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Two devices are proposed for measuring absorption coefficients in weakly absorbing materials.
The first device measures cylindrical samples and the second device measures flat plate or disk
samples. This paper reports on the derivations for the steady-state and transient solutions to the heat
diffusion equations which describe the barothermal behavior of the two proposed devices. In addition,
Green’s function techniques are used to describe the cyclic heating and cooling of the cylinders and

plates.
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1. Introduction

Optical communications, integrated optics, and high
power lasers are developing technologies which depend
in part upon highly transparent solids. For example,
optical communication systems use optical fibers with
absorption coefficients which are less than 10-*e¢m ! at
operating wavelengths [1].! Continuing further ad-
vances in these technologies and determining the ab-
sorption mechanisms in highly transparent materials
require improved methods for measuring very small
absorption coeflicients.

Four general techniques for measuring absorption
coeflicients exist. These techniques involve respec-
tively calorimetry, spectrophotometry, emissivity, and
gas pressure measurements.

In the calorimetric technique, one measures the
temperature rise of the solid which occurs when a frac-
tion of the energy in a beam of radiation is absorbed.
When the temperature rise, reflectivity, and laser
power are known to within an accuracy of 1 percent,
this method is capable of giving absorption coefhicients
on the order of 10-* ¢cm ! within an accuracy of a few
percent. This method then has reasonably high sen-
sitivity, and requires laser beam powers of the order of
tens of mW for absorption coefficients of the order of
1073 em~'. It also is insensitive to those scattering
centers which do not absorb any of the radiation. How-
ever, the sample must be contacted with thermo-
couples to measure its temperature and the absorption
coeflicient can be determined only at those wave-
lengths for which sufficiently powerful lasers are
available.

! Figures in brackets indicate the literature references at the end of this paper.
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The second technique involves measuring the trans-
mission loss of a beam of radiation passing through the
solid. Variations of this technique include either a
single beam or double beam spectrophotometer and
may use samples of two different lengths. Double beam
methods using samples of different lengths give prod-
ucts of the absorption coefficients « with the sample
thickness d as small as ad ~ 0.002 with an accuracy of
=+ 0.0002. The photometric technique has the advantage
of using light sources with continuous values of wave-
lengths present; but it has the disadvantages that
sample preparation is important to avoid surface
scratches and dust and that the samples should not.
have scattering centers such as inclusions.

In the third technique one measures the emission of
the sample at a given temperature and compares it
directly to a blackbody at the same temperature. When
the product ad is very small, the emittance E (the ratio
of thermal radiation per unit area emitted by the
sample to that emitted by a blackbody at the same tem-
perature) becomes E ~ ad. For values of ad less than
0.001, the emittance measurements can be more sensi-
tive for determining « than the photometric measure-
ments. In addition, by this technique, one can obtain
values of absorption coefficients over a continuous
range of wavelengths. But exceptional temperature
control is essential to achieve such sensitivity.

In the fourth technique, the energy absorbed from a
beam of radiation passing through the sample produces
heat. The heat then diffuses from the solid to a non-
absorbing, confined gas which is adjacent to the sam-
ple. The heat transfer process leads to a pressure rise
in the gas. Because this technique tends to average
over any absorption inhomogeneities in the sample, we
also expect that localized absorbing or scattering



centers could be less of a problem for this technique
than for the calorimetric techniques in which the
placement of thermocouples may be important.

To develop further this last technique, Bennett and
Forman recently proposed alternative ways to measure
very small absorption coefficients. They considered in
a series of papers [2—6] both barothermal and photo-
acoustic modes of operation for devices to characterize
weakly absorbing materials. In these papers, they
cited only the results for the solutions to the heat
diffusion equations which describe the behavior of
the proposed devices. They did not derive the solutions
because they wanted to stress in those papers the major
conclusions for designing absorption devices with
optimum performance.

Figures 1 and 2, respectively, show schematics of
their proposed devices for measuring absorption co-
efficients of long cylindrical samples and of thin disk or
plate-shaped samples. Each of these devices has a
characteristic frequency which is related to the inverse
of the time required for transferring a heat pulse from
the solid to the gas. The barothermal mode of opera-
tion occurs whenever the modulation frequency of the

sion equations which describe the barothermal be-
havior of the two proposed devices. The equations
which describe the photoacoustic behavior of the
devices are derived in (separate papers [4, 6]).

