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Bacher and Goudsmit Theory of Complex Spectra 
R. E. Trees 

The Bacher and Gouds ll1i t t heory expresses the energy of a state of an atom in t erms 
?f a lineal: combination of energies of states of other ions of t h e same ato m. T his t heory 
IS tested 111 the spectra II'lth d- and s-electrons and general conclusions drawn abo ut its 
accul"ft.cy . 
. In .deri ving their t heory, Bacher . and Goudsmit formally introduced many-par t icle 
lI1 teTactIOns. They showed (to a lilmted extent) t hat t his was equiva lent to a seco nd 
procedure in which t he zero-order wave func t ions were ass umed to be independent of the 
ionizat ion and success ive orders of perturbat ions were included . 

Recent ly it has been shown that a linear t heory, which is a combinat ion of the Slater 
theory and an empirically derived correction, predicts the separat ions of terms in anyone 
configurat ion with about th e same accuracy as the Bacher and Goudsmit t heory; in th is 
theory, the wave functIOns a re a llowed to depend on t he degree of ioni zation. It is shown 
that the Bacher a nd Goudsmit th eory can be interpreted in a th ird way that is consistent 
with this lInear theo ry. 

In t il e light of t his latter interpretation, Hacah h as s llgo·ested an empirical modi fi cat ion 
of tlle Bacher and Go udsmi t theo ry that often leads to better resul ts· t his suggestion has 
been incorpo rated in t he present paper. ' 

1. Introduction 

Bacher and Goudsmit have shown that it is pos­
sible to express Lhe energy levels of an atom cor­
r ectly to second ord er by taking lin ear combinations 
of the energy levels of the ions of that atom. l They 
gave explicit formulas for these linear combinations 
for atoms containing s- and p-electrons, and tested 
the theory in the spectra of oxygen , nitrogen, and 
carbon. The theol'y usually predicted the absolute 
term values with an error less than 2500 K .2 Sepa­
rations of terms in a given configuration were often 
given very much better , sometimes within a few 
hundred kaysers. 

In section 2 the theory of Bacher and Goudsmit is 
derived briefly from a new vlewpoint. Bacher and 
Goudsmit derived their formulas by formally intro­
ducing many-body interactions; no explicit form was 
given for these interaction s. They were able to 
show that in the first and second approximations this 
was equivalent to using zero-order wave functions 
that were independen t of the degree of ionization, 
and, with these, making fu·st- and second-order per­
turbation calculations of the energy, respectively. 
In th e present paper , a third derivation is given, in 
which the zero-order wave functions of the Slater 
theory are allowed to vary regularly with the degree 
of ionization; an explicit two-body interaction is also 
introduced. This interpretation is justified by the 
observation that there is a smooth variation of the 
one-particle and two-particle parameters in a linear 
theory.3 The more specific and easily understood 
meaning of this interpretation in terms of a linear 

I R. F. Bacher and S. Goudsmit, P hys. Rev. 46, 948 (1934); referred to in tbe 
present paper as j' B O". 

2 "Kayser" is tbe name adopted by the Joint Oommiss lon for Spectroscopy for 
the nni t of wave number. em-I, and is abbrev iated "K". 

3 R. E . Trees and M . M. Harvey, J . Research N BS 49, 397 (1952) RP237R. In 
section 1 of RP2378 t he Ii ter.ture is reviewed, and t he methods of analyzing spec· 
tra with t he Slater theory, for including effects of COD fIgurat ion interact ion, and 
of making allowance for polarization energy with tbe L(L+ 1) correct ion are also 
outlined and ap plied . In referring to a ··linear theory" , the L(L+ l ) correction 
is combined witb tbe Slater tb eory, and the radial integrals are regarded as 
parameters. 
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theory is given in section 5; it is eq uivalen t to assum­
ing that the parameters in different ions of the same 
atom are given by series expansions in powers of Lh e 
degree of ionization. It is shown that the BG nth 
approximation accounts for term. up to and including 
the nth power for t he one-partIcle parameters and 
terms to the (n-I) th power for the t wo-particle 
parameters. 

In section 3 a few formulas applicable to terms in 
dn, dns, and dns2 configura tions are obtained by usil1 g 
tables of coefficients of fractional parentage and 
recoupling tran formations given by Racah .4 In 
ection 4 an application of these formulas is made in 

the spectra of titanium, vanadium, chromium, and 
zirconium. I t is fOlmd that separations of terms in 
the same configuraLion are given very closely (th e 
error is less than 400 K ) . t)eparaLions of terms in 
different config urations may be given very poorly , 
however , as an error of 6000 K is found in titanium 
(Z = 22). The lat ter type of error is found to 
decrease very rapidly in spectra of more highly 
ionized atoms: in clu-omium pectra (Z = 24) the 
error is only 600 K , one-tenth the error found for th e 
related titanium spectra. The error is also found to 
decrease for sp ectra with higher nuclear charge as it 
is only 2000 K in zirconium (Z = 40 ) . 

Racah has pointed out that a power-series expan­
sion, of the type described previously, converges 
more rapidly if sp ectra are chosen having the same 
degree of ionization. A comparison with experiment, 
using this empirical modification of the original 
theory of Bacher and Goudsmit, is also given in 
section 4. 
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As indicated previously, the Bacher and Goudsmit 
theory can be interpreted in terms of a linear theory 
in which the radial parameters are given by series 
expansiond in the degree of ionization. Ohecking 
these expansions is the easiest way to check all the 
data against the Bacher and Goudsm.it theory . The 

4 G. Racall , P hys. R ev. 62, 438 (1942) ; 63,367 (1943). These pa pers a le referred 
to here in as II and III, respectively. 
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conclusions reached from the direct application of the 
theory already cited abovc, have been verified by 
using all available data with this method . The de­
tailed calculations needed for this verification are 
omitted for brevity. 

In section 6 the effect of weak configuration inter­
action in which one electron is excited is considered, 
and in section 7 the effect of irrationality of the 
energy eigenvalues is analyzed. The purpose is to 
illustrate in more detail th e direct application of the 
theory of BG and to indicate where a direct applica­
tion might lead to results that differ from those 
obtainable with a linear theory. Such differences arc 
probably too small to bc detected within the accuracy 
obtainable at present with any theory, but more com­
plete comparisons of theory with the presently avail­
able expcrimental data are n eeded to verify this 
conclusion. 

2. Bacher and Goudsmit Theory 

2 .1. Genera l Theory 

In this section is given a new derivation of the 
th eory in which it is assumed that the interaction 
paramcters vary smoothly. The Hamiltonian of 
the n--electron system is taken as 

H=HI +H2 , (1) 
where 

H I = ± (~ p~ _Ze2) 
i=1 2Jl. rj 

and 

HI and H2 are examples of what arc called "type­
one" and "type-two" terms, respectively, (If I is a 
sum of fun ctions, each depending on the coordinates 
of a single electron, and H2 is a sum of functions for 
two electrons). A particular selection P of r of th e 
n-electrons will be indicated by Pr' The sum of the 
Hamiltonians H(Pr) of the r-electron systems for all 
possible choices P is a symmetric function of the 
n-clectrons, and the n-electron H amiltonian H is 
expressible identically as a lincar combination of such 
",ymmetric sums for two or more values of r, 

H = "5.2 Or "5.2H(Pr); (2) 
p 

!,he condit ions that this be a n identity are the follow­
mg: 

~~r (~)(~)=(~) and ~Or(~)G)=(~} (3) 

In gen eral, · (~) IS the binomial coefficient wh en 

a?b?O, 

(~) 
a! 

(a- b)!b!' 
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and zero for b< O or a<b. The values of the co­
efficients Or will be indeterminate if there arc more 
than two nonzcro Or-values. The method of choos­
ing best values of the Or in such cases will be con­
sid ered below. 

The eigenfunction t{; (-r) of the n-elcctl'on system is 
assumed to have in its spccification a definite con­
figuration ll' l2, . .. , ln, and P r is specified by r of these 
l-values; th e electrons are regarded as distinguishable, 
even though some may b e equivalent. The electrons 
in the selection P r have allowed eigenfunctions >/; (a) 
of th e r-electron Hamiltonians H(Pr) ; the residual 
(n-r) electrons have allowed eigenfunctions >/; ({3) of 
the (n-r) -eleetron Hamiltonian. The l-values of 
the electrons are inclucled in the specifica tions a, {3, 
and "I, along with S- and L-values for the combined 
system and any other quantum numbers needed to 
specify the coupling.5 The function formed by vec­
tor coupling the (n-r) -electron eigenfunction to 
the r -electron eigenfunction is indicated by >/; (a,{3,'Y) . 
A linear combination of t h0S3 functions can be formed 
that will be identical with t{; ('Y ) ; this was first pointed 
out by Bacher and Goudsmit, 

(4) 

(a, {3,'Y h) is called the coefficient of fractiona.l parent­
age. The calculation of the coefficients of fractional 
parentage is a mathematical problem that has been 
considered in detail by Racah. H e has tabulated 
these coefficien ts for configuration s of equivalent p­
and d-eleetrons in III ; their use will be illustrated in 
section 3. 

A par tial energy E(a) of the choice P , is introduced 
that is associated with the r-electrons while they are 
part of the n-electron system and combined to form 
the state a. This energy cannot be observed, and 
must be approximated from the observed energy of 
the T-electron ion of the atom in the state a, which is 
defined as W (a). The average energy of the choice 
P r when present in the original n-electron configura­
t ion'Y is determined with the help of (4), 

(5) 

The corresponding approximate energy can be cal­
culated from the observed energies in the r -electron 
lOn, 

(6) 

The energy of the n-eloctron system is thon gIven 
identically by an expression similar to (2), 

(7) 

'Tbere may be more than one term allowed with a given (SL)-value in the 
configuration considered (tbe configuration may be that contained in a, f3 or 'Y). 
In sucb cases the function obtained by a legitimate coupling procedure will not 
be an eigenfunction of tbe Hamiltonian, even thougb it bas an allowed symmetry, 
if it mixes witb otbcr allowed eigenfunctions in tbat configuration baving the 
same (SL)-Yalue. In sucb cases a purely formal diiliculty arises because tbe 
characterization by parentage is indeterminate, and the theery given by Bacher 
and GOlldsmit must be amplified by more or less arbitrary additions. In sec­
tions 2, 3, and 4 of the present paper these cases are omitted. These omitted 
cases are considered in sections 5 and 7. 



