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T wo de vices a re pro posed fo r measuring a bsorpti on coe ffi c ie nts in wea kly a bsorb ing mate ri a ls . 
The fir s t d e vice me as ures c ylindri cal s a mples a nd th e seco nd de vi ce meas ures fla t pla te o r di s k 
sa mples. Thi s pa pe r re port s on th e de ri va ti ons fo r t he s tea d y·s ta te a nd tr a ns ie nt so luti uns to t.h e hea t 
diffu s io n equ a tiuns whic h d esc ribe t he ba rothe rm a l be ha vi or of the t wo proposed de vices . In addi tio n, 
G ree n' s fun c tio n ~ ec hniques a re used to d esc ribe t.h e c ycl ic he atin g a nd cooling of the c ylinde rs a nd 
pl a tes . 

Key wo rd s: Absorptio n coe ffi c ie nt s : barothe rm a l be hav ior ; G reen's fun c ti on; he at diffu sio n ; wea kl y 
a bsorbing ma teri a ls. 

1. Introduction 

Optical co mmun ications, integra ted opti cs, and high 
power lase rs are de velopin g technologies which de pe nd 
in part upon hi ghl y transpa re nt so lids. Fo r exa mple, 
opti cal co mmuni cation sys te ms use optical fib ers with 
absorption coe ffic ients whi ch are less th a n 10 - 4 c m - I a t 
opera ting wavele ngth s [1].' Continuing furth er ad
van ces in these technologies and deter minin g th e ab
sorption mecha nis ms in hi ghly trans parent materi als 
require improved methods for meas urin g ver y s mall 
absorption coe ffic ie nts. 

Four ge neral techniques for measurin g absorption 
coeffi cie nts exi s t. These techniques involve res pec
tively calorime try, spectro photome try, e mi ss iv ity , and 
gas pressure meas ure ments. 

In the calorimetri c techn ique , one meas ures the 
te mperature ri se of the solid which occurs whe n a frac
tion of the e nergy in a beam of radiation is absorbed. 
When the te mpera ture ri se , re fl ectivit y, and laser 
power are known to within an accuracy of 1 percent, 
thi s method is capable of givin g absorption coefficie nts 
on the order of 10 - 4 c m - I within an accuracy of a few 
perce nt. Thi s method th e n has reasonably high sen
sitivity, a nd requires laser beam powers of the order of 
te ns of m W for absorption coeffi cients of the order of 
10 - 3 e m - I. It also is inse nsiti ve to those scattering 
ce nters whic h do not absorb any of the radiation. How
ever , the sa mple must be contacted with thermo
couples to measure its te mpe rature and the absorption 
coe ffi cient can be de termined only at those wave
lengths fo r which sufficie ntl y powerful lasers are 
available . . 

1 Figures in bracke ts indi cat e the lit erat ure re fe re nces a t the end of this pape r. 
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The second technique in volves meas urin g the trans· 
mi ssion loss of a bea m of radi ation passing through the 
solid . Vari a tions of thi s technique in clud e eithe r a 
single bea m or double bea m s pec trophoto meter and 
may use samples of two differe nt le ngth s. Double beam 
meth ods using sa mples of diffe re nt le ngths give prod
ucts of the abso rption coeffi cie nts 0' with th e sample 
thi c kness d as small as a d ~ 0.002 with an accuracy of 
± 0.0002. Th e photometri c technique has the advantage 
of using li ght sources with co ntinuous values of wave
length s prese nt ; but it has th e di sad va ntages that 
sample pre para tion is importa nt to a void s urface 
scratches and dust a nd th at th e sa mples s hould no 
have scatte rin g centers s uch as inclusions . 

In the third technique one meas ures the e mission of 
the sample a t a give n te mperature a nd co mpares it 
directly to a blackbody at the same te mper ature. When 
th e product ad is very small , th e emittance E (the ratio 
of thermal radiation per unit area e mitted by the 
sample to that e mitted by a blackbody at the same te m
perature) becomes E ~ ad. For values of ad less than 
0.001 , the emittance measure ments can be more sensi
tive for de termining 0' than the photometri c measure
ments . In addition, by thi s technique, one can obtain 
values of absorption coeffi cients over a continuous 
range of wavele ngths. But exceptional te mperature 
control is essential to achie ve such sensitivity. 

