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Bacher and Goudsmit Theory of Complex Spectra
R. E. Trees

The Bacher and Goudsmit theory expresses the energy of a state of an atom in terms

of a linear combination of energies of states of other ions of the same atom.

This theory

is tested in the spectra with d- and s-electrons and general conclusions drawn about its

aceuracy.
In deriving their theory,
interactions.

Bacher and Goudsmit formally introduced many-particle
They showed (to a limited extent) that this was equivalent to a second

procedure in which the zero-order wave functions were assumed to be independent of the
ionization and successive orders of perturbations were included.

Recently it has been shown that a linear theory, which is a combination of the Slater
theory and an empirically derived correction, predicts the separations of terms in any one

configuration with about the same accuracy as the Bacher and Goudsmit theory;
theory, the wave functions are allowed to depend on the degree of ionization.

in this
It is shown

that the Bacher and Goudsmit theory can be interpreted in a third way that is consistent

with this linear theory.
In the light of this latter interpretation,

Racah has suggested an empirical modification

of the Bacher and Goudsmit theory that often leads to better results; this suggestion has

been incorporated in the present paper.

1. Introduction

Bacher and Goudsmit have shown that it is pos-
sible to express the energy levels of an atom cor-
rectly to second order by taking linear combinations
of the energy levels of the ions of that atom.! They
gave explicit formulas for these linear combinations
for atoms containing s- and p-electrons, and tested
the theory in the spectra of oxygen, nitrogen, and
carbon. The theory usually predicted the absolute
term values with an error less than 2500 K.* Sepa-
rations of terms in a given configuration were often
given very much better, sometimes within a few
hundred kaysers.

In section 2 the theory of Bacher and Goudsmit is
derived briefly from a new viewpoint. Bacher and
Goudsmit derived their formulas by formally intro-
ducing many-body interactions; no explicit form was
given for these interactions. They were able to
show that in the first and second approximations this
was equivalent to using zero-order wave functions
that were independent of the degree of ionization,
and, with these, making first- and second-order per-
turbation calculations “of the energy, respectively.
In the present paper, a third derivation is given, in
which the zero-order wave functions of the Slater
theory are allowed to vary regularly with the degree
of ionization; an explicit two-body interaction is also
imtroduced. This mterpretation is justified by the
observation that there i1s a smooth variation of the
one-particle and two-particle parameters in a linear
theory.? The more specific and easily understood
meaning of this interpretation in terms of a linear

1 R. F., Bacher and S. Goudsmit, Phys. Rev. 46, 948 (1934); referred to in the
present paper as B @RS
“Kayser” is the name adoptod hy the Joint Comnnssmn for Spectroscopy for
tlm unit of wave number, ecm-1, and is abbreviated “F
3 R. E. Trees and M. M. Harwv J. Research \Bb 49 397 (1952) RP2378. In
section 1 of R P2378 the literature is reviewed, and the methods of analyzing spec-
tra with the Slater theory, for including effects of configuration interaction, and
of making allowance for polarization energy with the L(ZL+1) correction are also
outlined and applied. In referring te a *‘linear theory'’’, the L(ZL+1) correction
is combined with the Slater theory, and the radial integrals are regarded as
parameters.
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theory is given in section 5; it is equivalent to assum-
ing that the parameters in dlfforult ions of the same
atom are given by series expansions in powers of the
degree of ionization. It is shown that the BG nth
approximation accounts for terms up to and including
the nth power for the one-particle parameters and
terms to the (n—1)th power for the two-particle
parameters

In section 3 a few formulas applicable to terms in
d", d"s, and d"s* configurations are obtained by using
tables of coeflicients of fractional parentage and
recoupling transformations given by Racah.* 1In
section 4 an application of these formulas is made in
the spectra of titanium, vanadium, chromium, and
zirconium. It is found that S(‘])(uatlons of terms in
the same configuration are given very closely (the
error is less than 400 180 5(‘]341‘1'1‘11()118 of terms in
different configurations may be given very poorly,
however, as an error of 6000 K is found in titanium

(Z=22). The latter type of error is found to
decrease very rapidly in spectra of more highly

ionized atoms: in chromium spectra (Z=24) the
error is only 600 K, one-tenth the error found for the
related titanium spectra. The error is also found to
decrease for spectra with higher nuclear charge as it
is only 2000 K in zirconium (Z=40).

Racah has pointed out that a power-series expan-
sion, of the type described previously, converges
more rapidly if spectra are chosen having the same
degree of ionization. A comparison with experiment,
using this empirical modification of the original
theory of Bacher and Goudsmit, is also given in
section 4.

As indicated previously, the Bacher and Goudsmit
theory can be interpreted in terms of a linear theory
in which the radial parameters are given by series
expansions in the degree of ionization. Checking
these expansions is the easiest way to check all the
data against the Bacher and Goudsmit theory. The

4 (4. Racah, Phys. Rev. 62, 438 (1942); 63, 367 (1943).
to herein as II and III, respectively.

These papers are referred
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conclusions reached from the direct application of the
theory already cited above, have been verified by
using all available data with this method. The de-
tailed calculations needed for this verification are
omitted for brevity.

In section 6 the effect of weak configuration inter-
action in which one electron is excited is considered,
and in section 7 the effect of irrationality of the
energy eigenvalues is analyzed. The purpose is to
illustrate in more detail the direct application of the
theory of BG and to indicate where a direct applica-
tion might lead to results that differ from those
obtainable with a linear theory. Such differences are
probably too small to be detected within the accuracy
obtainable at present with any theory, but more com-
plete comparisons of theory with the presently avail-
able experimental data are needed to verify this
conclusion.

2. Bacher and Goudsmit Theory
2.1. General Theory

In this section is given a new derivation of the
theory in which it is assumed that the interaction
parameters vary smoothly. The Hamiltonian of
the n—electron system is taken as

H=H,+ H,, (1)
where
Zé?
=2 (5,7
and
n e?
112: Z N
i>j=1T1j

I, and 1, are examples of what are called “type-
one’” and “type-two” terms, respectively, (H, is a
sum of functions, each depending on the coordinates
of a single electron, and /, is a sum of functions for
two electrons). A particular selection P of » of the
n—electrons will be indicated by P,. The sum of the
Hamiltonians 7{(P,) of the r—electron systems for all
possible choices P is a symmetric function of the
n—eclectrons, and the n—electron Hamiltonian # is
expressible identically as a linear combination of such
symmetric sums for two or more values of 7,

H=2 02 H(Pp) ()
P

The conditions that this be an identity are the follow-
ing:

2 ()0)=(0) w2 ())-6)

a . o 0 o
In general, < b> is the binomial coefficient when

a>b>0,
<> (a— b)‘b'
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and zero for b<0 or a<’b. The values of the co-
efficients . will be indeterminate if there are more
than two nonzero C,-values. The method of choos-
ing best values of the ', in such cases will be con-
sidered below.