The corresponding approximate energy is calculated 
from~ the approximate average energies (6), 

W('Y) = ~ OT~ W('Y;PT). (8) 
r p 

The energies llV and W used above arc the same as 
the 1V used in BG for both expressions. Quantities 
such as W(a), W(a,(3), etc., on the right side of eq (7) 
to (14) in BG are sometimes energies of observed 
spectral terms , but in general they are linear com­
binations of the observed energies; in the present 
notation they would be replaced by Wey;p!), W ('Y;P2), 
etc. Direct.ly observed energies are indicated b.'~ lV, 
as in th e right-hand side of (25) and (26 ) of BG. 

The difference between the exact value (7) and the 
approximate value (8) is estimated by sep arating 
the E's and lV's into their type-one and type-two 
parts, and by assuming that t he following expansions 
can be made: 

Wl(a)=El(a) { 1 +ar(y) (n-1')+a2('Y) (n-1')2+ . .. } 
(9) 

W 2(a) = E 2(a) { 1 + br(y) (n-1')+ b2('Y) (n-1')2+ . .. }. 

The coefficient ateI') in (9) will be eliminated from 
the difference between (7) and (8) if 

n-l (n) ( 1' ) ~OrCn-1')t. = 0, 
r=1 1 1 

(10) 

and the coefficient bt('Y) will be eliminated if 

~ OT(n-1')t = 0. n-l (n) ( 1' ) 
T=1 l' 2 

(11) 

A choice of OT-values defines an approximation of 
the same order as the largest valu e of t for which 
(10) is satisfied (it is assumed that (10) and (11) are 
satisfied for all smaller values of t and that relations 
(3) are satisfied). For instance, in a second approxi­
mation, the type-one energies are expanded in a 
series containing powers up to and including the 
squares of (n-1'), whereas the type-two energies are 
expanded only to fll'St power in (n-1'). Formulas 
(3), (10), and (11 ) are not independent. They may 
be combined into a definition that is easily shown to 
be equivalent to that just given, by requiring the 
coefficients Or to satisfy the following (m + 1) equa­
tions in order to define an mth approximation 

(t=O,I, . .. , m). 

(12) 

In t he derivation of BG, many-body interactions 
are formally introduced. According to the present 
notation, this is equivalent to considering not only 
type-one and type-two terms as being present in (1) 
but also type-three, type-four, etc., terms. This 
leads immediately, by generalizing (3), to th e defini­
tion of the mtb approxin1ation given by Bacher and 

GouclsmiL. Acconling to their definition the OT­
values sat isfy til e following (m + 1) equatio n : 

~ OT (~) (1') = (n) 
T=1 1 k k 

k = 1,2, ... ,(m + 1). (13) 

To show tIl e definitions (12) and (13) are equivalent, 
the following expansion is utilized for power l> O of 
an integer p: 6 

(14) 

where 
K(K-1)(K- 2)1 

a.(l) = KI - K(K - 1)t+ 2! _00 .. 

In serting (14) in (12) leads to the result 

n±a.(t)(n- 1)~ OT(n-K- 1)= 0 
• = 1 K T= 1 1'- 1 

(l = l , ... ,m) . 

(12a) 

Equation (13) is equivalent to the formula 

n-I (n-1c) {;t OT l' - 1c = 1 (k = 1,2, . .. ,(m+ 1). (13a) 

It follows therefore by r epeated applica Lion of Lhe 
binominal coeffi cient relation, 

( n - K- 1)= (n - K)_C'n- K-l ) 
1' - 1 1'- 1 r-2 , 

and the USQ of (13a) that the left side of (12a) 
vanish es, as it should , wb en ever (13) is satisfied. 
Wh en t= O in (1 2), the equation is the same as (13) 
wh en k = 1, so th e equivalence of the two sets of 
defining equations is demonstrated. A special mtb 

approximation is defined by the following set of 0,-
values: . 

C,=(-lm-,+,(;:. :+D !(r~1 '2,,(m+ l~ {. 

OT - O (1'-(m+ 2), .. . ,(n l)S 
(15) 

If there are only two nonzero valu es of 0" and 
these are 0) and O2, then tb ey are defined by (15), 
and relation (8) has the explicit form 

Wr(y )= ~ W('Y ;P2)-(n-2)~ W('Y;Pl). (16) 
p p 

l~elations (8) and (12) of BG are special cases of 
(16), for which n h as the values 4 and 5, respectively. 
As an al ternative, it can be assum ed that 0) and 
0.-1 are the nonzero coefficients, and then the fol-

'A treatise on the calcu lus of finite di fferences, O . Doole, edited by F. J. 
Moulton (Macmillan & Co. , London, 1880). 
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lowing formula is obtained by solving (12) or (13) 
(th e specification 'Y will be omitted for brevity): 

2.2. The Second Approximation 

If 01, O2, and 03 are ta\ en as the nonzero coeffi­
cients of the second approximation, the following 
formula is obtained from (15) : 

W 2(n) = L; ~(P3)- (n - 3)L; W(P2)+ 
p p 

(18) 

Relations (9) and (13) of BG are special cases of this 
formula for which n has the values 4 and 5, respec­
t ively. In appendix I of BG, perturbation theory 
was used to show that (18) is eq uivalent to a calcu­
lation that is correct up to and including the second 
order. In general, reference to "the theory of 
Bacher and Goudsmit" in the present work appli es 
chiefly to this second approximation. 

The complete set of one-electron functions used 
in appendix I of BG was that appropriate to the 
ionized state of the atom with only a single electron 
outside of a closed shell. Th e same zero-orel er 
functions were used for the atom in all other states 
of ionization, and the second-order effect was evalu­
ated with them. This is a poor zero-order approxi­
mation for some spectra/ so that "second-order 
effect," in the sense used by Bacher and Goudsmit, 
is not synonymous with polarization energy. The 
latter energy is usually defined as that part of the 
observed energy that cannot be explained by a cal­
culation in which the one-electron functions are 
determined by the Hartree-Fock method for each 
state of ionization . No investigation has been made 
to determine the variation in accuracy of a second­
order calculation with change of the zero-order 
eigenfunctions, but Bacher and Goudsmit often 
obtained poor values in their calculations because 
the higher-order effects became more important as 
the zero-order functions became worse approxi­
mations. 

The influence of polarization on the separat,ion of 
terms in a single configuration containing d- and 
s-electrons may be represented by a correction pro­
portional to L(L+ 1).8 Racah has shown that this 
correction may be derived by assuming a special 
type of linearity for the polarization energy, and he 
h as outlined a proof of this assumption of linearity.9 
The proof is based on the assumption that in the 
configuration dn the L(L+ 1) correction arises from 

7 Similarly defined param eters change by 10 to 30 percent in successive ions 
when they are evaluat ed by least squares; they would have the same value if the 
zero-order functions wero the same in all ions. A similar problem is considered 
by A. R ahman , Physica 19, 377 (1953). See also E . P . Wigner, Phys. Rev. 94, 77 
(1954). 

8 R. E. Trees, Phys. Rev. 84, 1089 (1951). 
' G. Racah, Phys. Rev. 85, 381, (1952), and private communications, 
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interactions with configurations dn- 2[2 and dn- 211' that 
hav,e two electrons of the original configuration 
excited. The linear behavior then follows from (54) 
of BG. Alternatively, it can be demonstrated by 
comparing (33a) of III wi th (33c) of III and assum­
ir:g tha,t the perturbing configuratio~s are suffi­
cIently far away so that the energy denominators in 
the second-order perturbation can be assumed con­
~tant. The proof shows that the L (L + 1) correction 
IS acco~nt.ed for initially in the first approximation, 
so t~at It lS .on ~he saJ?e footing as the Slater energy. 
~~ mteractlOn III whIch only one electron is exci ted 
IS m?lud~d fully for the first time in the second a p­
proxlmatlOn, as shown by (53) and (59) of BG. 
Any deviation from linear behavior that is produced 
?y such an interaction must be assumed negligible 
If the L(L+ 1) correction is used to account for 
poJ arization, 

In section 4 it is shown that the Bacher and Goud­
smit theory leads to close agreement WIth the ob­
ser ved separation for t\\·o terms in the d3 s con­
figuration in both titanlUll1 and zirconium the errors 
being 35.1 K and 293 K, respectively. Bacher and 
Gouclsmlt not,ed that the separation of terms in the 
same . c~:mfiguration are well predicted in spectra 
contamLl1g 2s- and 2p-electrons. 1O It is concluded 
that .th~ errol' of th;e Bacher and Gouclsmit theory in 
p]'edlCtmg separatlOns of terms in the same con­
figuration will generall,v be less than 400 K and that 
the accuracy is therefore about the same as that ob­
tained with a lineal' th001'V. 