In the fourth technique, the e nergy absorbed from a 
beam of radiation passing through the sample produces 
heat. The heat then diffuses fro m the solid to a non
absorbin g, confined gas whi ch is adjacent to the sam
ple . The heat transfer process leads to a pressure rise 
in the gas . Because thi s techniqu e te nds to average 
over any absorption inhomoge neities in the sample, we 
also expect that localized absorbing or scatteri ng 



centers could be less of a problem for this technique 
than for the calorimetric techniques in which the 
placement of thermocouples may be important. 

To develop further this last technique, Bennett and 
Forman recently proposed alternative ways to measure 
very small absorption coefficients. They considered in 
a series of papers [2-6] both barothermal and photo
acoustic modes of operation for devices to characterize 
weakly absorbing materials. In these papers, they 
cited only the results for the solutions to the heat 
diffusion equations which describe the behavior of 
the proposed devices. They did not derive the solutions 
because they wanted to stress in those papers the major 
conclusions for designing absorption devices with 
optimum performance. 

Figures 1 and 2, respectively, show schematics of 
their proposed devices for measuring absorption co
efficients of long cylindrical samples and of thin disk ·or 
plate-shaped samples. Each of these devices has a 
characteristic frequency which is related to the inverse 
of the time required for transferring a heat pulse from 
the solid to the gas. The barothermal mode of opera
tion occurs whenever the modulation frequency of the 
beam of radiation is less than the characteristic fre
quency of the device; and the photoacoustic mode of 
operation occurs whenever the modulation frequency 
of the beam of radiation is greater than the character
istic frequency of the device [7]. 

In this paper, the author gives derivations for the 
steady-state and transient solutions to the heat diffu-
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sion equations which describe the barothermal be
havior of the two proposed devices. The equations 
which describe the photoacoustic behavior of the 
devices are derived in (separate papers [4, 6]). 

The steady-state and transient solutions for cylin
drical samples are derived here, respectively, in sec
tion 2 and section 3; and the steady-state and transient 
solutions for disk or plate-shaped samples are de
rived, respectively, in section 4 and section 5. The 
Green's functions which describe the cyclic heating 
and cooling of the cylinders and plates are constructed 
in section 6. And finally, frequently occurring integrals 
involving the eigenfunctions for the equations are gi ven 
in appendix A for cylinders and in appendix B for disks 
or plates. 

2. Steady-State Solution - Cylinder 

From [3], the steady-state temperature v(r) satisfies 
the following heat diffusion equations for the proposed 
device in figure 1: When 0 ~ r ~ rs, 

k cf2vs(r) + ks dvs(r) + Qs(r) =0. 
s dr r dr PsCs ' 

and when rs ~ r ~ ri, 

I 
I 
I 

d/2 

(1) 

(2) 

FIG URE 1. Schematic of an absorption measuring device (barothermal ) for long cylindrical samples. 

In s ulatin~ annu li s upport coaxia ll y the long cylindrical trans pare nt sample of radius r ~ inside a la rger cylind t r of radius r io A confined 
nonabsorbing gas at ambi ent press ure po fill s the s pace between the two cylinders. The wall s of the outer cylinder are al a cons tant te m
pe rature Tn. A collimated beam of radiation. such as a laser bea m. pro-p-agates coax ially through the cylindrical sample . Th e beam of 
radiation has a power W, and an e ffecti ve radius r,. A press ure transducer. which is not shown . monitors the press ure at the heat sink 
gas int e rface. 
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F I GURE 2. Schematic of an absorptio n. measuring ceLL (barothermal ) fo r plate-shaped sa.mples . 

A confi ne d , nonabso rb ing gas a t ambie nt press ure Po fil ls t he !'i pace in s ide t he ce ll be tween Iwo wi ndows. The wa lls uf t he (;(' 11 may have 
a po lygo nal o r r ir<' ul a r !"rn ..... >.;(-(' Iion 'I'll(' windows whi(' h e nclose the ~as a t each e nd of th e (' ('II a rc made frum the weak ly abso rbing 
mater ial under invest iga tion . The ex te rn al fa ces of th e two wind uws are at a cons ta nt te mpe ra t ure Tn. A co llim ated hea m uf radiation . 
such as a lase r beu m. with power W , and e ffec tive radius (/ prOIJagates a long the z direc t ion through the pressure ce ll and it s windows. 
A pressu re t rans el lI ee r , whic h is not shown . meas ures I he pressu re in I he ~as at I z I .:$i Zt. 

