemmas which are useful in locating a. 

LEMMA 1: Suppose Zj (y) are differentiable, real valued functions defined on £2, i= 1, . . . , N and 
let y be a point at which z(Y) = ~ Zj(Y) is minimized. Then y E co {Yj} ~=I is assured under ihefoLLowing 
two further assumptions: 

(a) The level curves 5 i ={y E E 2Izi(Y) = c } are concentric circles centered at Yi, that is,5 i = 
{yIIY-Yil = r(c)}. 

(b) For some k, VZk (y) ~ 0 ify ~ YI<" 

PROOF: Assume, to the contrary , that y ~ co {ji H'=I. Then there is a line l containing y, with a 
norm al Ii, such that all Yi, i = 1, ... , N are contained in an open half plane bounded by l. For 
yon l, we have Ii' Y = Ii 'y = b, and Ii ' (Yi -)7) > 0, for i = 1, .. . , N. Now, because of (a), 

- Y - Yi 
VZi(Y) = !VZi(Y) 11_ -I 

Y -Yi 

and because of (b) 1 v z" (y) 1 > O. Therefore, we have 

which implies that Z (y) is decreasing in the direction Ii from y. This con tradicts the assumption 
that Z (y ) is minimized at )7. hence Y E CO{Yi} ~1 ' 

LEMMA 2: Suppose that the probability density function 4> j (Xi) is radially symmetric about its 
mean J-tj; that is , suppose 1J j (Xj) = f j (I Xi -,uj 1 ), Xj E E2. Then 

satisfies assumption (a) in lemma 1, with Y j = p, j. 

PROOF: Use polar coordinates ~ - J-t Xj= P cos 0, Yj - J-tYj = P sin 0 in (8) to obtain 

Zj(X)={3 j ! L'2 Ix-[I1Jj ([)d~dYj =f3jJ L, Ix-[I jj( I[-p,jl )dgdYj 

= { '" { 2IT P [(x _ J-t x- p cos 0)2+ (y-J-ty .- p sin 0)2] 1/2 fi(P) d0dp Jo Jo) ) 

= {oc p jj(p)dp { ZIT [r 2 + p2 _ 2prj cos (0 - <P j )] 1/2 d0 Jo Jo) 
where rI = (x - J-tXj) 2 + (y - J-tYj) 2 , 
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I - ------------ - ---

(10) 

Using th e periodi c ity of th e integrand over [0, 27T] , and le ttin g \It = e - ct> j, (9) beco mes 

Zj(X) = ( 00 p!i(p)dp (21T [r2 + p2 - 2prj cus 'It] 1/ 2 d\(r Jo Jo J 
(11) 

which implie s that Zj(x) in its dependence upon x is a function of rj , The Euclidean distance to 
J;,j, alone. Hence, the level curves of Zj (x) are concentric circles centered about jj., j. This proves 
the lemma. 

Now we wish to apply lemma I with 

and with CPi (l) given by (7). It follows from [5] with N = 1 thaI Zi (x) is s tri ctly co nvex o n P. A lso 

a nd an pasy comput atio n s hows that V'Zj (ii i ) = 0 whe re iii = (/-t.r, /-tIl)' S in ce zJx) is s tri c tly 
. '.1 '.1 

conv ex, V' Zi (x) oF- 0 if x oF- Iii fo r aLij = 1, . . ., N . H c nce Zi (x) sat is fies assum pt ion (b) oflem ma l. 
[n order to s how th at Zi (x) sa t is fi cs as s u mpt ion (a) of le m ma 1, observe t hat from (7) we have 

(P (x) = (27T(T2) I exp { - 1 Ix - Ii" 12 } 
.1 .1 .I 2CT2.1.1 

.I 

so that CPj (Xj) = fJ ( Ixj - /Lil) . By le mma 2, the n , Zi(X) satisfies condition (a) of Ipm ma I, with 

Yi= fli' Now appl y lemma 1 with Yi= fli to o btain (6). 
The res ult in (6) is not trivi al. In the c lass ica l det e rmini s ti c problem a is a lwa ys contain ed in 

co{ Pj }/=1 wh e re Pi are the given d es tin ations (sec [5] amI [7 ] ). Howe ver, in the probahili s ti c 

case, we now show by means of a s imple co unterexample with N = 2, that e ve n whe n th e CPi are 

normal bivariate de n sity fun ctions with pj= 0, if CT.lj oF- CTY j th e n IX is not necessa rily in cO{ jlj }j':" I' 