A large part of the polarization energy is the same 
for all terms of a given configuration. The energy 
cOillJ?on to all terms can be investigated Ivitb se1£­
conSIstent field and other variational methods but 
it. is not easy to get a reliable picture of the beh~vior 
from the few calculations that have been made. 
One approxima,tion, used fairly often with minor 
v.al'iations, ascr ibes an energ,v of 5000 to 10000 K 
eIther to each electron or to each pail' of equival ent 
electrons; interactions between pairs of nonequiva­
len t electrons are neglected in the latter approxima­
tioJ?. The energy is independent of 7. but depends 
a httle on the types of electrons that are paireclY 
This part of the polarization energy is very large, 
and the departures from the described behavior 
could be appreciable, 

The Bacher and Goudsmit theory can be tested in 
this respect by calculating the separations of terms 
in different configurations. In section 4 it is shown 

10 Ta bles XVII and X VIII of BO, calculation II. I t is noted in BO t hat 
agreement bettcr than 200 to 300 K must be regarded as fortuitous so that the 
ult imate Significant accuracy is I'egardccl as a bou t the same as obta ined with the 
L(L+1) correction. Man y separat ions of teJ'ln s in the same configuration are 
preclictcd with errors greater than 1000 K in B 0 , and this must be attributed to 
t hc n eglect of configuration interact ion , or to the fact that the theory is less ac· 
curate fer spcctra with 28' and 2p·electrons. 

II F. Seitz, Modern t heory of solids, p. 247fl (M cGraw·Hill Book Co., New 
York, N . Y. , 1940). Seltz.evaluates en ergy pel' electron ra ther than per pair of 
eqUl valent elcctl'ons, but hIS remarks on page 248 Justify the latter interpretation . 
Self·cGnslsten t field calculatIOns of 0 , 0 +, and 0 ++, including cxchange and con· 
figuratIOn mt.eractlOn (D. R. H artree, VV. H art ree, B. Swirles, Phil. Trans. Roy. 
Soc. [A] 238, 229 (1939)), support an interpretat ion based on pairs, a value of 7000 
Ie being associated with each pair of equi valent 2p·electrons. Althou gh a strong 
dependence on multiplicity is expected (page 250), this is shown onlv to a minor 
extent in the oxygen calculations ; if present, it would be accounted for in the 
prcvious consideration of the separation s of term s in the same configuJ'ation. An 
additional pcint that should be noted is that comparison of thc sclf·consisten t 
field calculations in oxygen (noted above) , with and withwt configuration inter· 
action , indicates that configuration inteTaction is impcrtant. 



that there is an errol' of 6000 K in predicting the 
energy difference between a term in the Sd4 con­
figuration and one in the Sel3 48 configuration of tita­
nium, and a corresponding errol' of 2000 K in similar 
zirconium spectrum with 4el- and 58-electrons, and 
also that this error decreases rapidly as ionization 
increases in the spectra with 3d- and 48-electrons 
because the spectra of titanium, vanadium, and 
chromium show errors of 6000 , 1800, and 600 K , 
respectively. Bacher and Goudsmit found an error 
of about 2000 K in the spectra with 28- and 2p­
electrons ; the decrease of the error wi th increase of 
Z was slight in these spectra. 12 

The spectra considered here contain four electrons 
outside of closed shells and are the easiest spectra to 
analyze with relation (18). A more complete ex­
ploration of the theory would consider also spectra. 
wi th five or more electrons. 

2.3. Higher Approximations 

A third approximation may be obtained from (15) , 
in which CI , n, C3 , and C4 are nonzero ; 

W 3(n) = L: W (P 4) -(n-4)L: H! (P 3) + 
p p 

(19) 

Relation (14) of BG is a special case of this formul a 
for which n=5. Bach er and Goudsmit considered 
this approximation equivalen t to a calculation by 
perturbation theory correct to thrd order, but they 
were not able to carry ou t the complex calculation 
that would be n ecessary to demonstrate this rigor­
ously. Separations of terms in spectra of oxygen 
and nitrogen were calculated a little bet ter in the 
W 3 than in the W 2 approximation .13 In section 5 the 
relative accuracy of W 3 and H12 is discussed from 
another viewpoint (formulas (56) and (60)), and it is 
concluded that higher approximations can only ac­
count for a small part of the error already noted in 
the W2 approximation . 

Any mterpretation used to justify the method of 
Bacher and Goudsmit leads to the conclusion that 
it is more accurate the more similar the binding of 
the electrons (and the structure of the configurations) 
[01' the different energy levels utilized in the formulas. 

!2 Table X I V o[ BO. In discussing tbis tablc, Bacher and Ooudsmit lloted 
that the errors decreascd slightly as 7, increased, bu t [rom a latcr discussion it 
is apparent that they considered th is effect o[ Z as being o[ minor importance. 

I3 Separations of tOrlns in the same confi guration were Homctimcs given with 
a sma ller r1'ro l' by '''3 t.ha n b y lV2, as may be seen by comparing Cc'l lculati,on III 
with calculation II ill table XVIII o[ BO; however, in an almost equal number 
o[ cases the agrecmcnt W(1S worse. Absolu te term values calculated witt. lV, [01' 
tho 28' 21'3 configuration o[ oxygen werc generally in error by less t1.an lOCO J( 
(ta ble XlV of BO), whereas thc W 3 a pproximation indicated term values in the 
282 21)' confIguration with a larger error, abont 1400 K (table XV o[ BO) . Bacher 
and Ooudsm it note tllat tho 28' 2p' configu ration is calculated bettcr in the lV, 
approximation, regarding the s·electrons as part of the closed shell, t han in the 
J;Vt approximation. 'rhc re lat i\7 c errors of absolute term values will naturally 
decrease [01' thc higher a pproxi mat ion a s tho absolute value of t he energy to the 
closed shell is mu ch greater. 

For example, in calculating term values for In all 
configurations specifying a choice of 1'-elections wouleL 
belong to IT. On the other hand, in calculating terIn 
values for In-l s the selection of 1'-elections is specified 
by either the IT or the [,- 1 8 configuration , so that 
there are twice as many different configurations to 
be considered. According to this argumen t , a given 
order of approximation wOlLld probably predict term 
in the In configuration best, terms in In-I 8 next besL, 
and terms in 1,,-2 82 least accurately . This argument. 
has some confirmation which was pointed out by 
Bacher and Goudsmit. 14 Bacher and Goudsmit also 
have noted that the method is inadequate for con­
figuratioll s such as 2822p248, in which the total energy 
of the excited electron is less than the electrostatic 
energy of the inner ones. In such cases, even the 
separations of terms in the same configurations would 
not be given accurately. Similiarly, the method gives 
poor predictions for neRative ions1 5 

3. Formulas for Spectra With d­
and s-Electrons 

3. 1. The 1" Configuration 

vYhen the configuration speciJi pd in 'Y is In, eqlHlLion 
(6) has the form 

If this relation is used in (1 7) fol'W(P n- I), the sum 

ov(']' Pintroduccs a factor (~)=(~- l ) =n, ancl (17) 

becomes, 

WI ( In 'YSL)=~2 L: (l" - I(cxISI L1) ISL] I" 'YS L )2 
n - "'l S ILI 

39 

. TV(ln- lcxlSI L1)-~ W(l). (21) 
n-2 

The first term on the right defmes t.he scpal'aLion of 
terms in the I" configuratlOn; it h as the same form 
as a relation given by R acah for calculaLing matrix 
elements of a general scalar operator G defined be­
tween pa.irs of interacting electrons. 16 Sirnili arly, 
by utilizing (20) with 1' = 2, relation (16) becomes 

" Table XIV of BO. Absolute tcrm valu es [cr t he 21" configuration o[ oxygen 
are predicted wit hin a few hundred kaysers, which may be the best significant 
agreement obta inable. Errors [01' 2p3 2. are about 1000 K, and t hey are about 
2000 K [or 28' 2p' . 

" In footno te 7 of B G it is noted t hat tbc calculated electron afflllity o[ oxygen 
is 8000 K and tbat t h e observed val ue is 18000 K . The discontinuity in bindin g 
energy of negative iens has been discussed hy T a·Yo u Wu ill Phys. Rev. 89,629 
(19.12) . 

16 O . Racah, Phys. Rev. 76, 1349 (1949). Form ula (1). 



This is the same as an alternative formula given 
by Racah for calculatmg matrix clements of a scalar 
operator.17 

It is noted in III that th e formula corresponding 
to (22) needs very long calculations and is of practical 
use only in a few particular cases. Althougll thl' 
direct use of (20) is impractical, except when r=n-1 
(or in the trivial case where r is unity), a step-by-step 
procedure, starting with r=n-1 find decreasing: r 
a unit at a time, is generally practical. 'With this 
procedure, only tables of the coefficients (In-1 
(a1S1L1)l,SL]ln,,(SL) are needed . These coefficients 
are defined by (9) III and (11) III, and the coefficients 
have been tabulated in III for pn and cln configu­
rations. 

As an example, the second approximation (IS) 
will be evalua ted in detail for a d4 5D term by using 
(20) in a step-by-step procedure. By using table 
III of III, relation (20) becomes 

The W 's on the right are formally evaluated with 
(20), by using table II of III; 

W (cl3 4p ;d2) =S/15 W (eP 3P)+ 7/15W(cl2 3F ), (24) 

W (d3 4F ;cl2) = 1/5W(ef2 3P )+ 4/5 W (cl2 3F ) . (2 5) 

These reeults are then substitu ted back in (23); 

Alternately, (26) could have been obtained directly 
from (20) (with 1' = 2) b)' first calculating the coeffi­
cients of fractional parentage (c[2(SlLl)rl2(SzL2) ' 
5D]cl45D ) with (32) of III. The step-b)T-step 
procedure used above is simpler because the quantum 
numbers a2SZL2 do not enter the calculation explic­
itly. The values (23) and (26) an~ now inserted 
into (IS) and the sums o\'er P replaced by factors 

(~) to obtain the desired formula , 

are stan'ed; 

W2(cl41I)=6/5W(cl3 2G)*+ 14 /5W(cl3 2H) 

-:3j7 W (c[2 1D) * - 3W(d2 3F) - l S/7 W (cl2 1G) + 4 W (cl) 

(28) 

W 2 (cl4 3H ) *= 1/3 W (cl3 2F) *+ 4/3 W (cl3 4F) 

+ 3/5 W(d3 2G) *+ 26/15 W(d3 2H) 

-3/5 W (d2 3P ) - 2/7W(d2 1D) *-17 /5 W (cl2 3F) * 

- 12/7W(d2 1G)+ 4 W (d). (2 9) 

Formulas for all other terms would require an addi­
tion to the theory of Bacher and Goudsmit. The 
parentages of dupli.cated t erms in d4 and/or cl3 

would depend on the particular spectrum under 
consideration, whereas in the formulas for the terms 
given above the coefficiel1 Ls were defined b)' purely 
mathematical conSIderations. 