The eigenfunction ¢ (y) of the n-electron system is
assumed to have in its specification a definite con-
figuration l;, ls, . . ., [,, and P, is specified by 7 of these
[-values; the electrons are regarded as distinguishable,
even though some may be equivalent. The electrons
in the selection P, have allowed eigenfunctions y/(«)
of the r-electron Hamiltonians H(P,); the residual
(n—r) electrons have allowed eigenfunctions ¢(8) of
the (n—r)-electron Hamiltonian. The /[-values of
the electrons are included in the specifications «, 8,
and v, along with S- and L-values for the combined
system and any other quantum numbers needed to
specify the coupling.® The function formed by vec-
tor coupling the (n—r)-electron eigenfunction to
the r-electron eigenfunction is m(h('atod by ¥ (a,8,7).
A linear ¢ omblnatlon of thes> functions can be formed
that will be identical with y(v); this was first pointed
out by Bacher and Goudsmit,

¥(v) Zé)(aﬁ,v]}v)lﬁ(a,ﬁﬂ)- 4)

(a,8,7]y) is called the coefficient of fractional parent-
age. The calculation of the coefficients of fractional
parentage is a mathematical problem that has been
considered in detail by Racah. He has tabulated
these coefficients for configurations of equivalent p-
and d-electrons in I11; their use will be illustrated in
section 3.

A partial energy E(a) of the choice P, is introduced
that is associated with the r-electrons while they are
part of the n-electron system and combined to form
the state «. This energy cannot be observed, and
must be approximated from the observed energy of
the 7-electron ion of the atom in the state «, which is
defined as W(«). The average energy of the choice
P, when present in the original n-electron configura-
tion v is determined with the help of (4),

E(v;P,>:§<a6,vﬂv>2E<a>. (5)

The corresponding approximate energy can be cal-
culated from the observed energies in the 7-electron

ion, L
W(W;Pr)=§(aﬁ Y)W (e). (6)

The energy of the n-electron system is then given
identically by an expression similar to (2),

Ev)=22 CT;E(%PT) @

5 There may be more than one term allowed with a given (SL)-value in the
configuration considered (the configuration may be that contained in a,Bor ).
In such cases the function obtained by a legitimate coupling promdure will not
be an eigenfuncticn of the Hamiltonian, even though it has an allowed symmetry,
if it mixes with other allowed mgmmncnons in that configuration having the
same (SL)-value. In such cases a purely formal difficulty arises because the
characterization by parentage is indeterminate, and the thecry given by Bacher
and Goudsmit must be amplified by more or less arbitrary additions. In sec-
tions 2, 3, and 4 of the present paper these cases are omitted. These omitted
cases are considered in sections 5and 7.



The corresponding approximate energy is calculated
from’ the approximate average energies (6),

Wa)=303WeP). (®)

The energies W and W used above are the same as
the W used in BG for both expressions. Quantities
such as W(a), W(a,B), etc., on the right side of eq (7)
to (14) in BG are sometimes energies of observed
spectral terms, but in general they are linear com-
binations of the observed energies; in the present
notation they would bereplaced by W(y;Py), Wivy;Ps),
ete.  Directly observed energies are indicated by W,
as in the right-hand side of (25) and (26) of BG.

The difference between the exact value (7) and the
approximate value (8) is estimated by separating
the s and W’s into their type-one and type-two
parts, and by assuming that the following expansions
can be made:

Wi@)= Ex(e){ 1+ ai(y) n—7)+ax(y) (n—r)+. . .}

(9)
"W(@)=Ey(a){ 1+ b:i(v) (n—1)+ bo(v) (n—1)+. . . }.

The coefficient a,(v) in (9) will be eliminated from
the difference between (7) and (8) if

Z_‘,O(n—r)’( )( > 0, (10)
and the coeflicient b,(y) will be eliminated if

=i n\ [ r

thC',(n—r)’ <r> <2>—O. (11)

A choice of C,-values defines an approximation of
the same order as the largest value of ¢ for which
(10) is satisfied (it is assumed that (10) and (11) are
satisfied for all smaller values of ¢ and that relations
(3) are satisfied). For instance, in a second approxi-
mation, the type-one energies are expanded in a
series containing powers up to and including the
squares of (n—7), whereas the type-two energies are
expanded only to first power in (n—7). Formulas
(3), (10), and_(11) are not independent. They may
be combined into a definition that is easily shown to
be equivalent to that just given, by requiring the
coefficients C; to satisfy the followmo’ (m—4-1) equa-
tions in order to define an mth approxlnmllon

00— ()(0)=0(3)

In the derivation of BG, many-body interactions
are formally introduced. According to the present
notation, this is equivalent to considering not only
type-one and type-two terms as being present in (1)
but also type-three, type-four, etc., terms. This
leads immediately, by enorahzmg (3) to the defini-
tion of the m™ approximation given bV Bacher and

(t=0,1,...,m).

(12)

*)
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Goudsmit. According to their definition the -
values satisfy the following (m-1) equations:

L= TN n .
> C; = k=1,2,...,(m+1). (13)
=1 r)\k ke

To show the definitions (12) and (13) are equivalent,
the following expansion is utilized for powers ¢ >0 of
an integer p: ¢

: P
—>a0(?), (14)
k=1 K
where
ac(l)=x'—x(xk—1 )+K(K )(K“ )_
Inserting (14) in (12) leads to the result
nzax(z<" )zo( > 0 (t=1,...,m).
(12a)
Equation (13) is equivalent to the formula
= =k .
20,(r k>:1 (k=1,2,...,(m+1). (13a)
r=1 = &y

It follows therefore by repeated application of the
binominal coefficient relation,

(= )-C=D(

and the use of (13a) that the left side of (12a)
vanishes, as 1t should, whenever (13) is satisfied.
When (=0 in (12), the equation is the same as (13)
when k=1, so the equivalence of the two sets of
defining equations is demonstrated. A special m™
approximation is defined by the following set of (-
values:

O, =(—)m- '+1( —7“+1> (r=1,2,.

C,=0 (r=(m+2),. .

n—k—1
r—2

n—k—1
r—1

- (m—+1))

(15)

If there are only two nonzero values of (), and
these are () and O, then they are defined by (15),
and relation (8) has the explicit form

WYI(Y):;W(’Y;PZ)_(H—_2);W<7;P1)‘ (16)

Relations (8) and (12) of BG are special cases of
(16), for which n has the values 4 and 5, respectively.
As an alternative, it can be assumed that C; and
C,_1 are the nonzero coeflicients, and then the fol-

0 A treatise on the calculus of finite differences, G. Boole, edited by F.
Moulton (Macmillan & Co., London, 1880).
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lowing formula is obtained by solving (12) or (13)
(the specification v will be omitted for brevity):

1

- n—2

V4

W=, S WP, L WP, (17)

2.2. The Second Approximation

If ), C;, and (5 are taken as the nonzero coeffi-
cients of the second approximation, the following
formula is obtained from (15):

Wiyn)=2] W(Px) —(n—38)> msz‘

é(n—ii)(n—‘l)}:mpl). (18)

Relations (9) and (13) of BG are special cases of this
formula for which n has the values 4 and 5, respec-
tively. In appendix I of BG, perturbation theory
was used to show that (18) is equivalent to a calcu-
lation that is correct up to and including the second
order. In general, reference to ‘the theory of
Bacher and Goudsmit” in the present work applies
chiefly to this second approximation.

The complete set of one-electron tunctions used
in appendix I of BG was that appropriate to the
ionized state of the atom with only a single electron
outside of a closed shell. The same zero-order
functions were used for the atom in all other states
of ionization, and the second-order effect was evalu-
ated with them. This is a poor zero-order approxi-
mation for some spectra,” so that ‘“second-order
effect,” in the sense used by Bacher and Goudsmit,
is not synonymous with polarization energy. The
latter energy is usually defined as that part of the
observed energy that cannot be explained by a cal-
culation in which the one-electron functions are
determined by the Hartree-Fock method for each
state of ionization. No investigation has been made
to determine the variation in accuracy of a second-
order calculation with change of the zero-order
eigenfunctions, but Bacher and Goudsmit often
obtained poor values in their calculations because
the higher-order effects became more important as
the zero-order functions became worse approxi-
mations.