The steady-state and transient solutions for cylin-
drical samples are derived here, respectively, in sec-
tion 2 and section 3; and the steady-state and transient
solutions for disk or plate-shaped samples are de-
rived, respectively, in section 4 and section 5. The
Green’s functions which describe the cyclic heating
and cooling of the cylinders and plates are constructed
in section 6. And finally, frequently occurring integrals
involving the eigenfunctions for the equations are given
in appendix A for cylinders and in appendix B for disks
or plates.

2. Steady-State Solution— Cylinder

From [3], the steady-state temperature v(r) satisfies
the following heat diffusion equations for the proposed
device in figure 1: When 0 <r<r,,

APRS o d*vs(r) | ks dug(r (r
beam: of radiation is less than the characteristic fre- ke +(r) + = (1) +Q"( ) =0; 1)
quency of the device; and the photoacoustic mode of dr* rodr psCs
operation occurs whenever the modulation frequency
. . G < r<r:
of the beam of radiation is greater than the character- and when ry<r<r;,
istic frequency of the device [7]. d
In this paper, the author gives derivations for the k d*vy(r)  ky ”!/(r)_o
: . . g =0, (2)
steady-state and transient solutions to the heat diffu- . dr’ r dr
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FIGURE 1. Schematic of an absorption measuring device (barothermal) for long cylindrical samples.
Insulating annuli support coaxially the long cylindrical transparent sample of radius ry inside a larger cylinder of radius r;. A confined
nonabsorbing gas at ambient pressure p, fills the space between the two cylinders. The walls of the outer ¢ ylinder are at a constant tem-
perature To. A collimated beam of radiation, such as a laser beam, propagates coaxially through the (\lmdru al sample. The beam of
radiation has a power W, and an effective radius r;. A pressure transducer, which is not shown, monitors the pressure at the heat sink —

gas interface.
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FIGURE 2. Schematic of an absorption measuring cell (barothermal) for plate-shaped samples.

A confined, nonabsorbing gas at ambient pressure p, fills the space inside the cell between two windows. The walls of the cell may have
a polygonal or circular ¢ section. The windows which enclose the at each end of the cell are made from the weakly absorbing
material under investigation. The external faces of the two windows t a constant temperature T,. A collimated beam of radiation,
such as a laser beam, with power W/, and effective radius r; propagates along the z direction through the pressure cell and its windows.
A pressure transducer, which is not shown, measures the pressure in the gas at |z| = z,.

The temperature in the solid is vy(r) and the tem-
perature in the gas is v,(r). The power absorbed per
unit volume in the solid is

Qifor0=sr=sn=<r;

0 for r > ry, 3)

o=

where Q= a,W /mr?, a; is the absorption coefficient
of the solid, W, is the power of the beam of radiation,
and r; is the effective radius of the collimated beam.
The radius of the cylindrical sample is ry and the radius
of the outer cylinder (heat sink) is ri. The thermal
diffusivity k= K/pC, where K is the thermal conduc-
tivity, p is the density, and C is the specific heat at
constant volume. The subscript s denotes quantities
for the solid and the subscript g denotes quantities for
the gas.
The boundary conditions are that

y(ri) =T, (4)

where T is the temperature of the heat sink. Con-
tinuity of temperature across the solid-gas interface
at r=r; gives,

vs(rx):v!l(rs)v (5)

and conservation of heat flow across the solid-gas

interface at r=ry gives,

(6)

- g9 ]
rerg dr

l:I.\.-

Rearranging eq (1) and eq (2) yields, respectively,

d ( dvs\_  rQyr)
dr(r dr )_ K, @
and
d [ dvy _
dr <rdr >_0’ ®)

and integrating these equations twice yields the steady
state solutions;

S _’Q_,{rl forO0=r=n
vs(r)=v;(0) 4K, (2[1+2In (r/r) ] for n<r=<ry )
and

vy(r)=Ciylnr+Cyg for ry<r<rn, (10)

where C,, and C,, are constants of integration and
where the limit that
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Lim r%ZO

—o dr .

is invoked to obtain eq (9) (i.e., that v; remains finite at
r=20).