Con sider the problem: N = 2, cPj (Xi) for j = 1, 2 given by (A) , 

f31 =f32= 1, /-t XI= 1, /-LYI = 0, CTx ,= CT , CT!I,= 1: /-L x, = O,/-L y,= 1, CT J',= 1, CTy ,= CT: 

pj = O. In this problem CO{ 'ui }~= I = { (x , y) Ix + y = 1, 0 ,;;; x ,;;; l}, the closed lin e segme nt joining 

the means. F ro m symmetry conside ratio ns, it is eas y to s how that fo r eac h fix ed CT , 0 < CT < 00, 

1 
t he minimizing point ii = (a, f3) sati s fi es a = f3. The refore a is in CO{ jli }j~ I if and only if a = f3 =-2' 

a~ . 
It a lso follow s us ing V' t/J(ii) = 0 that a sat isfies (Ix (a, a) = 0 for each CT: 

(12) 
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We give the following argument: As cr ~ 0 it is we ll known (see [21, p. 324 and [8] , chapter 1, 
[or exa mple) that in the se nse of di stribution s (V217 cr) - I ex p {- 1/2 (u-l H cr 2 } ~ 0 (u - 1), th e 
Dirac-delta fun c tion centered at u= 1. In each integral of (12), one dime nsion of the probabilistic 

problem th e n becomes de terministi c with th e corres ponding coordinate of the des tination fixed 

at 1. Le ttingcr ~ 0 in (12) we obtain 

(13) 

We now show that the unique a sati sfying (13), also sati s fie s 1/2 < a < 1. Continuit y arguments the n 
imply that for cr s uffici e ntly small the unique a sati s fying (12) is also s uch that 1/2 < a < 1, i.e., for 

(T s ufficiently small a It cO{ llJY=1 ' the reby providing a co unte rexample. We have 

and 

Hence a satisfying (12) is s uch that ~ < a < 1, which conclud es th e proof. (In fact a ~ 0.66 approxi­

mately, as cr ~ 0, as seen from table 1.) 
For purposes of illus tration we have solved (12) numerically us in g an iterat ive sc hem e analogous 

to (2). In table 1 we give a [or various values of cr, 0 < cr < 00 . As cr goes from 0 to 00, a goes mono­

ton icall y from 0.660 toO. Th erefore for no value of cr except cr = 1 (w hen (T.r, = (Ty, = 1 = cr.r , = cr 1/2) 
is Ii in cO{JliJ7=1' This is in marked contrast to th e deterministic case when a is ahuays in the 

co nvex hull of the destinations. We also give in tab le 1, lfj, th e bound for lfj from equations (4), 

i.f; BOUND from (5), and M, the number uf it e ration s of (2) to achieve three place accuracy. The 
bound [or llJ from eq (4) was calculated from an obvious ex te n;; ion of th e c lass ica l iteration for solv­

ing the W ebe r problem (see [5] , or [6] , for exa mple). 
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TABLE I. Counterexample 

a a M 1) Bound for </J 
from 14) 

1/32 0.660 7 2.1 2.3 2.450 
1/ 16 .658 7 2.1 25 2.452 
1/8 .650 7 2.1 34 2.462 
1/4 .623 7 2.173 2.500 
1/2 .567 8 2.326 2.646 

I ' .500 ' - 2.8 14' -

2 .416 9 4.074 4.690 
4 .391 II 6.969 8.367 
8 .259 II 13. 108 16.186 

16 .122 12 25.708 32.094 
32 .043 12 51. 138 64.047 
64 .01 2 12 102.136 128.023 

128 .003 12 204.202 256.012 
256 .001 12 408.370 512 .006 
5]2 .000 12 816.723 1024.003 

'Co mput ed fro m closed form express ions (see (24)). 
~BOUND = v2+ 2VI + 0" ' . 

;~ Bound 
from (05) 

3.4 15 
.3 .4 18 
3.430 
3.476 
3.650 
4.243 
4.886 
9.660 

17.539 
33.477 
65.445 

129.430 
257.422 
513.418 

1025.42 

. The mini~,uln _,/J(x, Y) =!m;)!,. in the corresponding dete rministic 
pr oble m w,th I j <It /L j rs . '/)m;,,- v2. 