The influence of polarization on the separation of
terms in a single configuration containing d- and
s-electrons may be represented by a correction pro-
portional to L(L+1).* Racah has shown that this
correction may be derived by assuming a special
type of linearity for the polarization energy, and he
has outlined a proof of this assumption of linearity.’
The proof is based on the assumption that in the
configuration d* the L(L41) correction arises from

7 Similarly defined parameters change by 10 to 30 perceat in successive ions
when they are evaluated by least squares; they would have the same value if the
zero-order functions were the same in all ions. A similar problem is considered
by A. Rahman, Physica 19, 377 (1953). See also E. P. Wigner, Phys. Rev. 94, 77

1954).
§ 8 R). E. Trees, Phys. Rev. 84, 1089 (1951).
9 (. Racah, Phys. Rev. 85, 381, (1952), and private communications,
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interactions with configurations d*=%?* and d"~*l’ that
have two electrons of the original configuration
excited. The linear behavior then follows from (54)
of BG. Alternatively, it can be demonstrated by
comparing (33a) of I1I with (33¢) of 111, and assum-
ing that the perturbing conficurations are suffi-
ciently far away so that the energy denominators in
the second-order perturbation can be assumed con-
stant. The proof shows that the Z(L-+1) correction
is accounted for initially in the first approximation,
so that it is on the same footing as the Slater energy.
Ap interaction in which only one electron is excited
is included fully for the first time in the second ap-
proximation, as shown by (53) and (59) of BG.
Any deviation from linear behavior that is produced
by such an interaction must be assumed negligible
if the L(L-+1) correction is used to account for
polarization.

In section 4 it is shown that the Bacher and Goud-
smit theory leads to close agreement with the ob-
served separation for two terms in the ¢* s con-
figuration in both titanwum and zirconium, the errors
being 357 K and 293 K, respectively. Bacher and
Goudsmit noted that the separation of terms in the
same configuration are well predicted in spectra
containing 2s- and 2p-electrons.’® It is concluded
that the error of the Bacher and Goudsmit theory in
predicting separations of terms in the same con-
figuration will generally be less than 400 K and that
the accuracy is therefore about the same as that ob-
tained with a linear theory.

A large part of the polarization energy is the same
for all terms of a given configuration. The energy
common to all terms can be investigated with self-
consistent field and other variational methods, but
it 1s not easy to get a reliable picture of the behavior
from the few calculations that have been made.
One approximation, used fairly often with minor
rariations, ascribes an energy of 5000 to 10000 K
either to each electron or to each pair of equivalent
electrons; interactions between pairs of nonequiva-
lent electrons are neglected in the latter approxima-
tion. The energy is independent of 7 but depends
a little on the types of electrons that are paired.'
This part of the polarization energy is very large,
and the departures from the described behavior
could be appreciable.

The Bacher and Goudsmit theory can be tested in
this respect by calculating the separations of terms
in different configurations. In section 4 it is shown

10 Tables XVII and XVIII of BG, calculation II. It is noted in BG that
agreement better than 200 to 300 K must be regarded as fortuitous so that the
ultimate significant accuracy is regarded as about the same as obtained with the
L(L+1) correction. Many separations of terms in the same configuration are
predicted with errors greater than 1000 K in BG, and this must be attributed to
the neglect of configuration interaction, or to the fact that the theory is less ac-
curate for spectra with 2s- and 2p-electrons.

11 F, Seitz, Modern thecry of solids, p. 247ff (McGraw-Hill Bock Co., New
Yerk, N. Y., 1940). Seitz evaluates energy per electron rather than per pair of
equivalent electrons, but his remarks on page 248 justify the latter interpretation.
Self-consistent field calculations of O, O+, and O*+, including exchange and con-
figuration interaction (D. R. Hartree, W. Hartree, B. Swirles, Phil. Trans. Roy.
Soc. [A] 238, 229 (1939)), support an interpretaticn based on pairs, a value of 7000
K being associated with each pair of equivalent 2p-electrons. Although a strong
dependence on multiplicity is expected (page 250), this is shown only to a minor
extent in the oxygen calculations; if present, it would be accounted for in the
previous consideration of the separations of terms in the same configuration. An
additional pcint that should be noted is that comparison of the self-consistent
field calculations in oxygen (ncted above), with and withcut configuration inter-
action, indicates that configuration interaction is important.



that there is an error of 6000 K in predicting the
energy difference between a term in the 3d* con-
figuration and one in the 34* 4s configuration of tita-
nium, and a corresponding error of 2000 K in similar
zirconium spectrum with 4d- and 5s-electrons, and
also that this error decreases rapidly as ionization
increases in the spectra with 3d- and 4s-electrons
because the spectra of titanium, vanadium, and
chromium show errors of 6000, 1800, and 600 K,
respectively. Bacher and Goudsmit found an error
of about 2000 K in the spectra with 2s- and 2p-
electrons; the decrease of the error with increase of
7 was slight in these spectra.'

The spectra considered here contain four electrons
outside of closed shells and are the easiest spectra to
analyze with relation (18). A more complete ex-
ploration of the theory would consider also spectra
with five or more electrons.

2.3. Higher Approximations

A third approximation may be obtained from (15),
in which (', (',, (s, and (J; are nonzero;

W)= W(P)—n—4) > W(Py)+
p D

(n—4)(n—

> -

VW)
2 5
(n 4)(11‘ ‘3)(n 2) SR, (19)

3.2 P

Relation (14) of BG is a special case of this formula
for which n=>5. Bacher and Goudsmit considered
this approximation equivalent to a calculation by
perturbation theory correct to thrd order, but they
were not able to carry out the complex calculation
that would be necessary to demonstrate this rigor-
ously. Separations of terms in spectra of oxygen
and nitrogen were calculated a little better in the
W, than in the W, approximation.” In section 5 the
relative accuracy of Wi and W, is discussed from
another viewpoint (formulas (56) and (60)), and it is
concluded that higher approximations can only ac-
count for a small part of the error already noted in
the W, approximation.

Any mterpretation used to justify the method of
Bacher and Goudsmit leads to the conclusion that
it is more accurate the more similar the binding of
the electrons (and the structure of the configurations)
for the different energy levels utilized in the formulas.

12 Table XIV of BG. In discussing this table, Bacher and Goudsmit noted
that the errors decreased sligchtly as 7 increased, but from a later discussion it
is apparent that they considered this effect of Z as being of minor importance.

13 Separations of terms in the same configuration were sometimes given with
a smaller error by W3 than by W, as may be seen by comparing calculation ITI
with caleulation IT in table X VIII of BG; however, in an almost equal number
of cases the agreement was worse. Absolute term values calculated with W3 for
the 2s? 2p configuration of oxygen were generally in error by less than 100 K
(table X1V of BG), whereas the W3 approximation indicated term values in the
282 2pt configuration with a larger error, about 1400 K (table XV of BG). Bacher
and Goudsmit note that the 2s? 2p* configuration is calculated better in the W,
approximation, regarding the s-electrons as part of the closed shell, than in the
Wy approximation. The relative errors of absolute term values will naturally
decrease for the higher approximation as the absolute value of the energy to the
closed shell is much greater.
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For example, in calculating term values for /* all
configurations specifying a choice of r-elections would
belong to I’.  On the other hand, in calculating term
values for "1 ¢ the selection of r-elections is specified
by either the [I” or the I”"' s configuration, so that
there are twice as many different configurations to
be considered. According to this argument, a given
order of approximation would probably predict terms
in the [" configuration best, terms in [*~' s next best,
and terms in /"2 s?least accurately. This argument
has some confirmation which was pointed out by
Bacher and Goudsmit."* Bacher and Goudsmit also
have noted that the method is inadequate for con-
figurations such as 2s2p?4s, in which the total energy
of the excited electron is less than the electrostatic
energy of the inner ones. In such cases, even the
separations of terms in the same configcurations would
not be given accurately. Similiarly, the method gives
poor predictions for negative ions.