The te mperature in the solid is v.( r) a nd the te m
perature in the gas is v!J( r) . Th e power absorbed per 
unit volume in the so lid is 

Qs(r) = { Q, for 0 ~ r ~ r, ~ rs 
o for r > rj , 

(3) 

where Q,= asWd1Tr~ , a s is the absorption coeffi cient 
of th e solid , W , is the power of the beam of radiation, 
and r, is th e effective radiu s of the collimated beam_ 
The radius of th e cylindrical sa mple is rs and th e radius 
of the outer cylinder (heat sink) is n- The th ermal 
diffusivity k=K/pC, where K is the thermal conduc
tivity , p is the de nsity, and C is the specific heat at 
constant volume_ The subscript s denotes quantities 
for the solid and the subscript g de notes quantities for 
the gas _ 

The bound ary condition s are that 

(4) 

interface at r = rs gives, 

K dv s I = K dV IJ I (6) 
S dr r = ,. !J dr r = r . 

s s 

Rearrangin g eq (1) and eq (2) yields , res pectively, 

!i (r dvs ) =_ rQ.,( r) 
dr dr Ks 

(7) 

and 

~ (r dv lJ) = 0-
dr dr ' 

(8) 

and integrating these equations twice yields the steady 
s tate solution s; 

. Q, {r- for 0 ~ r ~ r, 
vs(r) =vs (O)- 4Ks ri[l+21n (r/r,)] for r, ~ r ~ rs . (9) 

wh e re To is the temperature of the heat sink_ Con- and 
tinuity of te mperature across the solid-gas interface 
at r = rs gives, 

(5) 

and conservation of heat fl ow ac ross th e solid-gas 

vy( r) = Cl!Jln r + CZg for rs ~ r~ rj , (10) 

where Cly and CZ!J are constants of integration and 
where the limit that 
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Lim r dvs =0 
r--->O dr 

(11) 

is invoked to obtain eq (9) (i .e., that V8 remains finite at 
r=O). 

and the temperature continuity equation at r= rs, 
requires that 

(20) 

Boundary conditions (4), (5), and (6) require that the and 
temperature at the center of the cylinder r= 0 is 

Qlrf { 2K8 (r8)" (r8)} vs(O)=To+ 4K8 1- Kg In -;:; +21n -;; , (12) 

and that the temperature in the gas is 

Qlrf (r) vy(r) = To- 2Ky In -;:;. (13) 

3. Transient Solution - Cylinder 

The transient temperature u(r, t) for times t~ 0 is 
given in [3] by the diffusion equations 

k ~ ( ) ks aus(r, t) _ ausCr, t) 
8 'J US r, t + - ---''"'--''-'-

a r- r ar at 
(14) 

and 

k a2 ( )+kyauy(r, t) 
Ya .JU g r, t r- r ar 

(15) 

At time t = 0, the sum of the transient and steady· 
state temperatures is everywhere equal to the ambient 
temperature To, 

T(r, 0) = u(r, 0) + vCr) = To; (16) 

and at any time t the temperature at the heat sink 
r= ri is To, i.e., 

uy(ri, t) =0, (17) 

because 

Lim u(r, t) =0, 
t ---> 00 

by the definition of transient solutions and because 
vy(r;) = To. 

A general separable solution to an equation having 
the form of either eq (14) or (15) is 

u(r, t) =R(r)r(t) = [AJo(~r) +BYo(~r)] 
exp (-ekt) , 

where J" is the nth order Bessel function of the first 
kind, Y" is the nth order Bessel function of the second 
kind [8], ~ is the constant of separation, and A and B 
are constants. The quantities A, B, ~, and k have the 
subscript s for the solid and the subscript g for the gas . 

Equation (17) states that 

Rg(ri) =0, (19) 

(21) 

Also, the constant B s = 0 because the temperature must 
be finite for all r ~ 0 and t. 

Hence, the conservation of heat How across the solid
gas interface 

Ksaur(r, t)/arl r=rs =Ky auy(r, t)/arlr=rs (22) 

and the other boundary conditions eq (19) and eq (20) 
yield three homogeneous simultan eous equations for 
the three unknowns A s, A!I , and B!I' Solutions for this 
set of three equations exist if and only if the de
terminant, D, of their coefficients vanishes; the vanish
ing of the determinant yields the eigenvalues ~y=~j, 
where j= 1, 2 .... The jth eigenvalu e ~j is that 
value of ~y for which the determinant vanishes for the 
jth time, i.e., ~j<gj + l; namely, det D(~j)=O, where 

o JO(gf!i) 
D= J()(~srs) - JO(~!h) 