3. 1. Evaluation of Integrals in the Symmetric Uncorrelated Case 

W e now give ex pli c il c lused form ex press ion s for th e e valuatio n of a ll of th e integra ls in (2) 

wh e n p j= O and (JJ = (J ,, = (J j for j = 1, . .. , N . In thi s case 1»(X)) is give n by (7 ) and th e ri ght-. .1 . .1 . . 

hand s ide of (2) becomes 

wh e re 

L (3/V j (x ) 
R( x) =-"..i_--

L (3 )D j(x ) 
(14) 

(15) 

(16) 

W e e va lua te th e fir s t c ompone nt ofN.i (x), whi c h fo r s implicit y we de note by Nj(x). Th e e valuation 

of 1 h e second co m pOll e nt fullow s si mi la d y. S ubs titut e ~ - x = p cos (), 'YJ - y= p s i n 0 to obta in 

f x f~7T { 1 N j (x) = (2m]"]) - , (x + p cos e) exp --.J [(x - fL .r + p cos 0) ~ 
o 0 2(J' .I 

.I 

(17) 

Use the notation in (10) and le t 
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f27T 

} j( p) = 0 exp {- (prJ aT) COS (8- <Pj) }d8 

f27T 

= 0 exp {- (pr j/aT) cos qt}dqt 

where we have substituted 8 - <P j = qt and used the periodicity of the integrand. Then, we have 

Reference to [1], p. 376, 9.6.16 or 9.6.19 shows that 

where J,.. is the modified Bessel function of the first kind of orde r k. Reference to [1], p. 487,11.4.31 
then gives 

(18) 

In order to eval uate Lj(x) note that 

(19) 

where 

Let 8 - <Pj = qt, use the peridoi ci ty of the integrand and refer to [1], p. 376,9.6.19, to obtain 

Substituting in (19), this gives 

Integrating by parts in the last integral, we obtain 

The int egrated term vanishes at p = O since 1,(0) = 0. At p= oo we use 11 (z) ~ eZ (27Tz) - '/2 (see 
[1], p. 377, 9.7. 1) to show th at the integrated term vani shes there too. The expression in (20) can 

be furt her si mplified by using 2/; = 10 + 12 (see [1], p. 376,9.6.26). This simplification combin ed with 
use of [1], p. 487, 11.4.31 gives 
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Substituting (18) and (21) in (17) gives the explicit closed form expression for a typical double 
integral in (14), 

Calculatio ns co mple tely analogou s to those which gave K j (x) in (18) a lso yield 

(23) 

(22) and (23) are the closed form express ions requ ired for the iterative algorithm (2), in thi s s pec ial 
case. 

The equation for the minimizin g x, x= fi( x) can now be writte n as 

] 
2" 2: {3 jlT j ) exp {- r]/4ITJ}( (x + II j )1 o {rj /41TJ) - (x - IIi) I) {r]/41TJ} ) 

x = J (24) 

11 is of inte rest to note th a t (24) ca n be re written in the equi va le nt form 

N 

x= 2: AI. il l. , (25) 
k = ) 

wh ere 

A = {3 1.lT i: ) ex p {- rU 41TH (lo{ rf./41T f.} + I) {rf/4ITn ) 
It .v 

2: ITt ex p {- rJ/41Tj} (I o{ rJ/41TJ} + I) {r f /41TJ} ) 
j= ) 

satis fy 0 < AI, < 1, LA /,·= l. Therefore (25) is a closed form expression (in te rms of x) fo r x as a 
convex combination of ill;, with con stants AI . . We proved earli er th at in the ca se of bivari ate norm al 
density functions with Xj and Yj independent and ITx j = ITY j= ITj, such a combination always exis ts 

since x E co {iiI. } I~, = t. 

It is also possible to evaluate the objective fun ction 'l!(x) in (1) without nume rical quadrature. 
We have 

and 

= 2: Zj (x) 
j 

(26 ) 
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Refe r to [1] p. 487, 11.4.31 and differentiate with res pect to the parameter a 2 appearing there. 
This gives a c losed form expression for the integra l in (26), and (26) then becomes 

+ I, (rj /4 crj)) + crj Io(rj /4crj )). 

3 .2. Evaluation of Integrals in the General Case 

To conclude our analysis of the bivariate normal density function we now show th at even in 
the general case (when the density is not symmetric and uncorre1ated), all of the double integrals 
appearing in (1) and (2) can be e valuated as single integrals in terms of error fun c tions. The iteration 
in (2) then becomes considerably more efficient because only single integrals need be e valuated 
by numerical quadrature, using subroutines available for the calculation of the error function. 