3. Formulas for Spectra With d-
and s-Electrons

3.1. The 1" Configuration

When the configuration specified in y is [, equation
(6) has the form

W(lrySL; 1= >

a; Sy Lyag Sy Ly

(S L) (S, Lo),

SL}"ySLEW(IraS,Ly). (20)

If this relation is used in (17) for W(P,_,), the sum

. . n n -
over Pintroduces a factor (7 >:< 1>:n, and (17)
r n— \

becomes,

n

)

&

(" YaySy L) ISL}I*yS L)y

ay Sy Ly

Wi (/”'ySL):n

n
n—2

WSy Ly)— w@). (21)

The first term on the right defines the separation of
terms n the (" configuration; it has the same form
as a relation given by Racah for calculating matrix
elements of a general scalar operator & defined be-
tween pairs of interacting electrons.' Similiarly,
by utilizing (20) with »=2, relation (16) becomes

(n—1)

2 ST

Wi(lrvSL)=" o

12282 Ly

(ZZ(SILI) ln. - 2((12ASY2L2),

SLISLEWES. L) —nn—2) W({). (22)

14 Table XIV of BG. Absolute term values for the 2p* configuration of oxygen
are predicted within a few hundred kaysers, which may be the best significant
agreement obtainable. Errors for 2p3 2s are about 1000 K, and they are about
2000 K for 2s2 2p2.

15 In footnote 7 of BG it is noted that the calculated electron affinity of oxygen
is 8000 K and that the observed value is 18000 K. The discontinuity in binding
energy of negative icns has been discussed by Ta-You Wu in Phys. Rev. 89, 629
(1952).

16 . Racah, Phys. Rev. 76, 1349 (1949). Formula (1).



This is the same as an alternative formula given
by Racah for calculating matrix elements of a scalar
operator.'?

It is noted in IIT that the formula corresponding
to (22) needs very long calculations and is of practical
use only in a few particular cases. Although the
direct use of (20) is impractical, except when r=n—1
(or in the trivial case where 7 is unity), a step-by-step
procedure, starting with »=n—1 and decreasing 7
a unit at a time, is generally practical. With this
procedure, only tables of the coefficients ({**
(S L) L,SLY"ySL) are needed. These coefficients
are defined by (9) IIT and (11) I1I, and the coeflicients
have been tabulated in IIT for p™ and d* configu-
rations.

As an example, the second approximation (18)
will be evaluated in detail for a d* °D term by using
(20) in a step-by-step procedure. By using table
11T of II1, relation (20) becomes

W(d* 3D ;d?) =3/10W(d® “P)+ 7/10W(d® ‘F). (23)
The W’s on the right are formally evaluated with
(20), by using table IT of I11:

W(d? 4P ;d?) =8/15W (d2 *P)+ 7/15W(d? *F), (24)

W(d? *F;d?) =1/5W(d? 3P)+4/5W(d2*F). (25)
These results are then substituted back in (23):

W(d4°D;d2) =3/10W(d? P)+ 7/10W(d? °F). (26)

Alternately, (26) could have been obtained directly
from (20) (with r=2) by first calculating the coefh-
cients of fractional parentage (d*(SyLy)d*(S,L.),
SDId*°D) with (32) of III. The step-by-step
procedure used above is simpler because the quantum
numbers a,S:L, do not enter the calculation explic-
itly. The values (23) and (26) are now inserted
into (18) and the sums over I’ replaced by factors

<:L> to obtain the desired formula,

Wa(d* °D) =6/5W (d® *P)+ 14 /5 W (d® *F)

—9/5W(d?*P)—21/5W(d?*F)+4W(d). (27)

Formula (27) is a good one to use in testing the
Bacher and Goudsmit theory. All term values used
in the formula should be unperturbed, and they are
likely to be known experimentally. The following
two formulas, obtained in a similar fashion, are
not so generally useful: the terms that are most
likely to be perturbed by configuration interaction

7 Formula (33a) of III. 'To get the expressions to agree exactly, the following
generalization cf formula (29) of III is used:

(U (a1 Sy L1) I (a2S: L) SLYiny SL)

= (= 1) S+LALy=8y=8 =L H48182(In=r (aa S2 L) I (1 S1 L1) , SLYIny SL)
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are starred:

Wo(d* 1) =6/5W(d? 2G)*+ 14/5 W (d® *H)
—3/TW(d2'D)*—3W(d? 3F) —18/7TW(d? 'G)+ 4 W(d)

(

9

4

8)
Wa(d* SH) *=1/3 W (d? 2F) *+ 4/3W(d? *F)
+ 3/5W(d® *G) *+ 26/15 W (d* *H)
—3/5W(d* *P)—2/7W (d* 'D)*—17/5 W (d* °F) *

—12/7TW('G)+4W(d). (29)
Formulas for all other terms would require an addi-
tion to the theory of Bacher and Goudsmit. The
parentages of duplicated terms in ' and/or &
would depend on the particular spectrum under
consideration, whereas in the formulas for the terms
given above the coeflicients were defined by purely
mathematical considerations.

3.2. The ["!']' Configuration

The evaluation of W(y;P,) when the specification
v contains the [*7}/’ configuration, can be carried out
similarly if tables of coeflicients of fractional parent-
age for nonequivalent electrons are available”® In
general, such tables are not available, and the co-
efficients must be calculated from tables for equiva-
lent electrons with the help of transformations
between different coupling schemes given in section
2 of I1I.  Again a step-by-step procedure is simplest,
so that only selections P with n—1 electrons need be
considered. The parent term in the [”~! configura-
tion again is assumed, for simplicity, to be in an
exactly specified state. The single selection con-
taining the equivalent electrons has an average
energy W ((I" ySL)I’S’L’;l"""), which is the same as
the observed energy in the ion W(**'ySZL). The
only new feature is the selection specified by the
("2l configuration. The coeflicients of fractional
parentage will have the form

(S L)V (871" IS L W (vSL)US' L)
— (I=2(aSi L) ISLI* vSL)
(SILUSLVS L[S Ll (S L )IS'LY).  (30)

On the right, the first factor is the coefficient of
fractional parentage for equivalent electrons; the

18 Tables for p? s, p3 s, and d2 p have been given by S. Meshkov in Phys. Rev.
91, 871 (1953). With his convention for the normalization of the coefficients, the
sums over P required in the formulas given here would be replaced by factors

n . ’ f <
, ); the different selections P are then accounted for during the calculation of
the tables. To allow what seems to be the most direct use of Racah’s tables, the
coefficients of fractional parentage have been normalized to unity for each selec-
tion in the present paper.



second factor is a transformation coefficient evaluated
in (5) of I1I,

(S\LUSLYUS L |S. Ll (8" L'")IS" L)
=[(25+1)(28”+1)(2L+1) 2L+ 1)}

W(S% £8",8’S) W(LUIL'" ;L' L,). (31)
The W-functions in this expression are calculated
from (36) of 1I; some values of the W-function have
also been tabulated.!