3.2. The In- 1 l' C onfiguration 

The evaluation of TlV(/,;P r) when the specification 
"( contains the l ,,-ll' configuration, can be carried out 
similarly if tables of coefficients of fractional parent­
age for noneqmvalent electrons are available. IS In 
general , such tables are not availablc, and the co­
efficients must be calculated from tables for equiva­
lent electrons with the help of transformations 
between different COUplillg schemes given in section 
2 of III. Again a step-by-step procedure is simplest, 
so that only selections P \vith n - l electrons need be 
considered:- The parent t erm in the In-1 configura­
tion again is assumed, for simplicity, to be in an 
exactly specified staLe. The single selection con­
taining the equivalent electrons has an average 
energy W((ln-1,,(SL)l'S'L';l"-1), whieh is the same as 
the observed energy in the ion W(ln-1"(SL ) . The 
only new fea ture is the selection specified by the 
In-2i' configuration. The coefficients of fractional 
parentage will have the form 

- 9/5W(d2 3P ) - 21 /5 vV(c[2 3F) + HV(d). (27) (In-2(aS1L1)l' (S" L") ,lSI L' ]ln- l (,,(SL)l' S' L' ) 

Formula (27) is a good one to usc in testing the 
Bacher and Goudsmit theory. All term values used 
in the formula should be unperturbed , and they are 
likely to be Imowll experimentally. The follol,-ing 
two formulas , obtained jn a Sill11lar fashion , are 
not so generally useful; the terms that are most 
likely to be perturbed by configuration in teraetion 

17 Formula (33a) of III. 'To get the expressions to agree exact ly, the following 
generalization cf formllla (29) of III is used : 
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= (In-2(aS1Ll)lSL]In-l ,,(SL) 

(SlL1l(SL)l' S' L' ISIL1l' (S" L" )lS' L') . (30) 

On the right, the first factor is the coefficient of 
fractional paren tage for equivalent elec trons; the 

18 T ables for p' 8, p3 8, and Ii' p have been given by S. 'I1eshko v in Phys. Rev. 
91,871 (1953). With his can vention for the norm alizat ion of the cocfficients, the 
sums over P required in the formulas giveu here would be replaced by factors 

( ~) ; the different selcctions P are then accoun tcd for during the calculat ion of 

the tab les. To allow what scems to be the most direct use of R acah ', tables, the 
coefficients of fractional parentage have been normalized to uni ty for each selec­
t ion in the present paper. 



second factor is a transformation coefficiell t evaluated 
in (5) of III, 

(SILIl(SL) l' S' L' jSILIl' (S" L")lS' L') 

= [(2S+ 1) (2S" + 1) (2L+ 1) (2L" + 1) P 
(3 1) 

The ,iV-functions in this expression arc calculated 
from (36) of II ; some values of the W-function have 
also been tabulated19 

The particular case where l' is an s-electron is the 
only one we consider ill detail. In this case, the 
result of applying (30) and (3 1) reduces to a fairly 
simple formulation. To evaluate the average 
energies for a term In- I (-ySL)sS' L: 

(a) EvaluateW(ln- I'YSL ;In-2) in trrms of the 
observed energies liF(ln-2 aSILI), as already described. 

(b) If the spin SI of the ion term in [n-2 does not 
have the same value S' as Lhe original Lerm under 
consideration in In-Is, then add an s-elecLron to tIllS 
ion term, making the resultant spin S" equal to S , 
the spin of the parent Lerm in l n- I; 1. c., change 
W(ln-2 aSILI) Lo W(l"-2 (aSILI )sSLI). 

(c) If Lhe pin SI has the vulue S' , Lhen add the 
s-electl'on Lo the ion, and split the latter inLo two 
terms, each having one of Lhe Lwo spins Lhat arc 
allowed, i. e. , give S" the two valu es Sand (28' -S) . 
The part having the resultant spin S is given a 
coefficient (2S' + 1) -2, whereas the other part" has a 
coeH-icient of unity minus Lhis; i. e., change liVW- 2 

aSILI) into [(2S' + 1) -2 W(l"- Z(aS'LI)sSLI)+ rl ­
(2S' + 1) -2jW(ln-2(aS' L I)s(2S' - S)LI ) j. 
This fonnulation could also be used when l' ~O to 
take care of the spin. AnoLher subdivision would 
then be made among the L-values, using on ly that 
part of (3 1) that depends on the orbiLal momentum. 

As an example, the second approximation (18) will 
be evaluated for a d3(4F) s 5F terIn. Step (a) is 
already carried out in (25), so that according Lo 
step (b) 

W(d3 (4F)s5F;eZZs) 

= 1/5W(eZZ(3P)s 4P) + 4/5W(eZZ(3F)s 4F ). (32) 

The pl'ocedure is repeated for the terms OIl the right, 
and the results obtained are substituted back in (32) 
to get t he average energy for the ds selection: 

(33) 

This r esult could also be written by inspection. 
The average energies (32), (33), and (25) are inserted 
into (18), together with the trivial values for 
W('Y;d3) , W('Y;d) , and W('Y;s); the sums over P intro-

" L. c. Biedenharn. Oak Rid ge National Laboratory Report OR"L- I098 
(Wlp U blished). 
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duce facLors C/,~ 1) when P , is Lhe IT co n flgU raLion 

and (n-l) when P, is the lr -18 co nfiguraLion: 
r-1 

W2(d3(4F)s 5F ) = W(eP 4F) + 3/5 W(cl Z s 4P ) 

+ 12/5W((ZZ s 4F)-3/5W(d2 3P ) 

- 12/5W(dZ 3F)-3lV(ds 3D )+ :3W(d)+ W (s). (34) 

The following formulas arc obta.ined similarly: 

W 2(d3 (4P)S 5P) = lrFCeP 4P) + 8/5W(e12 s 4P) 

+ 7/5W(eZZ s 4F)-8/5W(d2 3P )- 7 /5W(cZZ 3F ) 

-3W(ds 3D) + 3W(d) + TiV(s) , (35) 

W z((peI-I)s IH )= W (d3 2II) + 3/2W(d2 s 2F)* 

+ :3 /2 W (d2 s zG)* - 3/2W((p 3F) -8/2 W(cl2 IG) 

-8/2 vV(ds 3D) - 3/2HT (ds JD)*, 

+ 3W(d)+ W (8), (36 ) 

Hl z(d3eH)s 3H )*= W(d3 2H) + 1/6 W(cl2 s 2F )* 

+ 4/3 W (d2 s 4F )+3/2TiV(cl2 s 2G)* - 3/2W(cZZ 3F) 

-3/2 W(d 2 IG) - 1/2W(ds JD ) *- 5/2liV(cls 3D) 

+ 3 Hl(d ) + W(s). (37) 

Formulas (34) and (35) are valid even whell con­
fi.guraLion interaction is present. 

3 .3. The l,, -2 l' 2 Configuration 

The final configuration considered is In -2t' 2. Both 
the In-2 and the 1'2 configuration arc assumed to have 
SL-values that are exactly specified . For Lhe selec­
tion P n - I that cont.ains onl.v one of tho l'-electrons, 
the coefficient of fractional parentage is simply a 
transformation coefficient gi ven by (6) of III: 

(In- 2('YSL) l' SILI ,l' Sf! L"}l',-2( ,,(SL)l' Z(S' L' )S" L") 

= (SL,l'2(S' L' )S" L" jSLl' (SILI)l' s" L") 

= [(2S' + 1) (2S1 + 1) (2L' + 1) (2LI + I )]! 

This leads to a simple formulati()n for the In-2s2 con­
figuration: (d) The parentage of an s-electl'on in a 
term I n-2s2'YSL is divided in the ratio of the multi­
plicities between the possible parent terms, generally 
two. 

I 

j 



For the selection P n - 1 that contains both l' elec ­
trons, the coefficient of frac tional parentage becomes, 

(In-3(aS1L 1)l'2(S' L')S2L 2lS" L"ntn-2('Y SL)l'2(S' L')S" L" ) 

= (In-3(aSI L 1)lSL ]In-2'YSL) 

(SILIl(SL)S' L' (S" L") I SlL1S' L' (S2L2)lS" L"). (39) 

The transformation coefficient is given by (5) of III 
and has a form similar to (3 1). In a term In-2 s2'YSL, 
however , the closed shell of two s-electrons can be 
di.sregarded for thi.s selection, so that (39) reduces to 
the procedme already given for a configuration of 
equivalen t electrons. 

To evaluate the average energy (6) for a d2sZ 3F 
term the formulation (d) is used : 

W(d2 S2 3F ;d2 s) = 2/3W(e[2 s 4F)+ 1/3W(e[2 s ZF), (4 0) 

W (e[2 S2 3F ;ds2) = lV(dsZ 2D). (4 1) 

R elation (41 ) is obtained by inspection ; using (d) 
again with (41) leads to the average energy for a 
choice ds, 

Ww S2 3F ;ds) =3/4 Weds 3D) + 1/4W(ds ID). (42) 

The resul t (42) could be obtained also from (40) by 
use of formulations (b) and (c), 

W (e[2 s 4F ;ds) = Weds 3D ), 

W(cl2 s 2F ;ds) = 1/4 W eds 3D) + 3/4 Weds lD) . (43) 

,\Vhen th ese values are substituted for the observed 
energies W on the right of (40) the result (42) is 
ob tained ; this checks the consistency of the proce­
dures and illustra tes the use of (c). The values (40), 
(41 ), and (42), together with trivial values for W( 'Y ;e[2) , 
W ('Y;SZ) , W('Y;d ), and W('Y;s ) are then inser ted into 

(18). The number of selections PT of type IT is (n--; 2); 
I T-1 s can be selected in 2 (n- 2) ways and 1T- 2 8 z 

1' - 1 . 