Boundary conditions (4), (5), and (6) require that the
temperature at the center of the cylinder r=0is

erlz, 2K, Iy Ts
v5(0) —T()+4—KS {1— X, In (;) +2In <r—l>}, (12)

and that the temperature in the gas is

vy(r)=To— % In <L>

2Ky Ay )

3. Transient Solution —Cylinder

The transient temperature u(r, t) for times t=0 is
given in [3] by the diffusion equations

2 G -
ol e ) _dulnt) gy
ar? r ar ot
and
6_2 _@au!l(rs t)_au_(/(r, t)
k!la rzu’!](r9 t) + . o - ot . (15)

At time t=0, the sum of the transient and steady-
state temperatures is everywhere equal to the ambient
temperature T,

T(r,0)=u(r,0)+v(r)="Ty; (16)
and at any time ¢ the temperature at the heat sink
r=r;is T, i.e.,

ug(ri, t)=0, (17)

because

Lim u(r, t) =0,

t— o

by the definition of transient solutions and because
vy (ri) =T. )

A general separable solution to an equation having
the form of either eq (14) or (15) is

u(r, t) =R(r)7(t) =[AJo(ér) +BYo(ér) ]

exp (—&%t), (18)
where J, is the nth order Bessel function of the first
kind, Y, is the nth order Bessel function of the second
kind [8], ¢ is the constant of separation, and 4 and B
are constants. The quantities 4, B, ¢, and k have the
subscript s for the solid and the subscript g for the gas.

Equation (17) states that

Ry(ri):()a (19)

and the temperature continuity equation at r=rsy,
requires that

Rs(rs):Ry(rs) (20)

and

&= (kylks)EL 21)
Also, the constant B;=0 because the temperature must
be finite for all =0 and ¢.

Hence, the conservation of heat flow across the solid-
gas interface

Ksdu,(r, £)[or],=r, =Ky duy(r, t)or|r=r, (22)

and the other boundary conditions eq (19) and eq (20)
yield three homogeneous simultaneous equations for

the three unknowns 4, 4,, and B,,. Solutions for this
set of three equations exist if and only if the de-
terminant, D, of their coefficients vanishes; the vanish-
ing of the determinant yields the eigenvalues ¢,=¢&;,
where j=1, 2 . . .. The jth eigenvalue &; is that
value of ¢, for which the determinant vanishes for the
jth time, i.e., &<¢j,1: namely, det D(¢;) =0, where
0

.]o(fgfi)
D= Jo(€&rs) —Jo(&grs)
—K&sJ1(Es7s) Ky Ji(€grs)
Yo(égri)
_Yt)(fﬂrs) (23)

K€Y (Egry)

The eigenvalues &; also determine the character-
istic times ¢; for the solid-gas system; namely,

L= (‘ffk!/) 2k

Expressing A5 and B, in terms of 4;=A,,, we obtain,

(24)

Ri(r) =3 A;F (&, ri, r)lo(Er) 1 Jo(Ers) Y. (25)
J=1
forO0<r=<r, and
Ro(r) =3 A;F (&, iy 1)

for r¢<,r <r; where EJZZ (kolks) 5,2 and where the
function F, is

Fn(gg, Ti, I")
e {Yo(g_(,ri),]"(.f_(,r) —j(,(f,,r,-)Y,I(f_(,r)}/Y()(g,,r,-).

Relations (25), (26), and (27) are valid only if
Jo(&jrs) # 0 and if Yo(&;r;) #0.

In terms of the functions F', (&, ri, r), the eigenvalue
equation satisfied by the eigenvalue &¢; becomes,

27)

_Kyfj-]t)(é?jrs)Fl(f o (P 753,

stj.]l(f_jrs)FO(é?jvrivrs) i
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We determine the coefficients 4; by using the t=0
relations obtained from eq (16); namely,
Rs(r)=Ty—wvs(r)

forO0=r<r,

(28)
and
Ry(r)=To—vy(r) (29)

forrg<r<r;.