The particular case where I’ is an s-electron is the
only one we consider in detail. In this case, the
result of applying (30) and (31) reduces to a fairly
simple formulation. To evaluate the average
energies for a term [ '(vSL)sS’L:

(a) Evaluate W 'vSL;l""%) in terms of the
observed energies W ("2 &S, 1,,), as already described.

(b) If the spin S, of the ion term in ["~? does not
have the same value S as the original term under
consideration in [*'s, then add an s-electron to this
ion term, making the resultant spin S’ equal to S,
the spin of the parent term in {"'; 1. e., change
W2 oS, L) to W({"? (S L,)sSLy).

(¢) If the spin S; has the value S’, then add the
s-electron to the ion, and split the latter into two
terms, each having one of the two spins that are
allowed, 1. e., give 8’/ the two values S and (28" —2S).
The part having the resultant spin S is given a
coefficient (28”+1)72, whereas the other part has a
coefficient of unity minus this; i. e., change W("*
aSi L) into [(28"+1)"2 W *(aS’"L)sSL)+[1—
28"+ 1) WA 2(aS" L1)s(28’—S) Ly)].

This formulation could also be used when I’50 to
take care of the spin. Another subdivision would
then be made among the L-values, using only that
part of (31) that depends on the orbital momentum.

As an example, the second approximation (18) will
be evaluated for a *(*F)s °F term. Step (a) is
already carried out in (25), so that according to
step (b)

W(d® (*F)s °F ;d%s)

el

=1/5W(d*(P)s *P)+4/5W(d*(*F)s *F). (32)
The procedure is repeated for the terms on the right,
and the results obtained are substituted back in (32)
to get the average energy for the ds selection:

W(d3(*F)s °F ;ds) =W (ds *D). (33)
This result could also be written by inspection.
The average energies (32), (33), and (25) are inserted
into (18), together with the trivial - values for
Wi(vy;d®), W(y;d), and W(y;s); the sums over P intro-

19 I,, C. Biedenharn, Oak Ridge National Laboratory Report ORNL-1098
(unpublished).
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. n—1" . . .
duce factors ( ) when P, is the /" configuration

==l . : .
and <r ]> when P, is the {"~'s configuration:

Wo(d*(*F)s °F) =W (d? *F)+3/5W (d? s *P)
+12/5W(d* s *F)—3/5W(d*°P)

—12/5W(d?*F)—3W(ds *D)+3W(d)+W(s). (34)
The following formulas are obtained similarly:
Wy (d*(4P)s P)= W (d® *P) +8/5W(d? s *P)
+7/5W(d? s *F)—8/5W (d? *P)—7/5 W (d* °F)
—3W(ds *D)+3W(d)+W(s), (35)
Wy (d?(CH)s '"H)= W (d® “‘H)+3/2W(d? s 2F)*
+-3/2W(d? s 2G)*—3/2W(d? *F)—3/2W(d* 'G)
—3/2W(ds *D)—3/2W (ds 'D)*,
+3W(d)+W(s), (36)

W (d*(*H)s *H)*=W(d® *H)+1/6 W(d* s °F)*

+4/3W(d? s ‘F)+3/2W(d? s °G)*—3/2 W (d* °F)

—32W(d?>'G)—1/2W(ds 'D)*—5/2W(ds *D)
+3W(d)+W(s).

Formulas (34) and (35) are valid even when con-
figuration interaction 1s present.

(37)

3.3. The [*~?['? Configuration

The final configuration considered is [*~/"2,  Both
the /7% and the 1’? configuration are assumed to have
SL-values that are exactly specified. For the selec-
tion P, _; that contains only one of the [’-electrons,
the coefficient of fractional parentage is simply a
transformation coefficient given by (6) of I11:

(I2(ySL)US, Ly, 'S L' (vSL)I"*(S"L")S"' L")
= (SL,I’>(S’L)S"'L""|SLY (S L)l'S""L"")
=[S+ 1) @S+ 1) 2L+ 1)L+ 1))

W (S% S”"L:8,SYWLY' L' ;LLL").  (38)

This leads to a simple formulation for the /"~%s* con-

figuration: (d) The parentage of an s-electron in a

term " %%ySL is divided in the ratio of the multi-

plicities between the possible parent terms, generally
two.



For the selection P,_; that contains both I’ elec-
trons, the coefficient of fractional parentage becomes,

@S LS’ L) S LA S L W SLY (LN S L")
=(1"~*aS, L)ISLI~*YSL)
(S:LUSL)S'L! (8" L) S LyS L (S Lo)liS L),

The transformation coefficient is given by (5) of T1T
and has a form similar to (31). In a term ("2 s*>ySL,
however, the closed shell of two s-electrons can be
disregarded for this selection, so that (39) reduces to
the procedure already given for a configuration of
equivalent electrons.

To evaluate the average energy (6) for a d%? °F
term the formulation (d) is used:

(39)

W(d? s 3F 02 §) =2/3W(d? s *F) +1/3W(d? s °F), (40)

T (d? 2 °F yds?) = W(ds? ?D). (41)

Relation (41) is obtained by inspection; using (d)

again with (41) leads to the average energy for a
choice ds,

W(d2 &2 °F ;ds) =3/4 W (ds *D) +1/4W(ds 'D). (42)

The result (42) could be obtained also from (40) by
use of formulations (b) and (c),

W(d? s *F ;ds) = W(ds *D),
W(d2 8 2Fds) =1/4W(ds D) +3/4W(ds ‘D). (43)
When these values are substituted for the observed
energies W on the right of (40) the result (42) is

obtained ; this checks the consistency of the proce-
dures and illustrates the use of (¢). The values (40),

(41),and (42), toget-her\lith trivial values for W(y;d?),
Wivis?), Wiy;d), and W(y;s) are then inserted into

(18). The number of selections P, of type I is (n 72>;

_ . n—2 .
["~* s can be selected in 2 < 1> wave and 72 ?
A= :

in (rn—2 Wavs:
’2_2 (‘.‘k .

Wo(d? s*°F)*=4/3 W (d? s *F) +2/3W(d? s °F) *
+2W(ds* D) *—3 W (ds D)
— W(ds D) *— W(d? °F)
—W(1S)*+2W(d)+2W(s). (44)

The following formula is obtained in the same way:

Wa(d? s* *P)*=4/3W(d? s *P) +2/3 W (d? s *P)*
+2W(ds*?D)*—3 W (ds *D)
— W(ds 'D)*— W(d* 'G)
—W(s*1S)*+-2W(d)+2W(s). (45)
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The formulas for the d* s* configuration always con-
tain terms that are likely to be perturbed by con-
figuration interaction. The s* 'S term is usually un-
known, and the applicability of the formulas is
limited by this also.