(n-2) 
III 1'-2 wa,ys: 

TVz(d2 82 3F ) * = 4/3 TiV(d2 s 4F) + 2/3 W(e[2 s 2F ) * 

+ 2W(ds2 2D )*-3W(ds 3D ) 

- Weds ID) *- W(d2 3F ) 

- W (S2 IS)*+2 W (d) + 2W(s). (44 ) 

The following formula is obtained in the same wn~': 

W2(eF S2 3P ) *= 4/3 W(e[2 s 4P) + 2/3 W (d2 s ZP) * 

+ 2W(ds2 2D )*-3 W (ds 3D ) 

- W eds ID)* - W(d2 lG) 

- W (S2 IS)* + 2W(d) + 2W(s). (45) 

42 

The formulas for the d2 S2 configuration always con­
tain terms that are likely to be pertmbed by con­
figm ation interaction. The S2 IS term is usually un­
known, and the applicability of the formulas is 
limi ted by this also. 

4 . Comparison With Experiment 

In all the formulas derived above, the observed 
energies, W, are referred to the core with all four 
electrons removed. Because ionization potentials 
are often not accurate, these absolute energies may 
not be well known. To check th e th eory of Bacher 
and Goudsmit only differences b etween terms have 
been calculated . Ionization poten tials cancel in the 
differences, and energies W can then be taken as the 
relative-energy levels with respect to th e lowest 
term as zero; th ese are given in a B m ea u Circular. 20 

In particular, the following two differences would be 
unaffected by configuration interaction : 

D I == W2(d3 S 5P)_ W z(d3 s 5F) = W(ets 4P)_ W (d3 4F ) 

+ W(d2 s 4P ) - W (eF s 4F ) - W (d 2 3P ) + W(d2 3F ) 
(46) 

D z == W 2 (cl4 5D ) - W z(d3 S 5F) = 6/5 W(cl3 4P ) 

+ 9/5W(d3 4F)-3 /5W(e[2 s 4P)- 12/5W(d2 s 4F ) 

- 6/5W(cl2 3P )-9/5W(d2 3F) +3 W (ds 3D ) 

+ W(d) - W(s). (47) 

In table 1 the calculated and observed values of 
DI and D2 are compared. In the spectra of titanium 
and zirconium sufficient data are available to com­
pare the DI-values. The calculated and observed 
values are in close agrcement, th e calcula ted value 
exceeding the observed value by 357 K in titanium 
and by 293 K in zirconium. Separations of terms in 
th e same configuration are thus given closely by 
the theory. By assuming that DI will be given with 
the same error in more highly ionized spectra, it is 
possible to calculate positions fo), some terms that 
are not known experimentally, and use the values 
obtained to calculate D2 in these spectraY Accord­
ing to table 1 the difference between the two terms in 
differen t configurations is predicted very badly by 
(47) for titanium, the error in D2 being 6068 K . 
Howcver, the crror is much less for the spectra of 
the high er ionization of vanadium (error 1841 K ), 
and it is still less in chromium (enol' 635 K ). The 
error is also less in the homologous sequences of 
zirconium (error 2296 K ), where the nuclear charge is 
much greater (Z= 40) than in t itanium (2=22), 
but the degree of ionization is the same. The 

20 C. E. Moore, Atomic energy levels, NBS Circular 467, vol. I (1949), vol. II 
(1952) . 

" 'I'he il'(3P)S ' P term is unknown in V III and Cr IV; the calculated pOSitions of 
these terms are given in table I. If the errors in D, were to decrease rapidly as 
the errors in D , do, Lhen these calculated positions would be about 357 K too high, 
and the calculated values of D , would be too small by about three·fifths of this 
error, or 220 K. 'I'his is a small error compared to the total errorS found in t he 
calculated valu es of D ,. However, it is noted later that the errorS in D , probably 
will not decreasc. 

l 



TABLE 1. T enn separations in spect7'a with -d- and s-electrons 

rJ'erm 

Dl= W(d' 8 ' P)- W(d' 8 ' F ) 

D,=W(d' 'D)- W(d ' 8 IF) 

1'i I V I Cr 

Observed val ues 

I Zr 

--------------
d" D 28881 205 350 22138 
d'8 ' F 6721 2926 50020 5460 
d'8 ' P 14055 13647 53261 ll103 

D l 7334 ]0721 ]3241 5643 
D, 22]60 -2720 - 49670 16578 

d3 ' P 9452 11668 14324 9824 
d" F ]085 336 554 3273 

d'8 ' P 9068 (57014) (l]9671) 7860 
d'8 'F 225 44343 1046:37 758 

d2'P 100M 133'14 15868 8581 
d" F 242 1 419 662 854 
d8'D 38277 

I 

96547 167715 

I 

J9063 

d 2D 230 372 574 750 
8 's 80379 148100 227775 38258 

Calcula ted d i (Terences 

Dl 760 1 

I 
(11 078) I (13598) I .0936 

D2 28228 -879 - 49035 18974 

Errors 

D l(calc) - Dl (obs) 357 

I 
a(357) I "(357) I 293 

D,(ca1c) - D,(o bs) 6068 .1 841 635 2296 

-Values in parenthcses arc calculated to m ake the error in D , t he sa me fo r a ll 
spcctra with 3d- and 48-clectrolls. 

improvcment from titanium to vanadium to c1H'0-

mium is cspecially remarkable in vicw of the fact that 
the errors in D2 form a rapidly decrcasing geometric 
sequence, whereas D2 i tself tarts at a large posiLive 
value and decreases to a twice as large negative value. 

R acah 22 has pointed out th at the energies would 
be expected to vary more smoo thly if the degree of 
ionization (rather than tb e atomic number) were the 
sam e in the differen t spectra. Th e results obtained 
by use of this empirical modification of the Bacher 
and Goudsmit theory are given in table 2. Except 
for the first spectra, the errors in calculated values 
of D2 are on the order of 100 K; part of the good 
agreement must be fortuitous , however. 

A partial explanation of the poor agreement ob­
tained in the first spectra may be that the d3 4p (of 
Sc I and Y r) is perturbed by interaction with the 
term dsd'j 4p (in th e spectra with 4d- and 5s-electrons, 
this has the added effect of making the calculated 
position for tb e d2 3F too high, as een from the small 
separation of the d2 3p and d2 3F in Sr r) . This effect 
can be estimated in the spectra con taining 3d- and 
4s-electrons by calculating the position of d3 4p so 
that the error in DI will be 170 K as it is in the second 
spectra. When this calculated position (40048 K ) 
is used, the error in Dz is still very large (- 5769 K ). 
Racah has noted that the observed position of d2 D 
in K I is about 5117 K lower than expected from the 
behavior of the difference between baricenters of the 

22 G . Racah , Bul . Research COllflcil Is rac l Ill, 290 (1954). I am i.odebted to 
Profcssor R acah for m ak ing ~ prelimina ry copy of th is m a nuscript availab lc and 
for discussing t he rela tionsh ip of his resu lts to t hose of this paper. ee also M . 
A . Catalan, F. 1~obr1ich , and A. O . Shenstone, Proc. Roy. Soc. [AJ 221 , 421 (J954) . 

T A BLE 2. Term sepamtions in spectret with d- and s-electrons 
--

I 
Spectru m 

I I I I 
--

~l'crm r II [II IV I r II 
, 

I Observed va lnes 
------

I d"D (1' i) 28881 (V) 206 (C r) :350 (Mn) 537 (Zr) 22[38 (N b) 772 
(/3 s ~ F 6721 2926 50020 11 2296 M60 3397 
rI ' 8 ' P 14055 13647 63261 ------------ lll03 J 1034 

D l 7334 10721 13241 ------------ 5613 7637 
D , 222160 - 2720 -49670 - lll759 16678 -262.1 

d3 ·P (Sc) :;6540 (1'i) 9452 (V) ll668 (C r) 14324 (Y ) 32210 (Zr) 9824 
d"F 33846 1085 336 554 29605 3273 

d'! 8 4p 17969 9968 (568H) • 119671 15385 78flO 
d' 8 ' F l 1(ilO 225 44343 101637 ll277 758 

d" P (Ca) 48551 (8e) 12128 (TiJ 10661 ( IT) 13344 (Sr) 44662 (Y) 14048 
d' ' 1" 43494 4909 242 419 (43989) 8429 
d8 ' D 20357 105 38277 96547 18254 ll93 

d ' D (K ) 21535 (Ca) 13687 (Sc) ll8 (Ti ) 230 ( Rb) 19355 (S 1') 14724 
s ' S 0 0 25537 80370 0 0 

Calculatcd d ilrerences 

D l 3996 

I 
10891 

I 
(l34 11 ) I ------------

I 
(6040) I 8034 

I 

D, 12[81 - 2613 - 49738 - ll2020 -3012 -2582 

Errors 

I D , (cale) - D l(o bs) -3338 

I 
170 

I 
b (J70) I ------------

I 
b (397) I 397 

D,(calc) - D,(ohs) - 9979 107 - 68 - 261 - 19690 43 

a "From table 1 calculation. 
b Values in parentheses calculated to m ake error in Dl have t he indicatcd value. 

301746-54--5 43 



dn - 1 8 and dn configurations in Oa I, Sc I, Ti I , and 
V I, and this may explain the poor agreement ob­
tained in first spectra. 