First, we consider the eigenfunctions for the solid-
gas system

Eo('fj, Ti, r)

={ Fo(f_,',r,',rs){.]o(g_,'
Fu(f_i, Tiy T)

NJo(&rs)}

forO<r=<r

AP (7 = 7 <= (e
(30)
Next, we multiply both sides of eq (28) and eq (29) by

%fEu(fi- Ti, ")

whenOr<r<r,

and by

Kq

rEU(fI Ti, r)
/11/

when rg<r<r;

and then we integrate the resulting expressions over
the interval 0 < r= r;. This procedure yields the fol-
lowing expression for the coefficients 4

S AA (. E)

K[
& [ (T

ril
+4(l)(lx { L Eo(&i, ri, r)rdr

+r2 ﬁ"""{1+2 In (rlri) }Eo (&, ri, r)rtfdrH

v.«(O)}f SE¢.(§i,r;,r)rdr (31)

[ 21<,,f In (r/ri)Eo(&i, ri, r)rdr ]

where

A(é). &) =’f— f " Eu(&, ri, ) BalEs i r)rdr

Kq

A f EO qu ri, I )Eﬂ(fn ri, T )rdr
4

(32)

Appendix A contains the evaluations of the several
integrals which occur in eq (31) and eq (32). Usingeq
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(A4) and the fact that dBo(ér)/dr=—B,(¢r), we find
that A (&5, &) vanishes unless &= ¢&;: and when &;=¢;
the factor A (¢;, &;) = A;j becomes

= [( Kl

2ky [\ Kyks 1) F3(&;, ri, rs)

+ (BIR)F3 (& rir 1) + ( &"1) i )]

K
(33)
Applying eqs (Al) to (A3) to the right-hand side of

eq (31), we obtain, after several steps, an expression
for the coeflicients A4;, namely,

%J:(E”)Fn(fh Tis T's) .

A;=—2L a
Y A\fj A_,'Jn(fjrs)

(34)

Because we sum in the computer program used in
[3] a finite number of terms in such expressions as
eq (25) and eq (26), we normalize the 4;’s for 1 < j < N
by using the relation (29) evaluated at r=r;. To accom-
plish this normalization, we introduce the normaliza-
tion factor ay and replace A4; with ayA4;(N) in the
relation (29). This then gives us an expression for the
factor ay: namely,

(n—-%r’:ln (:—:)/El A;(N)Fo(&j, ri, rs).  (35)
4. Steady-State Solution —Plate

From [5], the steady-state temperature v(z)
satisfies the following heat diffusion equations for
the proposed device in figure 2:

When z, < | z | < z,

9* Q

Py vs(z) +_Kx=O 3 (36)
and when |z | <z,
62
9 ve(2)=0.
o 0@ (37)

The temperature in the cell windows is v4(z) and
the temperature in the gas is v,(z). The power ab-
sorbed per unit volume in the cell windows is

Q1= aW [7r3. The absorption coefficient of the win-
dows is as.

The boundary conditions are that

vs(xz3)=To, (38)
where T, is the ambient temperature. Continuity of
temperature and conservation of heat flow across the
solid-gas interface at z==2z, give, respectively,

vs(£2) =vy(£22) (39)



and

stvs/dz ] z:tzzzK!/dU!//dz ] 2=+z29- (4‘0)
We integrate eqs (36) and (37) twice to obtain the
general solutions,

vs(z) =— (Q122/2K) + C; | z | +Ds, (41)

and

vs(2) =Cy |z |+ Dy, (42)
where the C’s and D’s are constants of integration.

The absolute value of z occurs in eqs (41) and (42)
because v(z)=v(—z) when as|zz—2z|<1. Also,
because dvy(z)/dz|.=o' =Cy and dvy(z)/dz | =0~ =
—C,, the constant C, must be zero. (If C, were not
zero, then a heat sink or heat source would exist at
z=0. This is not the case for the proposed device).

The boundary condition (38) at z= z3 and the bound-
ary conditions (39) and (40) at z=2z yield three in-
homogeneous equations for the three unknown
coefficients Cy, D, and D,: namely,

C.\'Z.‘i O Ds: T() A (le'i/zK\) 5
_D!/+CSZZ+DS: (QIZZ)/2K&) D (4'3)
C,,-K,g: QIZQ.

A solution for the three equations exists if the deter-
minant of their coefficients does not vanish; i.e.,

0 23 1
det| =1 z 1 |=—K;#0.
0 K0

(44)
Using the matrix method to solve the set of equations
(43), we obtain the steady-state temperature:

vs(z) =To+ (Qi/K;) [25{ (23/2) =2} — | z |

{(|z]/2)—z}], (45)
for zx< |z | < z3, and
vy(z) =To+ (Qi2K;) (23— 25)* (46)

for |z | < 2.