4. Comparison With Experiment

In all the formulas derived above, the observed
energies, W, are referred to the core with all four
electrons removed. Because ionization potentials
are often not accurate, these absolute energies may
not be well known. To check the theory of Bacher
and Goudsmit only differences between terms have
been calculated. Ionization potentials cancel in the
differences, and energies W can then be taken as the
relative-energy levels with respect to the lowest
term as zero; these are given in a Bureau Circular.?
In particular, the following two differences would be
unaffected by configuration interaction:

D, =W,(d® s °P) — W,(d® s °F)= W (d® *P) — W(d?® *F)
+W(d? s *P)— W (d? s *‘F)—W(d?* *P)+4 W (d**F)

(46)
Dy=W,(d*3D) — Wy(d? s °F)=6/5 W (d* *P)
+9/5W(d?® *F)—3/5 W (d* s ‘P)—12/5W(d* s *F)
—6/5W(d?**P)—9/5 W (d* *F)+3W(ds D)
+W(d)—W(s). (47)

In table 1 the calculated and observed values of
Dy and D, are compared. In the spectra of titanium
and zirconium sufficient data are available to com-
pare the D;-values. The calculated and observed
values are in close agreement, the calculated value
exceeding the observed value by 357 K in titanium
and by 293 K in zirconium. Separations of terms in
the same configuration are thus given closely by
the theory. By assuming that D; will be given with
the same error in more highly ionized spectra, it is
possible to calculate positions for some terms that
are not known experimentally, and use the values
obtained to calculate D), in these spectra.?>  Accord-
ing to table 1 the difference between the two terms in
different configurations is predicted very badly by
(47) for titanium, the error in ), being 6068 K.
However, the error is much less for the spectra of
the higher ionization of vanadium (error 1841 K),
and it 1s still less in chromium (error 635 K). The
error i1s also less in the homologous sequences of
zirconium (error 2296 K), where the nuclear charge is
much greater (Z=40) than in titanium (Z=22),
but the degree of ionization is the same. The

¢ 20 O) E. Mocre, Atomic energy levels, NBS Circular 467, vol. I (1949), vol. I1
1952).

2L The d2(3P)s P term is unknown in V 11 and Cr 1v; the caleulated positions of
these terms are given in table 1. If the errors in D; were to decrease rapidly as
the errors in D; do, then these calculated positions would be about 357 K too high,
and the calculated values of D: would be too small by about three-fifths of this
error, or 220 K. This is a small error compared to the total errors found in the
calculated values of D;. However, it is noted later that the errors in D; probably
will not decrease.



TasLe 1. Term separations in spectra with”d- and s-electrons | improvement from titanium to vanadium to chro-
mium is especially remarkable in view of the fact that
the errors in 1), form a rapidly decreasing geometric
Di=W(d45D)—W(d 3 s °F) sequence, whereas ), itself starts at a large positive
value and decreases to a twice as large negative value.

Di=W(d? s 5P)— W(d3 s 5F)

- & - - Racah * has pointed out that the energies would

Term ‘ be expected to vary more smoothly if the degree of

Observed values ionization (rather than the atomic number) were the

same in the different spectra. The results obtained

5D 22881 206 350 | 22138 by use of this empirical modification of the Bacher

g e e and Goudsmit theory are given in table 2. Except

B U SR " for the first spectra, the errors in calculated values

D 22160 | —2720 | —49670 | 16678 of D, are on the order of 100 K; part of the good
&P o452 | 11668 | 14324 0894 agreement must be fortuitous, however.

e L S L A partial explanation of the poor agreement ob-

s 4F 225 | 44343 | 104637 758 tained in the first spectra may be that the @ *P (of

&2 3p wwd || seem | e o] Sc 1 and Y 1) is perturbed by interaction with the

e e term dsd’f*P (in the spectra with 4d- and 5s-electrons,

‘ ) this has the added effect of making the calculated

G e R R R position for the @* *F too high, as seen from the small

- separation of the ¢**P and ¢*°*F in Sr 1). This effect

Caleulated differences can be estimated in the spectra containing 3d- and

—— 4s-electrons by calculating the position of @ *P so

X 2 | o | ~ioss I Noad0 that the error in D; will be 170 K as it is in the second

. et il spectra.  When this calculated position (40048 K)

— is used, the error in 1), is still very large (—5769 K).

. Racah has noted that the observed position of d* D

Di(cale)—Di(obs)| 357 | a(357) | «(357) 203 in K 1is about 5117 K lower than expected from the

SRS Shiohi: S GO st Cill{ 28 behavior of the difference between baricenters of the

22 (., Racah, Bul. Research Council Israel III, 290 (1954). I am indebted to
) X Professor Racah for making a preliminary copy of this manuseript available and
ﬂVuluos_m parentheses are calculated to make the error in Dy the same for all for discussing the relationship of his results to those of this paper. See also M.
gheetra with 3d- and 4s-electrons. A. Catalan, F. Rohrlich, and A. G. Shenstone, Proc. Roy. Soc. [A] 221, 421 (1954).

Tarve 2. Term separations in spectra with d- and s-electrons

} Spectrum

| o - N |
| |
‘ Term I II J 11T ‘ v ’ I IT ‘
| o B S i

‘ Observed values ‘
R N - o R - |
a4 5D ‘ (Ti) 28881 | (V) 206 (Cr) 350 (Mn) 537 ‘ (Zr) 22138 ‘ (N'b) 772 ‘

a3 8 5F 6721 2926 50020 | 112296 | 5460 3397

a3 s 5P 14055 13647 63261 | ... _____ 11103 11034
| Dy 7334 10721 13241 ‘ ,,,,,,,,,,,, 5643 7637 ‘
} D: 222160 —2720 —49670 ‘ —111759 16678 —2625 |
\ a3 4P (Sc) 36540 | (Ti) 9452 | (V) 11668 | (Cr) 14324 (Y) 32210 (Zr) 9824 \
a3 {F 33846 1085 336 554 29605 3273 |
| a2 s P 17969 9968 (56841) 2 119671 15385 7860 |
i @ s iF 11610 225 44343 104637 11277 758 ‘
2 3P (Ca) 48551 (Se) 12128 (Ti) 10661 (V) 13344 (Sr) 44662 (Y) 14048 |

a2 3F 43494 | 4909 242 419 (43989) 8429
‘ ds 3D 20357 105 38277 96547 18254 1193 ‘

daz2D [ (K) 21535 (Ca) 13687 (Se) 118 (Ti) 230 (Rb) 19355 (Sr) 14724
$28 0 0 25537 80379 0 0 ‘
! Calculated differences |
Dy 3996 10891 (341511 S0 ——— ‘ (6040) 8034 |
D, 12181 —2613 —49738 —112020 ‘ —3012 —2582 |

Errors
D (cale) — Di(obs) —3338 170 LG (o) I b (397) 397
| Ds(cale) — D2(obs) —9979 107 —68 —261 —19690 43

= From table 1 calculation.
b Values in parentheses calculated to make error in D; have the indicated value.

301746—54—5 43



d"~' s and d" configurations in Ca 1, Sc 1, T1 1, and
V 1, and this may explain the poor agreement ob-
tained in first spectra.

5. Relations Belween Radial Parameters

All formulas of the Bacher and Goudsmit theory
can be used also to calculate the matrix elements of
scalar operators; this has been noted in specific cases
in the discussions of formulas (21) and (22), and it
was also pointed out in BG. If the term values could
be expressed in terms of such matrix elements, and
if the zero-order functions were the same for all
configurations, then the formulas derived from (16)
to (19) (such as (46) and (47)) would be identities if
the W’s were replaced by matrix elements of these
operators.