-KlsJI (~srs) KrlgJI(~grs) 

Yo (gyri) 
- Yo(gyr s ) (23) 
Ky~gYI (~yrs) 

The eigenvalues ~j also determine the character
istic times tj for the so lid-gas system; namely, 

(24) 

Expressing A s and By in terms of Aj=A y, we obtain, 

R s(r) = L AjFo(gj, ri, rs){Jo(gjr)!Jo(Drs )}, 
j = 1 

forO:;;:;r:;;:;r s and 

x 

Ry(r) = L AjFo(gj, ri, r) 
j = 1 

(25) 

for rs:;;:;, r:;;:; ri' where gJ= (ky/k8) ~J and where the 
function F" is 

(27) 

Il.elations (25), (26), and (27) are valid only if 
Jo(~jTs) ~ 0 and ifYo(~j ri) ~ O. 

In terms of the functions F /I (g, r i , r), the eigen value 
equation sati sfied by the eigen value ~j becomes, 
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W e de termin e the coefficie nts A j by using the t = 0 
relations obtain ed fro m eq (16); namely, 

for 0 ~ r ~ r s (28) 

and 

for r s ~ r ~ r;. (29) 

First , we consider th e e igenfun c tions for the solid· 
gas sys tem 

- -
= { F(M.iJiJs) {j 0 (~j r) /J () (~j rs) } 

Fo(~j, r;, r) 
fo r 0 ~. r ~ r " 

for rs ~ r ~ ri. 

(30) 

Next , we multi ply both sides of eq (28) a nd eq (29) by 

and by 

Ks ( ) ks rEo ~i, r;, r 

Ky ( ) -k rEo ~;, T i, r 
y 

wh en rs ~ r ~ r i 

and the n we integra te the res ultin g ex press ions over 
the inte rval 0 ~ r ~ ri. T hi s proced ure yields th e fol· 
lo win g ex press ion fo r th e coe ffi c ients Aj 

x 

2.: Aj ~ (~j, ~i) 
j = 1 

(31 ) 

01 { ("I + 4Ks J o EO(~i, r i, r)rdr 

Ky [ 0!l.f l'i ] + k!f 2K!f /' }n (r/ r i )Eo(~ i' ri, r)rdr . 

where 

--'---- --- ---

(A4) and th e fac t that dBo(~r)/dr=- BI (~r ), we find 
tha t ~ (~j, tl) vanishes unless ~.i=~ i ; and when ~j=~i 
the fac tor ~ (~j, ~j) = ~j beco mes 

A - K"d [( K,ky 1) F ') (c ) Uj--2k K k - ii 'oj, r ;, rs 
'11 .'J s 

+ (rTlr~ )F~ ( ~j, ri , ri) + (~: - 1) Fn~j, r ;, rs) J. 
(33 ) 

Applyin g eqs (AI ) to (A3) to the right·h and side of 
eq (31), we obtain , aft e r several s te ps, a n expression 
for the coeffi cients Aj, na mely, 

A=- Qlrl JI (~rl) Fo(~j, r ;, rJ . 
.I ks~j ~Jo(~jTs ) 

(34 ) 

Because we sum in the co mputer progr a m used in 
[3 J a finite num ber of terms in s uc h ex press ions as 
eq (25) and e q (26), we norm ali ze th e A /s for I ~ j ~ N 
by us in g th e rela ti on (29) evalu a ted a t r = rs. T o acco m
pli sh thi s norm ali za tion , we introd uce th e normali za
ti on factor aN a nd re place Aj with asAj(N) in th e 
relation (29). This th en gives us an ex press ion for th e 
fac tor ax; na mely, 

(35 ) 

4. Steady-State Solution - Plate 

F rom [5J , the s tead y-s ta te te m pera ture v(z) 
sati s fi es the foll owin g hea t diffus ion e qu a ti ons for 
th e pro posed de vi ce in fi gure 2 : 

Whe n Zz ~ I z I ~ Z;l, 

at 01 
a 2 Vs(Z) + K = 0 ; 

Z s 

and whe n I Z I ~ Zz, 

a2 

-v,/ (z ) = O. azz ' 

(36 ) 

(37) 

The temperature in the cell windows is vs(z ) and 
the temperature in th e gas is v,,(z). Th e power ab
sorbed per unit volume in the cell windows is 

QI = asW1/7rri . Th e absorption coe ffi c ie nt of the win
dows is as . 