In the general case cf> j (Xj) is given by (A) and the right·hand side of (2) becomes 

where 

L {3 jN7 (x) 
{J (x) = -".j----

L{3jD 7(x ) 

(27) 

Again, we evaluate only the fir s t component of NJ*(x) which, for simplic ity, we denote by N* (x). 
J 

The evaluation of the second component follows similarly. Substitute, as before, g - x = p cos e, 
TI - y= p sin e. The exponent in brack e ts in (28) and (29) the n beco mes 

[ ( x - /-t.rj + p cos e)2 _ 2p j (X - J-t .l' j + p cos e) (Y- J-tYj + P sin e) + (Y- J-ty j + p sin e ) 2] 
crx· cr x· cry . cry. 

J J J J 

( 8 j )2 8 2 
= p2A+2p8 + r*=A· p+- -=-.!.+ r* 

J J J J A A ..I 
J .I 
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wh e re 

Note that A j == A j (0) is ne ve r ze ro for 0 < O" .Ij' Uy j < 00. Nj (x) now becomes 

f27T 

Nj(x) = (21TU.'F'l jYl-PJ) - 1 e xp {-r}/(2 Y l - p] )} 0 e xp {B;/ (2A j Y I - P7)}Pj (O)dO 

whe re 

We nuw s how that P j( O) ca n be e va lu at e d in closed form . Fo r eac h fix ed 0, le t 

t + I J ( B) ( A ) 1/ 2 

= P A j 2Yl - p} : (30) 

th e n 

+ (Yl-pJ /A j )(cos 0) e xp {- B]/ (2A j v'l - p ] )} 

wh ere e rfc is th e co mple mentary e rror fun ctiun (de fin e d, for in s tance , in [1], p. 297). 
Sim ilarl y, for th e te rm s in th e d e nominator of (27), we have 

wh e re 
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Asio , to evaluate tjJ (x) in (1) we have 

(31) 

where 

This leads to 

where 

Use the substitution (30) to obtain 

Integration by parts in the first term then gives 

4. The Bivariate Exponential Density Function 

In this case all double integrals appearing in (1) and (2) can be reduced to single integrals. 
Using the notation in (14) we have 

We cons ide r only the first component of Nj(x) whi c h we denote by Nj(x). Let g - x = p cos e, 
YJ - Y = P s in e, P = x 2 + y2, cos e = -x/P, sin e = -yiP. Thus, tan e = y/x and 7T ,,:;: e ,,:;: 37T/2. 
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Then we obtain 

{ ( 17T/21 '" fe 1-·r/coss i 27T l -y/sins) Nj(x) = Af.}I. Y + + _ ((x+pcos8) 
J 0 0 7T/2 0 8 0 

exp {-A x (x + P cos 8) - Ay . (y + p sin 8) } )dpd8 } 
) J 

[( 17T/21 '" fe l -X'COSS 1 27TJ -y,sins) 
= Ax·. Ay. exp {-XA~· -yAy . } + + _ ( (x + p cos 8) 

J J J J 0 0 7T/2 0 (;I 0 

exp {-p(A Xj cos 8 + AYj sin 8)} ) Dpd8 ] 

(32) 

Now le t 

r2 = A 2 + A 2 
J Xj Yj 

sin <Pj = AyJ r j . 

Then 

cos 8d8 
rj cost (8 - <Pj ) 

sec \[1 tan \If d\j' ] 

and 

J8 1 x/cosS 
N2j (x)= (x+p cos8) exp {-p(A.rj cos8+AYj sin 8n dpd8 7T/2 0 

j() 1 - exp { _x_ (r cos (8- ct»} 
cos 8 J J 

=x d8 
r j cos (8- <P j ) 

rr/ 2 

-
+JS cos 8 (1- [ exp { ~ r j cos (8- ct>j ) } ] [-~ r j cos (8- ct>j) + 1] ) d8 

rr/ 2 rj cost (8 - <P j ) 
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(21T ( - Y!Sin8 
N3j (x) = Je Jo (x + p cos 8) exp { - P (A.Jj cos 8 + AYj sin 8) }dpd8 

y 

~ .' 1 - exp { ----:--8 r j cos (8 - <P j ) } _1T sIn· . . 
=x ~ e r j cos (8 - cJ) j ) 

+ J~1T cos 8 ( 1 - [ exp { ~ r ) cos (8 - <p) ) } ] [ - ~ r j cos (8 - <Pj ) + 1 ] ) d8 

8 rJ cos 2 (8 - <P j ) 