5. Transient Solution — Plate

The transient solution u(z, t) for times ¢ = 0 satisfies
the following heat diffusion equations: [5]

92 1 dus(z, t)
k.\'

S (47)

forzs < |z| <z, and

02 1 duy (z, t)

ks =y =2 (48)

for |z | < z.

At'time t=0, the sum of the transient and steady-
state temperature at the exterior sides of the cell win-
dows at |z|=2z3is T, i.e.,

us(ith t) :0’

(49)
because

Lim u(z, t) =0

t— ©

(50)

by the definition of transient behavior and because
U,\-(iz;;) — T().
General separable solutions to eqs (47) and (48) are

u(z, t)=R(z)7(t)
where
R(z)=[A exp (itz) +B exp (—i¢z)]
and
7(t) = exp (—&2kt).

The constant of separation is ¢ and the coeflicients
A and B are constants. The subscripts s and g denote
the quantities 4, B, &, and k respectively for the
windows and for the gas.

Equation (49) gives us that

Rs(izti)zo- (51)

The continuity of temperature across the interfaces

at |z| =z» requires that
R:(*tz:) =R (*2z)

and

= (kfl/ks)fé' (52)

In addition, the conservation of heat flow across the
window-glass interface at |z| = z» requires that

K. (dR/dz)|:- . -,= Ky(dR,/dz)

2=+25. (53)
Hence, the boundary conditions (51), (52), and (53)
yield six homogeneous simultaneous equations for the
six unknown coefhicients A7, B7, Ay, By, A<, and B,
where the superscripts < and > are, respectively, for
z<0 and z>0. Because As=B;, B:=A>, and
Ay,=B, by symmetry, these six equations reduce to
three equations in three unknowns. A;=A47, B;=B_,
and A=2A4,. Solutions for this set of equations exist
if, and only if, the determinant D of their coefficients
vanishes. The vanishing of the determinant yields the
eigenvalues £,=¢;, wherej=1,2,3, . . . «.
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The jth eigenvalue ¢; is that value of ¢, for which the
determinant vanishes for the jth time, i.e., & <& 1:
namely,

det D(¢;)=0, (54)
where

exp (iész3)
exp (i&sz2)

1éKs exp (i&gzz)

0
(D)= ( —cos (&yz2)
f.r/K.u sin (f.uzi)

exp (—i&sz3)
exp (—iész») (55)
—iéK; exp (—iézs)

and £2= (kylks) €2, From eqs (54) and (55), the eigen-
value ¢; satisfies the following equation

(Kglkl?) sin (&422) sin (éd) =
cos (£4z2) cos (Ed), (56)

(Klky?)

where &, - ¢; and d= (

Z:;_Z-_g).

Expressing A and By in terms of A =A4;, we have

Ry(z)= ﬁ:Al,' cos (&;z) for |z| < z» (57)
J=1
and
A 2 ’
: — CoS (§}(|z|+z:—2z:x))}
(58)
for z» < |z| < z3, where vf; = (kglks)12€;.

We determine the coefficients 4; by using the t=0
relations obtained from eq (49); namely,

RS(Z) ZTU_’UN(Z) for z, < |z| =2z3 (59)
and

Ry(z) =To—vy(2) for |z| < z.. (60)

Equations (57) and (58) contain the eigenfunctions
for the window-gas system; namely,

E(j, 2)

cos (&z) for |z| < z»

cos (&z2) {cos (& (|z] —22))
—cos (£5(|z| +2:—2z3))}

2 sin? (¢'d)
for z» < |z| < z3.