The boundar y co nditi ons are tha t 

(38 ) 

(32) where To is the ambi e nt te mpera ture . Continuity of 
te rn perature a nd conser vati M of heat Aow across the 
solid-gas interface a t z=±zz gi ve, respective ly, 

Ap pe ndix A contains the evaluations of the several 
integrals which occ ur in eq (31) and eq (32). Usingeq 
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and 

(40) 

We integrate eqs (36) and (37) twice to obtain the 
general soluti ons, 

and 

(42) 

where the C's and D's are constants of integration. 
The absolute value of z occurs in eqs (41) and (42) 

because v(z)=v(- z) when O!SIZ3 - Z21<g1. Also, 
because dVg(z)/dz I z=o+=Cy and dvy(z) /dz I z=o- = 
-Cg, the constant Cg must be zero. (If Cg were not 
zero, then a heat sink or heat source would exist at 
z= O. Thi s is not the case for the proposed device). 

The boundary condition (38) at z= Z;j and the bound· 
ary conditions (39) and (40) at z = Z2 yield three in
homoge neo us equations for the three unknown 
coeffici ents Cs , D", and Dy; namely, 

c.,z;J + Ds = To + (Q ,zV2K,) , 

(43) 

A solution for th e three equations exists if the dete r
minant of their coefficients does not vanish; i.e. , 

( 0 Z:l 1) 
det -1 Z2 1 =-K,¥- O. 

o Ks 0 
(44) 

Using the matrix method to solve the se t of equations 
(43), we obtain the steady·state te mperature: 

Vs(z) = To+ (Q, / K,)[Z:I{ (z:l /2) - zd - I z I 
{( I z I /2)- Z2} ], (45 ) 

for Z2!S: Iz I !S: Z;J , and 

Vy(z) ~ To+ (Q,/2K, ) (Za -Z2)2 (46) 

for Iz I !S:Z2. 

5. Transient Solution - Plate 

The transient solution u (z, t) for times t ~ 0 satisfies 
the following heat diffusion equations : [5] 

a2 ( ) _~ aus(z, t) 
az2 U s z, t - k, at (47) 

for Z2 !S: I z I !S: Z3, and 

(48) 

for I z I !S: Z2. 

At'time t = 0 , the s urn of the transient and steady· 
state temperature at the exterior sides of the cell win· 
dows at Izl =Z3 is To , i.e., 

(49) 

because 

Lim u(z, t) =0 
t- 00 

(50) 

by the definition of transient behavior and because 
Vs(±Z3) = To. 

General separable solutions to eqs (47) and (48) are 

u(z, t) = R(Z)T(t) 

where 

R (z) = [A exp (itz) + B exp (- itz)] 

and 

T(t)= exp (-ekt). 

The cons tant of separation is t and th e coeffi cients 
A and B are constants. The subscripts sand g de note 
the quantiti es A, B, t, and k respectively for the 
windows and for the gas. 

Equation (49) gives us that 

(51) 

The continuity of temperature across the interfaces 
at Izl = Z2 requires that 

and 

(52) 

In addition, the conservation of heat flow across the 
window·glass interface at I z I = Z2 requires that 

K ,(dRs/dz) I z= :: Z2 = Ky(dR!I/dz ) I Z= :;: Z2' (53) 

Hence, the boundary conditions (51), (52), and (53) 
yield six homogeneous s imultaneous equations for the 
six unknown coeffici ents A ;- , B;-, A g , By , A i , and Bi , 
where the s uperscripts < and> are, respectively, for 
z<O and z>O. Because A ; =B~, Bi =A,,> , and 
A y= By by symmetry, these six equations reduce to 
three equations in three unknowns. As=A;, Bs= B; , 
and A = 2A!I' Solutions for thi s set of equations exist 
if, and only if, the determinant D of their coeffici ents 
vanishes. The vanishing of the determinant yields the 
eigenvalues ty= t.i' whe re j= 1, 2, 3, 00. 
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The jth eigenvalu e tj is that value of ty for whi ch the 
d e terminant van is hes for the jth time, i. e . , fj < t H 1 ; 

namely, 

W e multi ply both sides of eqs (59) and (60) by 

K!/(ks/ ky) 1/2E (j, z) whe n -Z2 ~ Izl ~ Z3 

(54) and b y 

where 

exp (if sz:l ) 
exp (if sZ2) 
ifsK , exp (if,Z2) 

ex p (- it ,z:l ) ) 
ex p (- it sZ2) 