Entirely analogous calculations give 

_ ( f1T!21" r- f-X!COS8 ~21T Jo- Y!Sin 8 
Dj(X)-AX Ay. + +-

) ) 0 0 1T! ~ 0 H 

(exp { - A.Lj (x + P cos 8) - A!lj (y + p si n 8) } ) dpd8 ) 

- 1 - ex p { _x_ r cos (8 - <p) } J8 cos 8 ) .I 

+ . d8 
1T! ~ r j cos (8 - <Pj) 

(21T 1 - exp {~8 r j cos (8 - <Pj) } 
+ JI S ill d 8) 

8 r jcos (8-<p)) . (33) 

In order to evaluate i.fJ (x) use the notation in (31), where now 

J ~1Tf - Y 
+ if OSill H 

(34) 

Now we have 
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- 2 - [ exp {_x_ r cos (8 - <1»}][(.=3 r cos (8 - <D) + l) ~ + 1]d8 fo cos8 J J cos8 J J 

~ r 3co :1(8 - cD j ) 
2 .I 

2 - [ exp {~ r cos (8 - <1»}J[(~r cos (8- <1» + 1) ~ + 1]d8 sJl1 8 J .I cos8 J J 

s. The Bivariate Symmetric Exponential Density Function 
In thi s case all the double integrals appearing in (1) and (2) can be reduced to single integrals. 

Using the notation in (14) we now have 

Nj(x) = (l /4) Ax}Yj i: L: [ [( x - gr + (y - 7))2] - l / ~ exp {- Axjlg - 8,)- Ay;i7) - 8yj l}dgd7) 

Dj (x) = (1/4 )AJ'/'Yj 1-: J-: [(x - g) ~ + (y - 7) H - 1/1 exp {- A.xilt - 8.1)-AX) 17) - 8yj l }dgd7) . 

Co nsid e r onl y the fir s t compon e nt of N j(x) whi ch we aga in de note by Nj(x). We have 

+ L~, r~' g I x - ~ I 

+ r: i~ g l x - ~ I 

+ f'I '" g I x - ~ I- I e>.'")) {- A~/g - 8J ) - AIl/7) - 8y ) }dgd7) ) 
OF, () "I 

Now le t g-x = p cos 8, 7)-y = p s in 8, R ]= (8x-x)~+ (8 y _ y)2, cos 8j = (8 x .-x)/R ;, sin 
J J .I 

8j = (8 y j -y) /R j . The li mit s of int egration are de termined differently depe ndin g upon wheth er 

(cos 8j, sin OJ) is in the first, seco nd , third, or fourth quadrant. We illus trate the procedure by 
calcu lating Nl j(x) assuming that (cos 8j, si n 8j ) is in the firs t quadrant. W e the n have 

0) R j
CO S OJ 1T R i ,;i ll OJ _ !!. 

Nl j(x )=exp {-AJ .. (8,r-X)-Ay(8y.-y)}· {J { coso + J { s;nO + J 2){ >O 
.I .I .I J _ ::. J 0 J 0 - IT 0 

2 

«x + p cos 8) exp {p (A "j cos 8 + Ay j s in 8)} )dpdO 1 

. {J8 j { lIjCOSOj / coso + f1T {lI j S;n8j / S;1l 0 +J - 1TU f '" 

- 1T/2 Jo OJ Jo - 1T 0 

«x+p cos 8 ) exp {prj cos (8-<Pj)}) dpd8. 
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The integration with respect to p can be performed explicitly in each term to give 

+J7r. [x([ ex p { R j ~rjcos (e-<I> j )} ]-1) 
OJ rj cos (e-<I>j) 

cose (( sine j ) { sin OJ })] +., " (0 <I» 1- -Rj-· -e-rjCos (e-<I>j)+l exp Rj-·-e-rj cos (O - <I>j) dO rj cos - - j sm sm 

(35) 

The last two terms have bee n e valuated by transforming the range of integration to [ 0, ~] and 

the n proceeding as in (33) and (34). Similar expressions are obtained for N2j (x ), N3j (x), N4j (x) 
and for the analogous te rms in D j (x). Th e objective fun ction t/J (x) in (1) is evaluated analogously 
except that the integrand with res pec t to p is of the form p2 exp (Ap) , with A independent of p. 