61)

We multiply both sides of eqs (59) and (60) by
Ky(ks/ky)2E(j, z) when—z» < |z] < z3
and by
K(kglks)'2E(j, z) when |z| < z3,
and we integrate the resulting expressions respectively
over the intervals 0<z=<z and z:<z<z. This
procedure gives us the following expression for the
coefhicients A4;:

%

2 }A(gl’ i
e (T"_D!/)K!/(lk’x/k;/)l"/"’fzzE(i, z)dz
(62)
+ (QUKIK (hlk) = [ [ G12)
— 2o} —23{(23/2) — 2.} 1E (i, z)dz
where

A(f.h fl) :K!/(l"x/lf.«/)l/2 J;):zE(j, Z)E(i, Z)dz

Kx(/f!r/l\‘s)l/zme(j, Z)E(L, z)dz. (63)

Appendix B contains the evaluations of the several
integrals which occur in eqs (62) and (63). Using eq
(B4) gives us that A(&;, &) vanishes unless &;=¢;.
And when &;=§;, the factor A(¢;, &) =A; becomes
from eq (B5)

[('.’l(k,\‘/k.’l)l/:3
2

(22 + {Kskod cos? (£jz2)/Kgks sin? (f"d)}] (64)

A_,‘=

Applying eq (B1) through eq (B3) repeatedly to the
richt-hand side of eq (62) gives us an expression for the
coefficients 4;; namely,

= (K;;st//f_;‘K.\-kgA,;) {(kslky)'? sin (€;z2)

— (K cos (€jz2)/K, sin (f;d)}. (65)

Because the computer program in [5] evaluates a
finite number of terms in such expressions as eq (57)
and eq (58), the coefficients 4; are normalized for
ls;= N by using the relation (60) evaluated at z=z..
Replacing 4; with ayA4; (N) in relation (60), one obtains
an expression for the nnrmdllzdtmn factor ay .

T (66)
2 A;(N) cos (&jz2)

g =1l
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6. Cyclic Heating and Cooling

The Green’s function method offers a convenient
way for computing the response of the proposed baro-
thermal devices when the beam of radiation is turned
on at t=0 and is modulated at angular frequency o for
all times ¢t = 0. We express the power absorbed per unit
volume Q/(t) by the expression,

Qi(t)=m(t)m(ri—r)Q(1+m cos wt), (67)
where |m|<1 is the modulation factor for cyclic
heating and cooling and where w is less than the
characteristic frequency of the system. The step
function n(x) is zero for x < 0 and 1 for x > 0.

6.1.

The temperature T(r, to) =u(ro, to) +v(ro) —To,
satisfies the heat diffusion for the cylinder and the gas;
namely, for times to= 0,

V%T(rn, tu) —/{"(GT(M, t())/ato) =—p(r1., to); (68)

where p(ro, to) =n(ri—ro) (Qi/K;)(1+m cos wt) for
ri<rg; where V2 becomes {(92/0r%)+ri'(d/dro)
because the temperature does not depend upon angle
0o and coordinate zo; and where k is subscripted with
s when 0<ry<r; and with g when ry<ro<r;. We
subtract the ambient temperature T, from the tem-
perature for later convenience in using the boundary
condition T(r;. t)=0.

The Green’s function G(r, t|ro, ty) for the system
satisfies the equation

Cylinder

V2G(r, tlr(l, to) —/f*‘()G(r, t|r(,, to)/at

9
__S(T_r())S(t‘to) (69)

B r(K/k) ’

where k& and K are subscripted with s when 0 <r<r,
and with g when ry <r<r;. We interpret G to be the
temperature which occurs at r and ¢t when an impulse
source of heat is introduced at ry and ¢.
The Green’s function satisfies a causality condition:
G(r, t|ro, to,) =0 if t <to. (70)
In addition, it satisfies a reciprocity condition under
time reversal because the causality condition (70)
requires a time sequence
C(r,t|r0,to)=C(ro,—tn|r,—t), (71)
where the function G(ry, —to|r, —t) gives the tempera-
ture at ro and —t, due to a source impulse at r and
—t. Because —ty > —t, the time sequence is properly
ordered. Hence, from eq (71) we have that

V}%G(r, t|r0, to) a5 k"a(}(r, t'r(), t())/at()

__5(r_rn)5(t—t”) (72)

e ru(K//f) .

where £ and K are subscripted with s when 0 < ro < r;
and with g when ry<ro<r;.