5 . Relations Between Radial Parameters 
All formulas of the Bacher and Goudsmit theory 

can be used also to calculate the matrix elements of 
scalar operators; this has been noted in specific cases 
in the discussions of formulas (2 1) and (22), and it 
was also pointed out in BG. If the term values could 
be expressed in terms of such matrix elements, and 
if the zero-order functions were the same for all 
configurations, then the formul as derived from (16) 
to (19) (such as (46) and (47)) would be identities if 
the lIV's were replaced by matrix elements of these 
operators. 

The matrix elements of the operators are linear 
combinations of a limited number of radial integrals . 
For the Slater theory, these combinations are well 
known (most of the formulas necessary for the pres­
ent paper arc contained in II). The observed sepa­
rations of terms in the same conflguration are pre­
dicteclwell by the Slater theory (i. e., with an accu­
racy equal to th at obtainable with th e Bacher and 
Goudsmit theory) if an empirical correction pro­
portional to L (L + 1) 23 is add ed to account for the 
polarization energy (see footnotes 8 and 9). Radial 
in tegrals defined by zero-order one-electron func­
tions having the same n- and l-values must be con­
sidered independent of each other wh en in different 
configurations to get tllis good agreement, however; 
if the Bacher and Goudsmit theory were directly 
applicable, all such integrals would have to have the 
same value. The derivation of the theory, given in 
section 2, shows how much of the observed variation 
of these radial integrals will be accoun ted for by 
the Bacher and Goudsmit theory in any given 
approximation. 

To illustrate, formulas for the lV's that enter into 
(46) are given here according to the notation used 
in section 2: 

W(d3 S 5P)= A(d3 8)-3C2(d3 8) - 16a(d3 8) 

Wedo 8 5F) = A(d3 8) - 15B (d3 8) - 3C2(d3 8) -6a(d3 8) 

W(d3 4P)= A(e[3)-16a(d3) 

W(d3 4F )=A(d3)- 15B (d3)-6a(d3) 

W(d2 8 4P ) = A(d2 8)+ 7 B(d2 8) -2G2(d2 8) - 10a(d2 8) 

W(d2 8 4F) = A(d2 8) -SB(d2 8) -2G2(d2 8) 

W(d2 3P ) = A(d2)+ 7 B(d2) - 10a(eZZ ) 

(48) 
23 The L ( L+ l ) correction is represented as the matrix element o[ tbe scalar 

n 
operator 2" 1: 1;·1;· The yalue o[ this [or a t erm in the l"s k eonfigura tiGn 

i>j= l 
is a[L(L+ l ) - nl(l+ I)]. In the present work, t his, rather, than simply "L(L+ l ) , 
is added to each term; t his change in the form of the correetio.l is compensated by 
a change in the value of the constant parameter A. T he modification has been 
made so t bat tbe relationships obtained later between the A·values i.n different 
configurations w ill have a simpler form. 
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If these values are substitu ted in (46), then the latter 
is an identity if t,he R's and a'S in different configura­
tions are assumed equal. Relation (46) will still be 
satisfied if the following two less restricti ve conditions 
hold: 

B(d3 8) = B(d3) + B(d2 8) - B (d2) , 

a(e[3 8)=a(d3)+ a(d2 8)- a(d2) . (49 ) 

It is sufficient for R - 2/3a to satisfy a relation of 
similar form for (46) to be satisfied, but if separations 
of all pairs of terms in the d3 s configuration are to be 
correct, then both relations must hold and in addition 
the following two : 

Formulas of this type can be derived ca sil~T by 
inspection , and there i.s no need to consider fractional 
parentage. To obtain the second equation in (50), 
for instance, note that in (1S) the combination of a 
d- and an s-electron (needed to defin e O2) occurs three 
ways in 1l'2(d3 8) ; it occurs two ways in each of three 
possible selections p 3 that contain the 8-electron (in 
the ([2 8 configuration) ; it occurs only once ill eaeh of 
the three possible selections P z that contain the 
s-eJectron (in the d8 configuration) . As far as the 
relation for the param.eter O2 is concerned, th is direct 
in terpretation of (18) leads immediately to (50) 
(multiplied by a factor of three) . As Fl , C, and a 
are all defined by the combination of t"wo d-electrons, 
a similar derivation leads to the same form of equa­
tion for all three of these parameters, and this 
equation is the one r epresen ted by (49) and thenrst 
equation of (50) . In this way it can be sllOwn that 
the Bacher an d Gouclsmit second approximation 
(relation (I S) with n = 4) will predict correctly the 
separations of terms in the same configuration if the 
following relations hold between the parameters: 

B(d4) = 2B(d3) - B(eF) 

B(d3 8) = B(d3) + B(d? 8) - B(d2) 

B(d2 8 2) = 2B(d2 8) - B(d2). 

(51 ) 

(52) 

(53) 

Three similar relations must be satisfied by the C's 
and three more by the a 's. Also , i.t is necessary 
that 

The derivation from (IS) fails to bring out the fact 
that the two-electron parameters must have a linear 
variation if the formulas are to be valid. In general, a 
two-electron parameter defined bet'ween electrons 
with orbital angular momentum land l' in the 
configuration 'Y will be specifi ed by b)O(ll'). Ac­
cording to the derivation with the seeond series of (9) , 
only a first-power variation with the number of 



electrons in 'Y can bc account ed for by t,he Bach er A (c[3 s)-A (cZZ s2)=A (d3)+A (cZZ s)- 2A(ds2) 
and Goudsmit second approxima.t,ion . . In particlliar 
then , anyone of the parameters H, C', 01" ex must - 2A(cP)+A (ds) + A (S2) + A (d) 
satisfy a rclation of the form 

(55) 

It is easy to verify that (51) to (53) are satisfi.cd 
,,-hen a formula of this kind is appli cable. 

It is possible to generalize (55) to include all 
similar spectra rather than just those of the ions 
of the same atom, in two-, three- and four-electron 
spectra. If q is the degree of ionization, this general­
ization will have the form (dr-kSk) O(dd)=A + TH+ 
kC+ qD . The difference DI defined by (46) (and 
equal to 15B- I0 ex according to the lineal' theory) 
should also be expressible by a formula of this t:vpe. 
Racah 22 has fitted 34 experimentally observed P-F 
differences in spectra with 3d- and 4s-elec tron s wi th 
a mean error of 340 K b:y usc of the formula 

DI = 2679 + 853r+ ] 334lc + 3] 58q - 111 q2. (56 ) 

This form ula is adjusted to spectra with eight 
different ionizations, and wiLhou L a q uadl'aLic t ('1'111 

the mean errOl' would be in C1"eased to abouL 520 K . 
According Lo this form.ula, tl le difT'el'ences TJ1 cal­
culated f rom (46) will be Loo great on the average 
by about 220 K. l\1odif)-ing Lhe Cheol'Y so that 
spectra with the Sal e ionizfl tion are u tilizeci tends 
to eliminate this sys tematic elTor. This co uld also 
be accomplished by using the TVa approximation. 

The original series (9) will often have to be satisfied , 
for a given 'Y, by mOre than one value of ex, and this 
leads to the conclusion that the ratios of similal'l \T 

defLDed radial parameters in different spectra of 'a 
given element sho Id be equal. In partic lar, the 
following ratio must be constan t in configurations 
with d- and s-electrons: 

(57) 

This is not really a necessary consequence of the 
theory developed in section 2, however, as the seri es 
(9) can be reinterpreted in terms of r adial parameters 
that independently satisfy relations such as (5.5 ). 
When irrational roots ar e considered , it is shown in 
sec tion 7 that (57) is a necessary condi tion for con­
sistency of this interpretation, in terms of a lineal' 
theory, with a direct application of the method of BG. 

In the same way that the differences such as (46) 
were replaced by the formulas (5 1) to (54 ), the 
differences similar to (47) can be replaced by rela­
t ionships between the A values. The Bacher and 
Goudsmit second approximation will give the sepa­
rations of terms in different configurations correctly 
if the following two relationships between the A's 
are satisfied: 

A (d4) - A (d3 s) = 3A(d3) - 3A(d2 s) -3A(d2) 

+ 3A(ds) + A(d) - A(s) (58) 
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By redefining Lhe A-val es suitably,zi Lhe dependence 
on O2 may be omi tted from (59 ) ; equat ion (58) and 
(5 () may therefore be regarded as two relat ions 
between the d iffel'ences A (d,-ksk)- A (d'-k- l sk+I). In 
the second approximation, the parameter A musL 
satisfy a cubic relat ion, and these difl'el'ellCeS then 
sat isfy quadratic equations having th e gcnel'al fo rm 

(60) 

The lc2 dependence is omitted because it add s nothing 
extra when lc has on1\' the two values 0 and 1. It is 
eas.\T to verif.\T Lhat (58) and (59 ) are satisfwd wh en 
a formula Ii ke th is is applic-able. This formula can 
be generalized to appl.\' to all s imilar spectra in a 
manner simila r to that used for (55 ) if the" A" is 
suitabl.,' defined in the Sj ecLra with more than fOllr 
electrons . Tf third (or fourLh ) power terms were 
important, a constan t (or li near) el'l'01' wou ld resulL. 
The errors of D2 in table 1 ehange too rapidly to be 
eX]11ain ed in this \\-a.,-, howeyer. 

In the oue-electron, two-electron , and threc­
eleetron speel l'a considered in seetion 4, thcre are 
fi ve exper imen tally determin able difl'e1'rnces betwee n 
A -values, and the flve unknown constants in (60) 
can be eval ated from these observed values. Simi­
larly, the three constan ts in (55 ) can be evaluated 
from observed separations of te rms in t,ile two­
electron and three-elec tro n spectra. The Bacher 
and Goudsm it second approximation is then equi va­
lent to using the form ulas obtained in this way to 
extrapolate val es in the four-electron system. 