6. Numerical Results and Discussion 

For <pj (X j ) given by (A), (B), and (C) we have performed a large number of numerical compu­
tations to find the minimizing P, and tJi. In [6], we presented an example iliustrating the locally 
linear con vergence to P for the case (A), bivariate normal densit y functions. We do the same here 
for the case (B), exponential density functions , and the case (C), symmetric expone ntial dens ity 
fun ctions . We also show how the use of Steffens en's iteration [4] , accelerates the co nvergence. 
In order to e mphasize the contrast between this probabilistic problem and the corresponding 
deterministic one, we indicate those cases in which x ¢ co {ilk} ~'= I with an asterisk. Comparisons 

are also made between l{J , the bound for l{J from (4), and t/J BOUND from (5). 
Problem No. 1 below exhibits a typical set of data used in one of a series of problems studied 

numerically for case (B), the bivariate exponential density function. In thi s problem N = 20, and the 
<p j(x j) for j= 1, 2, _ . ., N were taken as bivariate exponential de nsity functions whose values of 
A Xj and AYj were generated randomly. The weights f3 j were also ge nerated randomly. The iteration 

was terminated when I Xn+1 - x" I ~ 10- 4 and I Y"+l - Y" I ~ 10-4 • Xo was chosen to be 
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where A. j - I = (A ~ I , A,- .I ) . M in lab le 3 is the numbe r of it e ra ti ons req uired to ac hi e ve the des ired 
. '{.I .1) 

acc uracy. The co mpute r u ed fo r a ll calcul a ti ons was the C DC Cybe r 72. 

P"oblem No.1 

A Xj : 1.36 3.56 13.59 10.33 6.30 5.37 15.76 16.43 4.78 8.94 
6.68 17.18 7.39 15.90 0.31 7.03 19.88 12.86 14.85 10.94 

A y j : 7.97 16.21 8.78 8.82 15.01 2.50 0.18 10.35 18.61 8.07 
18.00 7.36 7.87 2.90 9.40 11.18 10.76 6.54 13.61 12.66 

f3 j : 9.06 8.76 9.85 7.94 2.82 8.83 2.39 2.47 9.41 5.70 
7.36 9.00 0.94 0.50 1.27 0.13 6.49 5. 72 4.28 9. 22 

Th e me thod of num e ri ca l soluti on e mployed is to use (2) . Thi s is di scussed in more deta il in [6]. 

H e re we s im ply wi h to illu s tra te the sa me kind of linea r loca l conve rge nce fo r th e bi va riate e x· 
pone nt ial de ns ity fun c ti on a s was s hown in [61 fo r th e bi va ri a te norma l de ns it y fun c lion. In lab le 2, 

we s how thi s loca l co nve rge nce. 

TABLE 2. Loca l cOl/vergence- bivariate expol/ential densit y Jllnction 

n XII y" x lI - Q' y,,- f3 Ix,, - al 11'" " - 01 
Ix,, - al 

I 0.32608 1 0 .1 44027 - 0.07 1494 0.049 108 0.08673 0.5442 
2 .354470 . 11 4 142 - .043 105 .0 19223 .04720 .5983 
3 .370288 . 102 158 - .027292 .007239 .02824 .63 17 
4 .379962 .097750 - .0 176 13 .00283 1 .0 1784 .63B 
5 .386272 .096 122 - .0 11 303 .00 1203 .0 11.36 .63,56 
6 .390370 .09.549 1 - .00720,5 .000,572 .00722 .6 19 1 
7 .3930 1,5 .095225 - .004560 .000306 .00447 .6:)98 
8 .394707 .095100 - .002868 .000 18 1 .00286 .6049 
9 .395790 .095028 - .001785 .000 I 09 .00 173 .6300 

10 .396482 .094985 - .00 1093 .000066 .00J09 .596:3 
II .39692,5 .0949.58 - .000650 .000039 .00065 .5692 
12 .397207 .09494J - .000368 .000022 .00037 .5 1.35 
13 .397387 .094930 - .000 188 .0000 11 .000 19 .3684 
14 .397502 .094923 - .000073 .000004 .00007 

a = (0 .39757,5, 0 .094919). 

In table 3 we indicate for 40 rando mly ge ne ra ted proble ms th e values of i[J, I he bo und on i[J 
from (4 ), '" BOUND fro m (5), and whe th er or not x is in the conve x hull of the means. A n as te ri s k 
ne xt to the value of IJj indicates th at x is not in the conve x hull of th e means of di s tri butions. The 

close ness o f the bound is probabl y s trongly de pe nd e nt upo n th e nature of th e d a ta . Fo r Ih ese ran· 
do ml y ge nerated proble ms, th e bounds are nol ve ry close. 