We shall now express the solutions of the inhomo-
geneous diffusion eq (68) for the solid and gas in terms
of the Green’s function G. We first multiply eq (68) by
G(r,t|ro, to) and eq (72) by T(ro, to) and then subtract
the first product-equation from the second product-
equation. Keeping in mind that the thermal factor for
the solid (K/ks) differs from the thermal factor for the
gas (Kgy/k,), we integrate the above result over the
time domain 0 < ¢, <t—" and over the volume of the
solid-gas system.

de(. . .)=ﬁ‘"(. ) (Kulks)rodro

+f l( . -)(K,,/k,,)rndm,

s

where t*=limt+e.
e—0

The differential form of Green’s theorem for our
special case,

DY G
(TV36—=G6ViT) == (Tn, a—r“)

—ir ((;n.ﬂ) (73)

(”)T() ’

enables us to express the temperature in terms of the
Green’s function. The final result becomes

() (rs=n)Ts(r, )+ (r—=ro)n(ri=r)Ty(r, t)

tt s
=f dtu%f p(r(), t())G(T, t‘ro, t())f()dro (74)
0 3 K

tt K[/ ri
=F dlo/T' ,D(ru, to)G(r, l|ro, to) rodro,
0 g Jrg

where we have used the following initial conditions
and boundary conditions:

Ts(r,0)=0, T,(r, 0)=0, G(r, tlro, t*)=0
Ts(rs, ) =Ty(rs, t), Ty(ri, t)=0,
kG (r, tlry, to) =k;'G(r, t|r}, to),
G(r, t|ri, to) =0,
KOT/0ro|ry=r= kT yldro|ro=r,, and
Kok ;7'9G (r, t|ro, to)[aro|ry=r,

=Kk;'0G(r, tro, t0)/3r0| ro=ri.
We now proceed to construct the Green’s function
G(r, t/ro, to). Referring to eqs (30), (32), and (33), we

have that the spatial eigenfunctions of the solid-gas
system are
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(Kol ksAj)2Eo (&, iy r) forO<r<ry

(75)
(K,//A‘glA_;) '/2E1)(§_,‘, T, r) forrs<r<r;,

f” rdrW;,(r)W,(r) = 8;,, ja;
S W (DW;(re) = {n(r) m(ry—r) (Kylks)

+T)(r—rs) 1)(r,-—r) (K,,/k,,)}r"ﬁ(r—r(,),
and V2W;(r) +&W;(r)=0.

Hence, we may expand the Green’s function in terms
of the above eigenfunctions W (r): namely,

G(r, t|rn, ty) = E C.,‘(t, to)W_;(r)W_,-(r"). (76)

J=1
Substitution of eq (76) into eq (69) yields the first

order differential equation for the coefficients C; (¢, t),

k! % Ci(t,to) +&C;(t, t0)=8(t—t0). (77)

g
The solution of eq (77) subject to the condition that
Ci(t,to)=0tot <ty is

Cj(t,to) =m(t—to) exp{—¢&hy(t—to) }. (78)

The temperature in the gas (r¢<r=<r;) for the
cyclic heating and cooling described by eq (68) becomes
according to eq (74)

Ty(r,t)=To+ ’E A;Fo(&j, iy 1) f(w, &), kg, m, t)
j=1 (79)

where we have added the ambient temperature T,
where

f((x)., g.iv k.’/9 m, t): [{(“Xp(_fflxqt)‘—l} (80)
+m{l+ (w/f?k,,)z}*‘ {exp (— §"’-.’k,,t) — cos wt
— (/&3 ky) sin wt}],

where A; is given by eq (34).

6.2. Plate

The temperature, T(z0, to) =u(z0, t)+v(z0) —To,
satisfies the heat diffusion equation for the gas cell;
namely, for times to =0,

2
P T (zo, tn) = [5=1
dzs

dT (zo, ¢t
%L):—p(an t“)’

(81)

where p(zo, to)=m(|z|—z2)m(zs—|z|]) (Qi/Ks) (1
+m cos wt) and where k is subscripted with s when
2> < |z] < z3 and with g when z, = |z| = 0.

The Green’s function G(z, t|z, to) for the gas cell
satisfies the equation,

8(2—20)8([—[1)
K(k’//x’) 1/2 2

02G[oz> —k~'9G[ot=—
(82)

where, when 0 < |z| <z, k=k,, k' =ks, and K=K,
and where, when z»<|z| <z, k=k,, k'=ky, and
K=Kj;. This Green’s function for the gas cell obeys
causality and conditions similar respectively to eq
(70) and eq (71). It also satisfies the adjoint equation
similar to eq (72). :

Expressing the temperature in terms of the Green’s
function involves the same steps as those contained in
part A of this section. The thermal factors are
K(kylks)'? for the windows and K, (kg/k,)"? for the

gas. The final result is,

Ty(z, ) =To+ S 4; cos (&;2) f (o, &, kgs m, 1), (83)

ji=1

where A; is given by eq (65), f(w, &, kg, m, t)is given
by eq (80), and where we have added the ambient
temperature T.