The matrix elements of the operators are linear
combinations of a limited number of radial integrals.
For the Slater theory, these combinations are well
known (most of the formulas necessary for the pres-
ent paper are contained in I1). The observed sepa-
rations of terms in the same configuration are pre-
dicted well by the Slater theory (i. e., with an accu-
racy equal to that obtainable with the Bacher and
Goudsmit theory) if an empirical correction pro-
portional to L(L+41)* is added to account for the
polarization energy (see footnotes 8 and 9). Radial
integrals defined by zero-order one-electron func-
tions having the same n- and [-values must be con-
sidered independent of each other when in different
configurations to get this good agreement, however;
if the Bacher and Goudsmit theory were directly
applicable, all such integrals would have to have the
same value. The derivation of the theory, given in
section 2, shows how much of the observed variation
of these radial integrals will be accounted for by
the Bacher and Goudsmit theory in any given
approximation.

To illustrate, formulas for the W’s that enter into
(46) are given here according to the notation used
in section 2:

W(d? s °P) =A(d® s) —3Go(d?® s) —16a(d® s)
W(d? s °F) =A(d? s) —15B(d? s) —3G2(d® s) —6a(d® s)

W(d? *P)=A(d?) —16a(d?)

W(d F)=A(d*)—15B(d*) —6a(d)

W(d s P)=A(d? s)+ TB(d? s) — 26y (d? ) — 10a(d? s)
W(d s F) = A(d? ) —8B(d? §) — 26y (2 s)

Wi(d?
W(d& *F)=A(d?)—8B(d?) (48)

28 The L(L-+1) correction is represented as the matrix element cf the scalar
n

>

=1
ise[L(L+1)—nl(+1)]. Inthe present work, this, rather, than simply oL (L+1),
is added to each term; this change in the form of the correctioa is compensated by
a change in the value of the constant parameter A. The modification has been
made so that the relationships obtained later between the A-values in different
configurations will have a simpler form.

SP) = A(d*)+ 7B(d*) —10a(d?)

operator 2« li:l;» The value of this for a term in the [7sk configuraticn
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If these values are substituted in (46), then the latter
is an identity if the /s and «’s in different configura-
tions are assumed equal. Relation (46) will still be
satisfied if the following two less restrictive conditions
hold:
B(d? s)=B(d®) +B(d* s) — B(d?),
a(d® s)=a(d®) +a(d* s) —a(d?). (49)
It is sufficient for F—2/3a to satisfy a relation of
simrilar form for (46) to be satisfied, but if separations
of all pairs of terms in the @®s configuration are to be
correct, then both relations must hold and in addition
the following two:

C(&® s)=C(d)+C(d? s) — C(d?),

-

Gy (P s)=2G,(d? s) — Gy(ds). (50)
Formulas of this type can be derived easily by
inspection, and there is no need to consider fractional
parentage. To obtain the second equation in (50),
for instance, note that in (18) the combination of a
d- and an s-electron (needed to define ) occurs three
ways in Wy (d® s); it occeurs two ways in each of three
possible selections P? that contain the s-electron (in
the d? s configuration); it occurs only once in each of
the three possible selections /£, that contain the
s-electron (in the ds configuration). As far as the
relation for the parameter @, is concerned, this direct
interpretation of (18) leads immediately to (50)
(multiplied by a factor of three). As F, (', and «
are all defined by the combination of two d-electrons,
a similar derivation leads to the same form of equa-
tion for all three of these parameters, and this
equation is the one represented by (49) and the first
equation of (50). In this way it can be shown that
the Bacher and Goudsmit second approximation
(relation (18) with n=4) will predict correctly the
separations of terms in the same configuration if the
following relations hold between the parameters:

B(d9=2B(d* —B(@) (51)
B(@® s)=B(d*) +B(& s) — B(d) (52)
B(@ ) =2B(&* s)— B(d?). (53)

Three similar relations must be satisfied by the (’s
and three more by the o’s. Also, 1t is necessary
that

-

Go(dP s) =2G(d? s) — Gy (ds). (54)

The derivation from (18) fails to bring out the fact
that the two-electron parameters must have a linear
variation if the formulas are to be valid. In general, a
two-electron parameter defined between electrons
with orbital angular momentum / and !’ in the
configuration v will be specified by (v)G(l'). Ac-
cording to the derivation with the second series of (9),
only a first-power variation with the number of



electrons in y can be accounted for by the Bacher
and Goudsmit second approximation. In particular

then, any one of the parameters R, (| « must
satisfy a relation of the form
(d %" G(dd)=A+rB+EkC. (55)

It 1s easy to verify that (51) to (53) are satisfied
when a formula of this kind is applicable.

It is possible to generalize (55) to include all
similar spectra rather than just those of the ions
of the same atom, in two-, three- and four-electron
spectra. If ¢ is the degree of ionization, this general-
ization will have the form (d"=*s*)G(dd)=A-+rF+
kC4q¢D. The difference D; defined by (46) (and
equal to 15F—10a according to the linear theory)
should also be expressible by a formula of this type.
Racah 22 has fitted 34 experimentally observed P-F'
differences in spectra with 3d- and 4s-electrons with
a mean error of 340 K by use of the formula

b}

D, =26794-853r+1334k+3158¢—111¢%.  (56)
This formuia is adjusted to spectra with eight
different ionizations, and without a quadratic term
the mean error would be increased to about 520 K.
According to this formula, the differences D, cal-
culated from (46) will be too great on the average
by about 220 K. Modifying the theory so that
spectra with the same ionization are utilized tends
to eliminate this systematic error. This could also
be accomplished by using the W; approximation.

The original series (9) will often have to be satisfied,
for a given v, by more than one value of «, and this
leads to the conclusion that the ratios of similarly
defined radial parameters in different spectra of a
given element should be equal. In particular, the
following ratio must be constant in configurations
with d- and s-electrons:

B(d" s")
Ol &)

=constant.

(57)

This is not really a necessary consequence of the
theory developed in section 2, however, as the series
(9) can be reinterpreted in terms of radial parameters
that independently satisfy relations such as (55).
When irrational roots are considered, it is shown in
section 7 that (57) is a necessary condition for con-
sistency of this interpretation, in terms of a linear
theory, with a direct application of the method of BG.

In the same way that the differences such as (46)
were replaced by the formulas (51) to (54), the
differences similar to (47) can be replaced by rela-
tionships between the A values. The Bacher and
Goudsmit second approximation will give the sepa-
rations of terms in different configurations correctly
if the following two relationships between the A’s
are satisfied:

A(d) — A(d ) =3A(d®) —3A(d2 5) —3A(d2)
+3A(ds)+A(d)— A(s)

5

(58)
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A(d? §) — A(d? %) = A(dP) + A(d? §) — 2 A(ds?)

—2A(d*)+A(ds) + A(s*) +A(d)

— A(s) +2G,(d? s) —2G,(ds)  (59)
By redefining the A-values suitably,** the dependence
on (i, may be omitted from (59); equations (58) and
(59) may therefore be regarded as two relations
between the differences A (d"* ") —A(d™*" &1, In
the second approximation, the parameter A must
satisfy a cubic relation, and these differences then
satisfy quadratic equations having the general form

A(d* s — A(d7*! Y =D+ Ek+ Fr+ Gkr+ Hr?.
(60)

The £ dependence is omitted because it adds nothing
extra when £ has only the two values 0 and 1. It is
easy to verify that (58) and (59) are satisfied when
a formula like this is applicable. This formula can
be generalized to apply to all similar spectra in a
manner similar to that used for (55) if the “A” is
suitably defined in the spectra with more than four
electrons. If third (or fourth) power terms were
important, a constant (or linear) error would result.
The errors of I, in table 1 change too rapidly to be
explained in this way, however.

