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On Involutions
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Two methods are described of constructing real functions over the reals which are one-to-one,

assume every real value and are their own inverses, and several examples are given.
that such a function, if everywhere continuous, is either the function f(x)=

decreasing.

It is also shown
x or else is strictly
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1. We shall consider real functions f whose domain
is the set of real numbers, which take on every real
value, are one-to-one, and satisfy for every real x,
/" (x) =f(x), where f~! is the inverse function of f.
We denote by I the set of all such functions. Recall
that functions which are their own inverses are called
involutions.

Suppose that a real function f has as its domain the
set of real numbers.

S(f(x) =x for every real x. 1)
Indeed, if fel, then for every real x, f(f(x))=/(f'(x))

=x. Conversely, if (1) holds, then ftakes on every
real value, is one-to-one (for f(x;)=/(x2) implies
r,—/(/ (1)) =/(f(x2)) =x2). and for every real
Zo e (=

Note that the graph of every fin [ is symmetric in
the line y=x«

C ()nversely, if G is a set in the x, y plane, symmetric
in the line y=x and umtammg, for every real x, a
unique point whose abscissa is x, then G is the graph
of a function belonging to 1.

2. One way of obtaining functions in [ is the fol-
lowing. Start with a real function g(x, y) whose
domain is the set of all ordered pairs of real numbers
and which is such that g(x y) =0 implies g(y. x) =
(This property holds, e if g is symmetric, i.e., if
for every real x, y, we have gy, x)=gx, y).) Sup-
pose that for every real x, there is a unique real y (to
be denoted f(x)) such that g(x, y) =0. Then f(with
domain the set of reals) belongs to I. Indeed, for
every real x,

g(flx), x) =g(x, f(x)) =0,

and consequently f(f(x)) = x.
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Then it belongs to 7 if and only if

ExampLE 1. Let g(x, y) =x+y—c. ¢ being an ar-
bitrary real constant. We obtain from it the function
f(x) =c¢—x belonging to I.

ExXAmPLE 2. Let g(x,y) =x—y. The corresponding

fel is f(x) = x.

ExampLE 3. Let g(x,
bitrary real constant.
f(x) =Ve—adel.

3. Another method of obtaining functions in [ is
based on the last paragraph of section 1. We illus-
trate this method by the following
EXAMPLE 4. In the X, Y plane consider the hyperbola
X2—3Y?=1. Let R, L denote, respectively, its right-
hand and left-hand branches. Consider now a new
coordinate system, x, y, obtained from the X, Y sys-
tem by a clockwise rotation of 45°. In the new co-
ordinate system the equation of R (which is symmetric
in the line y=1x) is

y) = x*+y*>—c, ¢ being an ar-
We "(1 from it the function

y=—3x+2(222+ 1)1

Thus, f(x) =—3x+2(2x*+1)"2 belongs to I. Sim-
ilarly, the equation of L in the new coordinate system is

y=—3x—2(2x*+1)12

and consequently, f(x)=—3x—2(2x>+1)!2 belongs
to 1.

4. Consider the functions in / which are everywhere
continuous. Since such a function takes on every real
value exactly once, it must be, throughout the real
line, either strictly increasing or strictly decreasing.
For example, f(x) = x is a function in / which is strictly
increasing. It is interesting to note that all other
everywhere continuous functions in I are strictly de-
creasing. Indeed, let F'(x)(5 x) be an everywhere con-
tinuous function in /. Then its graph contains two
points which do not lie on the line y=x, but which are
symmetric in this line. Let (x;, y1), (x2, y2) (with
x1 < x2) be such points. Then y; > y» (draw a figure!).
So F(xi) > F(x2), and consequently, F is strictly de-
creasing.
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5. Let us examine the smoothness of the various
examples we have of functions belonging to I. The
functions ¢ —x and x of Examples 1 and 2 are differ-
entiable throughout the real line; in fact they are

analytic at each real point. The function f(x)=Vc—x3
of Example 3 is everywhere continuous. If ¢=0, it
reduces to —x. Otherwise, it is everywhere differen-

tiable except at the point x = e, where it is not.
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Let us now look at the functions f of Example 4.
The function 2z%2+ 1 of the complex variable z vanishes
at 212, —2-12 and nowhere else. Consequently,
the real functions — 3x+2(2x2+1)1/2, — 3x — 2(2x2+ 1) 1/2
of Example 4, are analytic at every point of the x axis.

(Paper 71B1-192)



	jresv71Bn1p_19
	jresv71Bn1p_20