TAB LE 3. BOl.ln ds on objecti, 'e j illl ction -expol/ential den sit y 

N M 1) llou nd for 1) 1) HOUND 
from (4) fro lll (5) 

30 16 29. 114 173.880 242.628 
.30 12 12.079 100.406 140.618 
30 14 5.284' 55.537 75.538 
30 14 25.792 202.893 284.551 
30 6 12.656 77.019 106.534 
30 13 2 1.548 347.880 490. 120 
30 12 17.742 118. 154 165.042 
30 10 9.856 8 1.457 ll 2.372 
30 10 7.350 61.793 83 .79,5 
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N 

30 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

TABLE 3. Bounds on objective function-exponential 
density- Continued 

M ofJ Bound for ofJ ljJ BOUND 
from (4) from (5) 

10 8.216 79.363 110.170 
14 5.927 53.949 74.012 
14 26.725 151.732 212.956 
14 8.522 68.464 95.960 
11 3.125 39.150 53.083 
20 23.835 168.143 236.237 
10 4.149 51.055 70.4] 7 
8 9.196* 54.956 75.920 

14 22 .643 344.637 486.403 
9 2.400 25.562 34.767 
6 16.436 105.702 147.579 

10 1.121 * 12.074 15.948 
11 3.318* 21.399 29.313 
9 0.989* 12.832 16.929 

10 5.497* 47.132 65.906 
9 1.624 20.033 27.293 

14 1.382* 13.027 17.314 
10 4.314 28.651 39.116 
14 5.008 43 .205 59.725 
15 1.140* 10.676 14.489 
13 1.773 24.635 34.190 
15 2.271 * 14.688 20.107 
9 1.670* 26.527 36.952 
7 0.240* 3.334 4.015 

13 21.036 106.369 150.094 
18 2.140 13.529 18.449 
8 1.075* 18.091 25.193 

14 2.423* 13.535 18.639 
28 4.310 26.844 37.449 
17 U58* 12.988 16.715 
15 1.438* 8.857 12.148 

Problem No.2 below exhibits a typical set of data for the problems of case (C), the bivariate 
symmetric exponential function. In this problem N= 10, and the ~)(x) ) for j= 1,2, ... , N were 
taken as bivariate symmetric exponential density functions whose values of 11..1')' A!i)' OXj' OYj were 

generated randomly. The weights f3j were similarly generated. The iteration was terminated when 
IX II+I-xlIl ~ 10 - 4 and IYII+I-YIII ~ 1O- 4.xowaschosentobe: 

where 8j= (Ox'j' OY). M In table 5 is the number of iterations required to achieve the desired 

accuracy. 

Problem No.2 

AXj : 1.36 17.53 8.82 5.37 4.78 18.61 6.68 18.00 2.90 7.03 

Ay j: 7.97 13.59 15.89 2.50 16.43 18.82 18.00 7.39 1.01 lLl8 

OXj: 9.06 4.39 3.15 8.83 5.18 4.47 7.36 3.94 0.15 0.13 

OYj: 1.78 9.85 7.51 7.88 2.47 4.04 8.59 0.94 4.70 9.94 

f3 j : 8.11 5.17 2.82 0.09 2.39 5.70 3.68 7.95 1.27 5.38 
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Local co nve rge nce for Proble m No.2 is ex hibit e d in tab le 4. In tabl e 5 we indicate Ih e bound s a nd 

wh eth e r or not Ih e so lulio n i in th e convex hull of th e me ans in the sa me fas hion as we did for th e 
bivariate ymm e tri c e xponent ia l d e ns it y fun c tion. It is s imilar 10 tabl e 3. For Ih e problem s ge ne rated 

for th e s ymmetr ic expon e nti a l c a se we neve r found on e in th e co nvex hull of the mea ns . 

TABLE 4 . I.ocal converiience-bivariate sYllllllelric exponential del/ sit y jil/l.ction 

n x" y" xI/- a y,,-/3 Ix ,, - al Ix"., -~I 
Ix" -al 

I 0.01668185 0.04066205 0.00462450 0.03773900 0.0380213 0.3519 

2 .01158224 .01629392 -0.000475ll .01337087 .0133793 .3051 

3 .01210797 .00700439 .00005062 .00408134 .00408165 .3864 

4 .01255962 .00441807 .00050227 .00149502 .00157714 .5018 

5 .01253156 .00355670 .00047421 .00063365 .000791446 .5563 

6 .0 1238560 .0032 1650 .00032825 .00029345 .000440296 .5251 

7 .01224484 .00305836 .000]8749 .0001353 1 .00023 12 17 .4034 

8 .01 2 13578 .00297353 .00007843 .00005048 .0000932711 

a = (O.01 205735.0.00292305). 