This equivalence has been verified by using all 
availabl e experimen tal data in titanium and zir­
conium to evaluate the radial parameters for all 
spectra with least squares. 25 The results confirmed 

24 'rhc para metcr G2 appears in (59) been.use an s2subshc ll is neglected in de fining 
the A -values; thus UJc form ula (or a (['1 82 3F term would have tJ.r same form as 
the last rela tion in (48) . If the e(feets of the ,-electrons in the s' subsl.ell were 
ex plic itly ex pressed , as done w hen onl y a s in gle s·(' lcctron is Ilrf'Sent, then 
2G,«(/' a') would be subt racted from the formulas fo r a ll te rms in. the d's' con­
fi gurat ion. This has not bern done sin ce the effect would bc incilldrci in A «(/' S') 
if the parameters werr evaluated by least squares a nd C,(d' s') could not be 
evaluated. This applirs also to C,«(/ S2) . T he C's that cannot be eva luated 
s,tisfy the relat ion G,(d' 82)- (,',«(/s') = C,((/' s) -C,«(/s) =G,«(/3 s) -G,«(/' s) . 

2~ rPhe a IF term of Tir and the a IS a nd c 3F terms of Z1' I were excluded . The 
a IF term is probabl y not real. It was predicted 2000 K lower than observed when 
it was not included in the least-squa res calculat ion. As long as it was inclu ded, it 
a n.d several other terms werc in errol' by 500 to 600 K , regard less of uncertainties 
in e(fects of ec nfigura tion in teraction. It is not well-csta blished experimentally, 
as only three wea k lines were observed; one strong line ll sed to identify it is a 
blend (H. N . Russcll , Astrophys. J . GG, 283 ( l927)). The n IS term was cnlculated 
8000 K higher than ohser ved; as IS term s arc always hard to establish, it is fairly 
certain that this tcrm is also unreal. The c ' F term was calcula ted 5000 K higber 
than observed; alt hough highly unlikely, it is not certa in t lmt consideration of 
o f configuration interaction could not ex plain the result. However only one strong 
transit ion has been observed from each leve l of this triplet; fiv e other confirming 
transition s are all weak (C . C. K iess and H. K. Kiess, BS J. Researcb 6, 62l (1931) 
RP296). The a 'D , b 3(\ and (/ 3p terms in the (/' configuration of 'l'i r are obser ved 
much clGser together tban called for by the tbeory ; this may be because c f eon­
fi gurat-ion interaction , or -, it may represent a fail ure of the lV2 approx im ation. 
In addition to the experim ental values listed in Atomic Energy Levels. the re­
centl y located terms (/ ' D o[ Zr IT and the (t IS and b IS terms of Zr III (C . C. Kiess, 
J. Opt . Soc. Am. 43 ,1024 (\953) ) were also avai lable. I am indebted to Dr. Kies 
[or furni shing these data before publiea tioll. 



the conclusion already obtained from the limited 
amount of data utilized in table 1. In all spectra 
of both elements, the terms could be fitted with 
absolute errors less than 400 K . The parameters 
obtained could be adjusted to fit the relations con­
tained in (5 1) to (57) without significan tly changing 
the original agreement. This verifies the conclusion 
that the separations of terms in the same configura­
tion are given by the Bacher and Goudsmit method 
with an absolute error less than 400 K in titanium and 
zirconium. The discrepancy in calcula ting A (d4 ) -

A(e? s) from rela tion (58) was found to be 6560 K 
in titanium and 2086 K in zirconium. These values 
are approximately the same as the errors found for 
Dz in table 1, which verifies the conclusion that 
calculated separations of terms in different configura­
tions may be considerably in error. 

If the ionization potentials are accuratley known 
the aboslute values of the A 's can be calculated 
(rather than just the difl'crences (58) and (59)), 

A(d4) = 4A(d3) - 6A(eP) + 4A(d) + 0 (6 1) 

A(eP s) = A(d3)+ 3A(d2 s) -3A(eZZ) 

-3A(ds)+ A(s)+3A(d)+ 0 (62) 

A(eP S2) = 2A(e[2 s)+ 2A(ds2) -A(d2) - 4A(ds) _ A(S2) 

+ 2A(d) + 2A(s) - 2 G2(e[2s ) + 2G2(ds)+ 0, (63) 

whcre 

The ionization potentials appear only in the combi­
nation 0; I I is the principal ionization poten tion of 
the four-electron spectrum (Ti I , for instance); 12 
is that for the three-electron spectrum (as Ti II), etc. 
H (61) to (63) are utilized, errors in the theory will 
no t cancel as they may in the differences (58) and 
(59). In titanium the error of (6 1) in calculating 
A(d4 ) is found to be 24130 K , and the error of (62) 
in A(d3 s) is 1757 K ; on the other hand , the corre­
sponding errors in zirconium are - 2100 K and - 4186 
K. The inconsistent behavior of the errors in these 
two calculations probably arises from the well-known 
need for better ionization potentials, particularly 
in the one- and two-electron spectra. 

6. Weak Configuration Interaction 

The proof of the method of Bacher and Goudsmit 
is established with second-order perturbation theory, 
so that the theory is no t directly applicable if con­
fi~uration interaction is too strong to be evaluated 
WIth perturbation theory. However , it may lIot be 
directly applicable even if the spectrum has weak 
configuration interaction that can b e evaluated with 
perturbation theory. 

For example, consider interaction between terms 
of dn and those of dn- 1 s and assume that second-order 
perturbation theory can be used. The perturbation 
of, say, a d3 2G term by a d2 s 2G term is evaluated 
in terms of a characteristic interaction parameter 

associated with the d3 and d2 s configurations; this is 
designated H z(d3 -eZZ s) in agreement with the no ta­
tion in (80) of III. For arbi trary n, there is a similar 
parameter defin ed between dn and dn- I s. Partly 
with the help of table XX of III the fo llowing two 
perturbations are evaluated: 

W(d 3 2G)- W(d 2 s 2G) 

140[H2(d 2 -ds)j2 
W(d 21D)- Wed s ID ) 

(64) 

(65) 

By considering terms marked with asterisks in (28), 
i t follows that config1ll'atlOn interaction between d" 
and dn- 1 s will be correctly accounted for by the 
Bacher and Goudsmit theory if the followin g relation 
exists bet'.1 een the two perturbations (64) and (65): 

6/5!1(d3 2G) - 3/7 !1 (d2 lD ) = 0. (66) 

According to tJte per turb a tion calculation used by 
Bacher and Goudsmit, the energy difference lV(d3 

2G)- W(eP s 2G) would equal the difference lV(([2 
ID ) - Weds ID ) and the parameter H 2(d3-e[2 8) would 
equ al H 2(e[2- d8). If these two conditions held, then 
(66) would clearly be satisfi ed. R elations similar to 
(66) can be found from other formulas (such as (29), 
(36), and (37)). By assuming that all energy differ­
ences W(d" aSL) - W(d 'H sa'SL) are equal , and all 
parameters H z(dn- d'H s) are iden tical, matrix ele­
ments of configuration in teraction can be calculated 
with the Bacher and Gouclsmit theory by solvUlg a 
set of Simultaneous equations, although such a pro­
cedure would no t be the most practical. Similar 
considerations would apply to any pail' of configura­
tions; in particular, the in teraction between d" s and 
d,,- I S2 is interesting because the parameter defined 
between these two configurations would be equal to 
the parameter defined between dn and d,,-I s accord­
ing to this direct application of the Bacher and Goud­
smit theory. 
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Alternatively, (66) could be satisfied if the para­
meters H 2(d3-cZZ s) and H 2(d2-ds) accidentally had 
the same ratio as the square roots of the energy 
denominators in (64) and (65). To get consistency 
for all formulas similar to (66) that could be derived, 
it is necessary that a representative average energy 
difference exist that approximates separations of 
terms with the same S- and L-values in the two 
configurations (in many cases no average value will 
adequately represen t the data) . An easily defined 
value for this average is the difference in the A-values 
of the two configurations. In table 3 calculated 
H 2-values and differences between A-values have 
been collected . In a given atom, the differences 
between A-values in this table are greater the 
greater the ionization ; H 2 is also larger in the spectra 
of higher ionization, according to the resul ts obtained 
for vanadium. 

An extension of tills argument indicates that the 
polarization energy arising from interactions with 
configurations in which only one electron is excited 
may be partially included in the second approxima-



TABLE 3. Average term separations and interaction parameters 

I '''""'''m V anad ium Chromiu m Zirconi um 

A (a )-A(p) I II, A(a )-A(p) I liz A(a)-A(p) j{2 A (a ) - A (B) 112 

A(8) -A(d) 801 50 

A(ds) - A(IlZ) 34470 
A(82)-A(d8) 

A(d2 8) -A(d3) • -896 
i -I, a 172 
A(d82) -A(d2 8) • 16980 

A Cd' 8) - A(d') - 17140 
1-12 
A(d2 82) -A (d3 8) a - 13103 

A(d' 8)-A(II ') 
]-[2 
A(d3 82)-A (d's) 
H , 

a A. lVla ny , Phys. Rev. 70, 511 (1946) . 
b C. W . Urford, PhI's. Rev . H , 732 (1933). 
c A. Schweizer, Pbys. Rev . 80, 1080 (1950) . 

147i30 

92460 

a 42102 

• 6332 

, -21335 

, -8759 

tion of BG. However, it is unlikely that the inter­
action parameters would behave exactly as required 
so that it might not be well accounted for . 