- if,K , ex p (- ifsZ2) 
(55) 

and t ~ = (kulks)t~ · From eqs (54) and (55), the eigen' 
value .tj sati s fi es th e followi ng equation 

(K,,/k!\/2) sin (tyZ2) s in (t sd) = (KJ kl /2) 

cos (t yZ2) cos (t sd ), (56) 

Expressing A s a nd Bs in terms of A =A j , we have 

x 

R!/(z) = 2: A j cos (tjz) for Izi ~ Z2 (57) 
j = 1 

a nd 

(58) 

for Z2 ~ Izl ~ Z;J, where t; = (k y/k., )1/2f j · 

W e d etermine th e coe ffi cie nts A j b y us in g the t = 0 
relations obtain ed from eq (49); namely, 

R s(z)=To-vs(z) forz2~l zl ~ z3 (59) 

and 

R ,,(z)= To -vy(z) for Iz l ~ Z2 . (60) 

Equation s (57) and (58) contain the eige nfunctions 
for the window-gas sys tem; na mely, 

E(j, z) 

cos (t jz) for Iz l ~ Z2 
cos (t jZ2) {cos (f;( lzl- z2)) 

. -cos (tj( lz l +z2-2z:J))} 

for Z2 ~ Izl ~ Z3· 

(61) 

and we i.ntegrate the res ulting express ion s res pectively 
over the intervals 0 ~ z ~ Z2 and Z2 ~ Z ~ Z:l . . This 
procedure gives us the followin g expression for th e 
coe ffi cients A j : 

x 

2: Ajt:.(tj , ti) 
j = 1 

where 

+ (Q, /K ,)Ks(ky/ks) 1/ 2 ( z:' [z{ (z/2) 
JZ2 

t:.( f;, ti) = K y(k)k,,) 1/2 ( Z2 E(j , z)E(i, z)dz . Jo 

+ Ks(k!//k s) 1/ 2 1:' E(j, z)E(i, z)dz. 

(62) 

(63) 

Appe ndix B co ntains th e evalu a tions of the severa l 
integrals whi ch occur in eqs (62) a nd (63). Using eq 
(B4) gives us that t:. (tj, ti) vanis hes unless tj=ti' 
And whe n tj=ti, th e fa c tor t:.(t j , t j ) = t:. j becomes 
from e q (B5) 

t:. = K!/(k.Jk!/) 1/2 
J 2 

[z2+{K skyd cos2 (tjz2)/ Kyks s in2 (t;d)}]. (64) 

Applying e q (Bl) through eq (B3) re peatedly to th e 
ri ght-hand side of eq (62) gives us a n expression for the 
coefficie nts A j; namely, 

Because the compute r progr am in [5] evaluates a 
finit e number of terms in s uch expressions as eq (57) 
and eq (58), the coeffi c ients A ; are normalized for 
1 ~ j ~ N by us ing the relati on (60) evaluated atZ=Z2· 
R e placingA; with a vA; (N) in relation (60) , one obtains 
a n express ion for the normalization factor aN , 

a",=-.\' (Q,d 2
/ 2Ks) (66) 

2: A j (N) cos (f jZ2) 
j= 1 
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6. Cyclic Heating and Cooling 

The Green's function method offers a convenient 
way for co mputing the response of the proposed baro
thermal devices when the beam of radiation is turned 
on at t = 0 and is modulated at angular frequency w for 
all times t ~ O. We express the power absorbed per unit 
volume Qi(t) by the expression, 

Q I (t) = 'T/ (t) 'T/ (r I - r) Q I (l + m cos wt) , (67) 

where Iml ~ 1 is the modulation factor for cyclic 
heating and cooling and where w is less than the 
characteri s ti c freque ncy of the syste m. The step 
function 'T/ (x r is zero for x ~ 0 and 1 for x > O. 

6.1. Cylinder 

The te mperature T(ro, to)=u(ro, to)+ v( ro) -To , 
sati sfi es the heat diffusion for th e cylinder and the gas; 
namely , for times to ~ 0 , 

\7~T(ro , to) - k - I (aT(ro, to) /a to) =- p(ro, to) ; (68) 

where p(ro, to)=7}(r l-rO)(Q ,fK")(l+m cos wt) for 
r, ~ rs ; where \76 beco mes {(a2/a r2)+ rii l(a /a ro) 
because the temperature does not depend upon angle 
eo and coordinate Zo; and where k is subscripted with 
s when 0 ~ ro ~ rs and with g when rs ~ ro ~ rio We 
s ubtract the ambient temperature To from the tem
perature for late r convenience in using the boundary 
r.ondition T( r ;. t) = O. 