·fAIlI.E S. 13ol/lItis on objecti ve jill/ cliol/ - sYllllllelri c expollential del/sil y 

tV M l' Bound for II' II' Bound 
from (4) from (5) 

30 13 38. 195* 485.942 533.053 
.30 19 36.889* 609.044 699.347 
30 II 3 1.590* 623.526 696.993 
.10 L4 15.391 * 5 13.657 569.532 
30 n 26.269* 850. 29.3 978.537 
30 II 3.362* 527.453 596.923 
30 13 15.9 10* 754.403 823.259 
30 28 54.4 18* 553.564 6 11.9 17 
30 10 56.257* 723. 158 80 Ll 55 
30 12 7.493* 482.26 1 544. 145 
20 16 0.02035* 324.837 349.834 
20 17 119.638* 503.372 565.895 
20 10 5.548* 3 12.673 350.797 
20 12 10.965* 369.864 420.667 
20 L6 17.922* 469.078 527.044 
20 25 199.676* 682 .171 762 .248 
20 13 72.808* 553.628 631.301 
20 21 2.169* 2L5.444 241.296 
20 9 4.340* 452.851 483.389 
20 13 0.45620* 342.029 376.407 
10 8 2.407* 178.300 193.276 
10 17 29.185* 308.299 366.341 
10 15 4.695* L07.535 117. 199 
10 9 0.47852* 177. 145 187.936 
10 L2 5.742* 237.44 1 254.580 
10 19 25.345* 205.296 240.394 
10 12 9.546* 186.705 203.622 
10 12 1.429* 140.736 150.786 
10 20 2.90 1 * 155. 144 178.605 
10 5 0.7744.3* 286.3 10 307.4 11 
5 12 9.236* 93.932 124.836 
5 25 0.00133* 49.655 55 .333 
5 4 1.951 * 85.31 1 94.246 
5 19 14.1 27* 2 16.730 273.959 
5 8 0.00000* 88.316 93 .744 
5 8 2.465* 60.637 67.276 
5 17 3.493* 100.387 110.473 
5 13 1.301 * 80.547 85.485 
5 23 30.839* 69.109 79.990 
5 13 0.00000* 31.3ll 35.560 
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6.1 . Steffensen's Iteration 

A well known method for accelerating the convergence oflinearly convergent iterative schemes 
is Steffensen's iteration [4]. In the case when the unknown vector is two dimensional, Steffensen's 
iteration, applied to the scheme in (2), is described as follows (see [4], p. 115 for a derivation): 

Choose a vector x(O) = (x(O), y(O)), and construct the sequence of vectors {xu.)} by the rule: 
for each k=O, 1,2, ... , set Xo = xu"), and calculate Xl, X2, X:l from 

x lI + I=H(x lI ) 

Let the matrix X II be defined by 

X II = (XII 
YII 

n=O, 1, 2. 

XII+l) 
YII +l 

and let Ll denote the forward difference operator. The next iterate is given by 

In order to test the utility of Steffensen's iteration in reducing the amount of calculation to 
converge to any given degree of tolerance , ten, 20 destination problems and ten , 10 destination 
problems were run on the CDC Cyber 72 both with and without the use of Steffensen's iteration 

TABLE 6. Effect of Steffensen's iteration on convergence 

Number of 
destinations 

20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

Number of 
it e ration s 

14 
14 
16 
16 
17 
14 
12 
15 
15 
13 
14 
15 
15 
16 
16 
18 
12 
17 
13 
25 
16 

Number of iterations 
(Steffe nsen) 

7 
13 
6 

13 
15 
6 
5 
5 
9 
6 
6 

12 
7 
6 
8 
9 

10 
10 
8 

13 
7 

technique. The number of iterations given in table 6 is the total number of iterations, i.e., the num­
ber reported using Steffensen's iteration includes the three iterations required to use the method. 
The problems all used a bivariate normal density function. The average ratio of the number of itera­
tions with the Steffensen method to the number of iterations wi thout the method for the 20 problems 
of table 6 was 0.571. He nce, it can be readily seen that it is quite advantageous to use the Steffensen 
ite rati on method whe n performing these calculations. 

We thank the re viewer for hi s helpful suggestions and for his careful verification of many 
of the formulas presented in thi s paper. 
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