7. Conclusions

The mathematical expressions contained in eqs (33),
(34), (35) and (79) for cylinders and in eqs (64), (65), (67)
and (83) for plates form the basis of the computer
programs used in references [3] through [6]. The
authors of these references predict by computer pro-
grams the performance of the proposed devices for
measuring absorption coeflicients as functions of their
operating parameters.

8. Appendix A. Integrals Occurring in
Equation (31) and Equation (32)

If B, (ér) is any one of the functions J,(¢r), Y, (ér),
or F (&, ri, r), then from references [9], [10], and [11],
we have that

J Bo(ér)rdr= (r/¢)J . (ér) + constant,  (Al)
J Bo(r)ridr= (r/¢) [{r*— (2/¢)*}B.(¢r)
+ (2r/¢)Bo(ér)] + constant,  (A2)
S In (r)Bo(ér)rdr= (r/€) In (r)B:(¢r)
+ (1/£2)By(Er) + constant, - (A3)
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If Zm(glr)za.]m(flr)+me(§1r) and X,,,(fzr) oS {(§1+§_’) (z+b)} . =
=cJm(&r) +dYn(&or) with a, b, ¢, and d independent = St ) ] (B4)
of mand r, then

and when &, =&, =¢, we have that
(ff—g_%) me(fﬂ)X,,,(fzr)rdr

Jcos {&(z+b)} cos {&(z+c)}

_cos {&(b—c)}
9. Appendix B. Integrals Occurring in 3 2¢

Equation (62) and Equation (63)

zf‘.!er(flr)Xm—l(fzr) —germ—l(glr)Xm(gzr)- (A4)

[é(z+b) +sin {£(z+b)} cos {€(z+b)}]

We tabulate in this Appendix the several integrals

which appear in eq (62) and eq (63): s sin {52(;7—6)} sin? {£(z+b)}. (B6)
[ cos {€(z+b)}dz= (1/¢) sin {&(z+b)} (B1)
J z cos {€(z+b)}dz= (1/€)? cos {&(z+b)}
+ézsin {€(z+b)} (B2) 10. References
J 2% cos {&(z+b)}dz= (1/¢)3[2€z cos [1] White, K. 1., and Midwinter, J. E.. Opto-Electronics 5, 323
(1973).
2.9 . 2] B ,H.S..and Fo R.A. . tok blished.
{£(z+b)} + (£222—2) sin {£(z+b)}]. (B3 H Bonniit B b st Fonnae Beik: o b pubobind
[4] Bennett, H. S., and Forman. R. A., to be published.
When §| 7 fg, we have that [5] Bennett, H. S., and Forman, R. A., to be published.
[6] Bennett, H. S., and Forman, R. A., to be published.
S

f e {51(2"’ b)} e {§->(z+c)} [7] Bennett, H. . to be published.

[8] Handbook of Mathematical Functions, edited by M. Abramowitz
. {( Y b)} and 1. A. Stegun (Dover Publications, Inc., New York. 1965),

sin {(é1— &) (z+ p. 355.
= Cos {fz(b_c)} [ 2(E— &) [9] Hildebrand. F. B.. Advanced Calculus for Engineers (Prentice-

&1—&: Hall, Inc. Englewood Cliffs, 1949), Chap. 4.
[10] Morse, R. M. and Feshbach, H., Methods of Theoretical
sin { (&, +§2)(z+ b)} :| Physics (McGraw-Hill Book Company, Inc., New York,
1953), p. 1322.
2(&:+¢2) e

[11] Mathews, J. and Walker., R. L., Mathematical Methods of
( b) Physics (W. A. Benjamin, Inc., New York, 1965). p. 174.
. cos (&1 —¢&,)(z+
tsin {&(b—c)} [ 2(&— &) (Paper 79A5-866)
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