The Green 's function G(r, t iro , to) for the system 
satisfies the equation 

\7 2G(r , t iro, to) - k - 1aG(r, t iro , to)/at 

o(r- ro)o(t -to) 
r(K/k) 

(69) 

where k and K are subscripted with s when 0 ~ r ~ rs 
and with g when rs ~ r ~ rio We interpret G to be the 
te mperature which occurs at rand t when an impulse 
source of heat is introdu ced at ro and to. 

The Green '~ fun ction sati sfi es a causality condition : 

G(r, tiro , to,) =0 ift < to. (70) 

In addition, it sati sfi es a reciprocity condition under 
time reversal because the causality condition (70) 
requires a time sequence 

G(r, tiro , to)=G(ro, -to lr,-t), (71 ) 

where the function G (ro, - to I r, - t) gives th e tempera
ture at ro and - to due to a source impulse at rand 
- t. Because - to > - t, the time seque nce is properly 
ordered. He nce, from eq (71) we have that 

\75 G(r , t l ro , to) + k - 1aG(r, tl ro , to) /a to 

o(r-ro)o(t-to) 
ro(K/k) 

(72) 

where k and K are subscripted with s when ° ~ ro ~ rs 
and with g when rs ~ ro ~ rio 

We shall now express the solutions of the inhomo
geneous diffu sion eq (68) for the solid and gas in terms 
of the Green's function G. W e first multiply eq (68) by 
G(r, t iro, to) and eq (72) by T(ro, to) and then subtract 
the first product-equation from the seco nd product· 
equation. Keeping in mind that the th ermal factor for 
the solid (Ksl ks ) differs from the thermal factor for the 
gas (K y/ ky), we integrate the above result over th e 
time domain 0 ~ to ~ t-+ and over the volume of the 
solid-gas system. 

J dV( . .. ) = L s (. . . )(Ks/ks)rodro 

+ { i,(. .. )(K,,/ky)rodro, 
s • 

where t += lim t+ E. .-0 
The differential form of Green's th eore m for our 

special case, 

ro(T\75G-G\7tT)=~ (Tro aG) 
aro aro 

a ( aT) 
- aro Gro aTu ' (73) 

enables us to express the te mperature in te rm s of the 
Green 's function. The final res ult becomes 

11+ K II'S 
= dto-kS p(ro , to)G(r , tiro, to)rodro 

o s 0 
(74) 

(I+ K fl" + Jo dto k:; 1'.' peru , to)G(r, tiro, to)rodro , 

where we have used the following initial conditions 
and boundary conditions: 

Ts(r , 0)=0, T,,(r, 0)=0, G(r, tiro, t +)=O 

G(r, t I rio to) =0, 

=K"k!7 IaG (r, tiro , to)/a rolro=l't · 

We now proceed to constru ct the Green's fun ction 
G(r, ti ro, to) . Referring to eqs (30) , (32), and (33), we 
have that the spatial eigenfunctions of the solid-gas 
sys tem are 

648 



for 0 ,;::: r ';::: rs (75) 

where 

f Wj (r)Wj( ro) ={ y/(r) y/(rs-r) (Ks/ks) 
j =1 

+ y/ (r - rs) TJ (ri - r) (K y/ k y)} r- I 0 (r - ro) , 

and \72 Wj( r) +gjwj (r) = 0. 

He nce, we may expand the Green's fun ction in terms 
of th e above eigenfunction s Wj (r); namely , 

x 

C(r, t iro, to) = 2: Cj (t, to)Wj (r)Wj (ro). (76) 
j=1 

Substitution of eq (76) into eq (69) yields the first 
order differential equation for th e coe ffi cients C j (t, to) , 

Th e solution of eq (77) s ubjec t to the condition that 
Cj (t, to) = 0 to t < to is 

(78) 

The temperature in the gas ( rs';::: r ';::: ri) [or th e 
cyclic heatin g a nd cooling described by eq (68) becomes 
according "to eq (74) 

x 

Ty( r, t) = To+ 2: AjFo(th ri, r)f(w, ,gh k(J, m, t) 
j =1 

(79) 

where we have added the ambient temperature To , 
where 

f(w, g;, ky, m, t) = [{exp(-gjkyt)- l} (80) 

+ m{l + (w/gjku ) 2} - 1 {exp (-gjkyt) - cos wt 

-(w/gjk!l) s inwt}], 

where Aj is given by eq (34). 

