On Involutions

O. Shisha* and C. B. Mehr**

(December 7, 1966)

Abstract

Two methods are described of constructing real functions over the reals which are one-to-one, assume every real value and are their own inverses, and several examples are given. It is also shown that such a function, if everywhere continuous, is either the function $f(x) \equiv x$ or else is strictly decreasing.

Key Words: Inverses, involutions, real functions.

1. We shall consider real functions f whose domain is the set of real numbers, which take on every real value, are one-to-one, and satisfy for every real x, $f^{-1}(x)=f(x)$, where f^{-1} is the inverse function of f. We denote by I the set of all such functions. Recall that functions which are their own inverses are called involutions.
Suppose that a real function f has as its domain the set of real numbers. Then it belongs to I if and only if

$$
\begin{equation*}
f(f(x)=x \text { for every real } x . \tag{1}
\end{equation*}
$$

Indeed, if $f \in I$, then for every real $x, f(f(x))=f\left(f^{-1}(x)\right)$ $=x$. Conversely, if (1) holds, then f takes on every real value, is one-to-one (for $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=f\left(f\left(x_{1}\right)\right)=f\left(f\left(x_{2}\right)\right)=x_{2}$), and for every real $x, f^{-1}(x)=f(x)$.
Note that the graph of every f in I is symmetric in the line $y=x$.

Conversely, if G is a set in the x, y plane, symmetric in the line $y=x$ and containing, for every real x, a unique point whose abscissa is x, then G is the graph of a function belonging to I.
2. One way of obtaining functions in I is the following. Start with a real function $g(x, y)$ whose domain is the set of all ordered pairs of real numbers, and which is such that $g(x, y)=0$ implies $g(y, x)=0$. (This property holds, e.g., if g is symmetric, i.e., if for every real x, y, we have $g(y, x)=g(x, y)$.) Suppose that for every real x, there is a unique real y (to be denoted $f(x))$ such that $g(x, y)=0$. Then f (with domain the set of reals) belongs to I. Indeed, for every real x,

$$
g(f(x), x)=g(x, f(x))=0
$$

and consequently $f(f(x))=x$.

[^0]Example 1. Let $g(x, y) \equiv x+y-c, c$ being an arbitrary real constant. We obtain from it the function $f(x) \equiv c-x$ belonging to I.
Example 2. Let $g(x, y) \equiv x-y$. The corresponding $f \in I$ is $f(x) \equiv x$.
Example 3. Let $g(x, y) \equiv x^{3}+y^{3}-c, c$ being an arbitrary real constant. We get from it the function $f(x) \equiv \sqrt[3]{c-x^{3}} \epsilon I$.
3. Another method of obtaining functions in I is based on the last paragraph of section 1. We illustrate this method by the following
Example 4. In the X, Y plane consider the hyperbola $X^{2}-\frac{1}{2} Y^{2}=1$. Let R, L denote, respectively, its righthand and left-hand branches. Consider now a new coordinate system, x, y, obtained from the X, Y system by a clockwise rotation of 45°. In the new coordinate system the equation of R (which is symmetric in the line $y=x$) is

$$
y=-3 x+2\left(2 x^{2}+1\right)^{1 / 2} .
$$

Thus, $f(x) \equiv-3 x+2\left(2 x^{2}+1\right)^{1 / 2}$ belongs to I. Similarly, the equation of L in the new coordinate system is

$$
y=-3 x-2\left(2 x^{2}+1\right)^{1 / 2},
$$

and consequently, $f(x) \equiv-3 x-2\left(2 x^{2}+1\right)^{1 / 2}$ belongs to I.
4. Consider the functions in I which are everywhere continuous. Since such a function takes on every real value exactly once, it must be, throughout the real line, either strictly increasing or strictly decreasing. For example, $f(x) \equiv x$ is a function in I which is strictly increasing. It is interesting to note that all other everywhere continuous functions in I are strictly decreasing. Indeed, let $F(x)(\neq x)$ be an everywhere continuous function in I. Then its graph contains two points which do not lie on the line $y=x$, but which are symmetric in this line. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ (with $x_{1}<x_{2}$) be such points. Then $y_{1}>y_{2}$ (draw a figure!). So $F\left(x_{1}\right)>F\left(x_{2}\right)$, and consequently, F is strictly decreasing.
5. Let us examine the smoothness of the various examples we have of functions belonging to I. The functions $c-x$ and x of Examples 1 and 2 are differentiable throughout the real line; in fact they are analytic at each real point. The function $f(x) \equiv \sqrt[3]{c-x^{3}}$ of Example 3 is everywhere continuous. If $c=0$, it reduces to $-x$. Otherwise, it is everywhere differentiable except at the point $x=\sqrt[3]{c}$, where it is not.

Let us now look at the functions f of Example 4. The function $2 z^{2}+1$ of the complex variable z vanishes at $2^{-1 / 2} i,-2^{-1 / 2} i$ and nowhere else. Consequently, the real functions $-3 x+2\left(2 x^{2}+1\right)^{1 / 2},-3 x-2\left(2 x^{2}+1\right)^{1 / 2}$ of Example 4, are analytic at every point of the x axis.

[^0]: *Aerospace Research Laboratories, Wright-Patterson AFB, Ohio 45433.
 **The contribution of this author was made while he was working at Aerospace Research Laboratories, Wright-Patterson AFB, Ohio. Present address: Ohio University, Athens, Ohio 45701.