It is clear from table 3 that in the titanium spectra 
of moderate ionization, the Bacher and Goudsmit 
method would not account for the configuration 
interaction. Even though the interaction is weak 
enough to be evaluated with second-order perturba­
tion theory, the calculations discussed in section 5 
show that errors of 300 to 700 K would bc introduced 
into formulas (28), (29), (3 6), and (3 7) . Whenever 
the average term separation is small or negative, 
which is the case in Ti I and Ti II , no set of values for 
the interaction parameters can produ ce agreement. 
When the configuration interaction is so strong that 
perturbation theory cannot be used, the errors are 
even larger. For zirconium, errors in excess of 1000 
K result when the formulas are applied directly. 
The differences in A-values are all large and positive 
in chromium, so that the configuration interad ion 
would probably be well accounted for in the second 
approximation; in thi s case, however , the interaction 
is weak and co uld be neglected in the linear theory. 

7. Irrational Roots 

This section deals with one of the simplest exam­
ples in which irrationality of the energy levels plays a 
part. As a preliminary, the two 2D terms of the d3 

configuration are discussed. 
The determination of the energy levels of the two 

2D terms of d3 was first carried out by Ufforcl and 
Shortley.26 They chose two mutually orthogonal 2D 
eigenfunctions, which they characterized as a 2D and 
b 2D ; in the more recent notation of III these same 
two eigenfunctions are designated as 21D and 23D , 
respectively.2i In terms of this choice of eigenfunc­
tions, the electrostatic energy matrix was evalua ted 

" c. "vI'. U fford and G . H . Shortlcy, Phys. R ev. 42, 167 (1932) . See alsc, E. U . 
Condon and G. H . Shortrey 'fh eory ofatomie spectra, p . 233 (Cambridge, 1951) . 

27 In lIT thr. class itication of terms in dn is carried out by introducing the senior­
ity numbel ; this is given as the prefixed subscript in the n otation a bo ve. 
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227200 37508 

162720 16700 
20304 

103100 b - 1260 
b 387 

b 3600 

52424 - 13230 
8)53 

-11700 

c 11 875 
' 150 

30400 
c 106 

and found to have the form 

3.J2 1B ) . 
A + 3B+ 3C 

(67) 

The energy eigenvalues of the two 2D sta tes of d3 are 
th e characLeristic values of this matrix; these values 
(as well as the observed energies for the 2D terms) 
are specified by W(2D+) and W (2D - ) . 

The matrix 8 that. diagonalizes (67) will have Lhe 
form 

The elements of 8 can be specified by the condition 
for the vanishing of the nondiagonal elemenLs of 
8M 8- \ 

[4B(d3) + 40(d3)]0102- (012- 022) 3{2lB (cl3) = 0. (70) 

Although W(iD) and W(~D) have no physical reality, 
they win be used subsequently to indicate the 
energies that would be associated with the diagonal 
elements of the matrix (67). The following formulas 
are obtained from (69) : 

W(~D)= Ci W(2D-)+ O~ W (2D+) , (71 ) 

WCm )= Oi WeD+) + 0: WeD -) . (72 ) 

If the polarizaLion energy can be accounted for with 
the L(L+ 1) correction, then all the preceding dis­
cussion will still apply even when polarization energy 
is considered if the constant A in (67) is suitably 
redefined . 

By direct application of the m ethods in section 3, 
the energy for , say, a d4 3G term, can be expressed in 



the form 

W 2(d 4 3G)*= 1 0/ 21 W (c[3 ~D)* + 3/4 W (cP 2F)* 

+ 4/3W(d3 4F)+ 99/140W(c[3 2G)* 

+ 11 / 15 W (d3 2H)- II /1 0 W (cZZ 3P ) 

- 9/14 W (d21D)*- 29/10W(d2 3F) 

- 19/14 W (d2 IG) + 4 W(d) . (73) 

If the linear theory is v;alid , IF(~D ) in (73) . can .be 
r eplaced by the value (71);. the approx~mat,lOn 
obtained in this way will be specl1'ied by a prune. I.n 
the exact appli cation of the Bacher and Goudsmlt 
theory (71) can still b e used to r eplace W (cl3 ~D ), 
but 6/ and C~ are not necessarily specified by (70) . 
Also, instead of evaluating W (cl3 ~D ;cl2) which was 
done in deriving (73), it is n ecessary to evaluate 
W (d31C l 2D -+Cz 2D +];(P) . The following is the 
correct formula which is obtain ed in this way : 

W 2(d4 3G)= W~(cl4 3G)- E(d4 3G) (74) 

E(d 4 30) =C~ C~[8/21 W (cl 2 IS) - 2/7W(cZZ 3P) 

-50/147W(d 2 ID) + 2/7W(cZZ 3F ) 

_ 2/49 W (d 2 10)]- Cl C2(Ci- CD [21W(cl Z 3P) 
14.y2T 

- 15W(cl2 ID) - 21 W(cZZ 3F)+ 15W(cl210 )]. 

(75) 

R eplacing the cl2 energies b:y th~ir Slater formulas 
(includmg the L (L + 1) correctIOn) leads to the 
following approximat e form for (75): 

E(cl4 3G)= 1 0/21 Cl C2{ [4B( cZZ) + 4C(d2)] Cl C2-(C~ 

-~)3.y2TB(d2)} (76 ) 

It follows that when 01 and O2 are determin ed from 
(70) then (74) will be equivalen t to (73) if the ratio 
of 13 to C is the same in cl3 as it is in cl2. To establIsh 
the general correctness of the meth~d of applying 
the Bacher and Ooudsmit theory wl11ch was devel­
oped in section 5, it is necessa~'y that in general the 
ratios of similarlv defined radIal parameters be the 
same in all specti:a of a given at?m.. . 

It is well known that the ratIO of B to 0 IS very 
nearly constant. Value~ of ~his rati.o , ob~ained 
mainly from the calculatIOns chscussed m sectIOn 5, 
are given in table 4. Because of th e large errors that 
may be present in the theory (± 400 Ie), the values 
of r2, obtained by fitting the observed data exac tly, 
are not well defined ; to a lesser extent the cl3 an el cl3 '" 

configurations also h ave too few. t~rms to defi~e rJ 
precisely. The data as a. whole (glvmg strong wOIght 
to the two well determmec1 r5-values) support the 
conclusion that rn is a slowly decr easing function of 
n. The excep t ion apparent in titaniu!ll is less 
noticeable if t he irration al roots are omItted from 
t he least-squares calculations for 3cl3 and 3cl3 48 
parameters (the error in fitting the irrational terms 
is then excessive, however). 

To estimate roughly t he effect that could .result 
from inequality of this ratio, (76) can b e put 111 the 
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following form with the help of (70), and by use of an 
approxlmate value of r cq ual to 0.29: 

E(cl4 3G) = 40/21 (r3~r2) Ci ~ 0(cl2) 

= 1. 16(r3-r2)C(d2). (77) 

In Ti III , C(cl2) = 2505 so that if r3-1'2= 0.05 then 
E= 145 K. Thi s is likelv to over estimate the max­
imum error that can r eslllt, yet within the accuracy 
of the theory it probabl~T could be neglected. How­
ever the same treatment for the el4 IF term shO\'1s 
that ' E will have exactly 3 times the value .(75), an.d 
for the cl4 3D term the error will b e 2.4 tunes tillS 
value, so it is not certain that this effec t win always 
b e negligible. T he ratio G2/C need not be constant 
(i t varies considerably, from 0.4 to 0.8 usually). 

T ABLE 4. B j C ratios 
T. is tile ratio of R(d") to C(d") , R(d" s) to C(d" 8), or R(d" 82) to C(d" 82), accord 

Lng to wbicheve r definition has meaning for the spectne n ~pccificd. 

T2 
I 

T3 T, 
---

'I' i I 0.289 '0.313 (0.319) 
Ti II .290 . 3Ii (0. 290) 
T i III .29[ 
Fe III a 0. 271 

Z .. I .304 .279 
Zr II .289 .287 
Zr III .297 
}VIa I b .2,57 

a Sec footnote 8, page 38. b See footnote 3" pa".e 35. 
c Values in parentheses arc calculated WIth IrratIOnal 

roots omitted. 

Though th e method of BG introduces new non­
linear effects if the parameter ratios are no t equal, 
these effects would probably r epresent errors in the 
method . Beca use of this, and because the ratios 
are so n early equal , i t is not expected that.a correc­
tion with this variation will produce lll1proved 
agreemen t when added to the linear theory. How­
ever irrational terms often cannot be fitted by the 
line~r theory with the accuracy t~~t is obtaina,ble 
for rational terms 28 and some addItIOnal correctIOn 
of this form may be needed . This correction w:ould 
not change the agreemen t obtamable for the. ratl?nal 
terms of el4 but i t would introduce correctlOns mto 
the irration'al terms. Th ese considerations may be 
less academic for spectra with p- and cl-electrons 
where there are more parameter ratios that may 
differ and where most of the terms are irrationaP9 , 

I am indebted to C. C. Kiess for suggesting the 
problem on which this work is based, and I thank 
also G . R acah and C. W. Ufford for their comments 
on th e original manuscript of this paper. 

28 R. E. 'l'rees , Phvs. Rev. 85, 382 (1952). . 
" Meshkov has i1itrodueed a method which combines the Slater theory With 

a Bacher and Goudsmit fi rst approximation. and has obtained improved agree­
ment for the 3d2 4p confi§:(uration of Ti II (footnote 18). A Simple extenSIOn of 
the linear theory to include correlations between p- and d-eleetrons may ex plum 
this improvement bllt the possibility that new types of erorcetlOns are needed 
to explain it, cannot yet be exclllded. His theory. also leads to better. agreement 
than is obtainable with the Slater theory alone, ill the d3 configllmtlOll of V IJI 
and the el' configurat ion of V II (Phys. Rev. 93,270 (1954)) . I n the d' configura 
t ion his final mean deviaUon of ±663 Ie is still rather large; thiS may be beeanse 
there a.re a large numbC'T of irrational terms present ill thls configuratIOn or 
because configuration interaction was neglected. See also S. Mesllkovand C. 
W . Ufford, Pill'S. Rev . 9t, 75 (1954). 

WASHI NGTON, J anuary 8, 1954. 
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