6.2. Plate 

The te mperature, T(zo, to)=u(zo , t)+v(zo)-To , 
satisfies th e heat diffusion equation for the gas ceH; 
na mely , for tim es to ~ 0, 

£..T( )_k_laT(zo ,to) 
a 'J Zo, to a 

Zii t 
-p(ZQ,to), 

(81) 

where p(zo, to )= Y/( lzl-z2}YJ(z;I-lzl) (QdKs) (l 
+mcoswt) and where k is s ubscripted with s when 
Z2';::: Izl ,;::: Z3 and with g when Z2 ~ Izl ~ O. 

The Green's function C(z, t Izo, to) for the gas cell 
satisfies the equation, 

(82) 

where , whe n O ~ Izl ';::: Z2, k=k", k'=ks, and K=Ky ; 
and where, wh e n Zt ';::: Izl ,;::: Z;l, k= ks, k' = kg, and 
K = Ks. Thi s Green 's function for th e gas cell obeys 
causality and condition s s imilar respec tively to eq 
(70) and eq (71). It also sati sfies the adjoint equation 
si milar to eq (72). 

Expressing the temperature in terms of the Green 's 
function involves th e sa me steps as those con tain ed in 
part A of thi s sectio n. The thermal fac tors are 
K ,(kolk s) 1/2 for th e windows and K!I(k.,(k y ) I/t for the 
gas. Th e final res ult is, 

x 

T y(z, t) = To+ 2: Aj cos (g jz)f(w, gj, k y , m , t), (83) 
j =1 

where Aj is given by eq (65), f(w , gj, ky , m, t) is given 
by eq (80), and where we have added th e a mbi ent 
temperature To . 

7. Conclusions 

Th e mathematical express ions contain ed in eqs (33), 
(34), (35) and (79) for cylinders and in eqs (64), (65), (67) 
and (83) for plates form the basis of ' the computer 
programs used in references [3] through [6]. The 
authors of these references predict by compute r pro
grams the performance of the proposed devices for 
meas uring absorption coe ffi cients as fun ctions of their 
operating param e ters. 

8. Appendix A. Integrals Occurring in 
Equation (31) and Equation (32) 

If B,,(gr) is anyone of the functions},,(gr), Y,,(gr) , 
or Fu(g, ri, r), then from references [9], [10], and [11], 
we have that 

f Bo(gr)rdr = (r/g)} I (gr) + cons tant , 

f Bo(r)r3dr= (r/ g) [{r2 - (2/0 2} B I (gr) 

+ (2r/g)B o(gr)] + constant , 

fIn (r)Bo(gr)rdr= (r/g) In (r)BI(gr) 

+ (lIe)Bu(gr) + constant. 

(AI ) 

(A2) 

(A3) 

649 



If ZIII(tlr) = ailll(tlr) + bYIIl(tlr) and Xm(6r) 
= Cilll(t2r) + dYm(t2r) with a, b, c, and d independent 
of m and r, then 

(A4) 

9. Appendix B. Integrals Occurring in 
Equation (62) and Equation (63) 

We tabulate in this Appendix the several integrals 
which appear in eq (62) and eq (63): 

f cos {t(z+b)}dz= (lIt) sin {t(z+b)} (Bl) 

f z cos {t(z+b)}dz= 0/,;)2 cos {t(z+b)} 

+ tz sin {t(z+b)} (B2) 

f Z2 cos {t(z+b)}dz= (1/t)3[2tz cos 

rt(z+b)}+ (ez 2 -2) sin {t(z+b)}]. (B3) 

When t I ~ 6, we have that 

f cos {tl(z+b)} cos {tz(z+c)} 

= {<:: . (b- )}[sin{(tl-tz)(z+b)} 
cos ~ 2 C 2 ( ) tl -tz 

+ sin {(tl +6 )(z+ b)} ] 
2(';I+tz) 

+ . {I::.(b- )}[ cos (tl-tz)(z+b) 
Sill \,2 c 2(tl -6) 

_ cos {(tl + {Z) (z+b)} J. 
2(tl+tz) , 

and when g 1= gz = t, we have that 

f cos {g(z+b)} cos {g(z+c)} 

= cos {{(b-c)} 
2g 

[g(z+b)+sin {g(z+b)} cos {t(z+b)}] 

(B4) 

+ sin {g~~-c)} sin2 {g(z+b)}. (B6) 
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