In the one-electron, two-electron, and three-
electron spectra considered in section 4, there are
five experimentally determinable differences between
A-values, and the five unknown constants in (60)
can be evaluated from these observed values. Simi-
larly, the three constants in (55) can be evaluated
from observed separations of terms in the two-
electron and three-electron spectra. 'The Bacher
and Goudsmit second approximation is then equiva-
lent to using the formulas obtained in this way to
extrapolate values in the four-electron system.

This equivalence has been verified by using all
available experimental data in titanium and zir-
conium to evaluate the radial parameters for all
spectra with least squares.?® The results confirmed

24 The parameter Gz appears in (59) because an s? subshell isneglected in defining
the A-values; thus the formula for a @2 s? 3F term would have the same form as
the last relation in (48). If the effects of the s-electrons in the s? subskell were
explicitly expressed, as done when only a single s-electron is present, then
2G5 (d? $?) would be subtracted from the formulas for all terms in the d2 s? con-
figuration. This has not been done since the effect would be included in A (d? s2)
if the parameters were evaluated by least squares and G2(d? s?) could not be
evaluated. This applies also to Ga(ds?). The G’s that cannot be evaluated
satisfy the relation @o(d? s2)—Cs(ds?) =CGa(d? ) —Ga(ds) =CGa(d? §) —Ga(d@ ).

25 The a !F term of Tir and the a 1S and ¢ 8F terms of Zr 1 were excluded. The
a 'F term is probably not real. It was predicted 2000 K lower than observed when
it was not included in the least-squares calculation. Aslong as it was included, it
and several cther terms were in error by 500 to 600 K, regardless of uncertainties
in effects of ccnfiguration interaction. It is not well-established experimentally,
as only three weak lines were observed; one strong line used to identify it is a
blend (H. N. Russell, Astrophys. J. 66, 283 (1927)). The a 1S term was calculated
8000 K higher than chserved; as 1S terms are always hard to establish, it is fairly
certain that this term is also unreal. The ¢ 5F term was calculated 5000 K higher
than observed; althcugh highly unlikely, it is not certain that consideration of
of configuration interaction could not explain the result. However only one strong
transition has been observed from each level of this triplet; five other confirming
transitions are all weak (C. C. Kiess and H. K. Kiess, BS J. Research 6, 621 (1931)
RP296). TheaD,b 3C,and d 3P terms in the d4 configuration of Ti rare observed
much closer together than called for by the theory; this may be because ¢f con-
figuration interaction, or.it may represent a failure of the W2 approximation.
In addition to the experimental values listed in Atomic Energy Levels, the re-
cently located terms d 2D of Zr 11 and the a 1S and b 1S terms of Zr 111 (C. C. Kiess,
J. Opt. Soc. Am. 43, 1024 (1953) )weze also available. Iam indebted to Dr. Kies
for furnishing these data before publication.



the conclusion already obtained from the limited
amount of data utilized in table 1. In all spectra
of both elements, the terms could be fitted with
absolute errors less than 400 K. The parameters
obtained could be adjusted to fit the relations con-
tained in (51) to (57) without significantly changing
the original agreement. This verifies the conclusion
that the separations of terms in the same configura-
tion are given by the Bacher and Goudsmit method
with an absolute error less than 400 K in titanium and
zirconium. The discrepancy in calculating A(d*)—
A(d? s) from relation (58) was found to be 6560 K
in titanium and 2086 K in zirconium. These values
are approximately the same as the errors found for
D, in table 1, which verifies the conclusion that
calculated separations of terms in different configura-
tions may be considerably in error.

If the lonization potentials are accuratley known
the aboslute values of the A’s can be calculated
(rather than just the differences (58) and (59)),

A(d)=4A(d®) —6A(d>)+4A(d)+ 8 (61)
A(d® s)=A(d?)+ 3A(d? s) —3A(d?)
—3A(ds)t+ A(s)+3A(d)+ s (62)

A(d? s2)=2A(d? s)+ 2
2A(d)+2

A(ds?) — A(d?)
A(8) — 26, (d2)+ 2Go(ds)+ 5,

4 A(ds)— A(s)
(63)

where
o=I,—3I+3I,—1I,.
The ionization potentials appear only in the combi-
nation §; /, is the principal ionization potention of
the four-electron spectrum (771 1, for instance); 7,
is that for the three-electron spectrum (as 71 11), ete.
If (61) to (63) are utilized, errors in the theory will
not cancel as they may in the differences (58) and
(59). In titanium the error of (61) in calculating
A(d) is found to be 24130 K, and the error of (62)
in A(d® s) is 1757 K; on the other hand, the corre-
sponding errors in zirconium are —2100 K and —4186
K. The inconsistent behavior of the errors in these
two calculations probably arises from the well-known
need for better ionization potentials, particularly
in the one- and two-electron spectra.

6. Weak Configuration Interaction

The proof of the method of Bacher and Goudsmit
is established with second-order perturbation theory,
so that the theory is not directly applicable if con-
figuration interaction is too strong to be evaluated
with perturbation theory. However, it may not be
directly applicable even if the spectrum has weak
configuration interaction that can be evaluated with
perturbation theory.

For example, consider interaction between terms
of d™ and those of d"~! s and assume that second-order
perturbation theory can be used. The perturbation
of, say, a d® *G term by a d* s *G term is evaluated
in terms of a characteristic interaction parameter
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associated with the ¢* and @* s configurations; this is
designated H,(d*—d?* s) in agreement with the nota-
tion in (80) of I11. For arbitrary n, there is a similar
parameter defined between d” and d"! s. Partly
with the help of table XX of III the following two
perturbations are evaluated:

50[Hy(d*—d*s))?
‘/‘[7«{3 2G)_ ‘Iv(([?-’x 5
|40 [Ho(d?—ds)]?
W(d*'D)— W (ds D)

A(d32G) = (64)

G)

A(d*'D)—= (65)
By considering terms marked with asterisks in (28),
it follows that configuration interaction between d”
and d"' s will be correctly accounted for by the
Bacher and Goudsmit theory if the following relation
exists betv een the two perturbations (64) and (65):

68/5A(d° 2G) —3/7A(d2 D) =0. (66)

According to the perturbation calculation used by
Bacher and Goudsmit, the energy difference W(d?
G)—W(d* s *G) would equal the difference W (d?
D) —W(ds 'D) and the parameter Hy(d*—d? s) would
equal H,(d*—ds). 1f these two conditions held, then
(66) would clearly be satisfied. Relations similar to
(66) can be found from other formulas (such as (29),
(36), and (37)). By assuming that all energy differ-
ences W(d" aSL)— W(d"* sa’SL) are equal, and all
parameters HH,(d"—d" "' s) are identical, matrix ele-
ments of configuration interaction can be calculated
with the Bacher and Goudsmit theory by solving a
set of simultaneous equations, although such a pro-
cedure would not be the most practical. Similar
considerations would apply to any pair of configura-
tions; in particular, the interaction between d" s and
d™' §* is interesting because the parameter defined
between these two configurations would be equal to
the parameter defined between d* and d" ' s accord-
ing to this direct application of the Bacher and Goud-
smit theory.

Alternatively, (66) could be satisfied if the para-
meters Hy(d®*—d? s) and Hy(d*—ds) accidentally had
the same ratio as the square roots of the energy
denominators in (64) and (65). To get consistency
for all formulas similar to (66) that could be derived,
it 1s necessary that a representative average energy
difference exist that approximates separations of
terms with the same S- and L-values in the two
configurations (in many cases no average value will
adequately represent the data). An easily defined
value for this average is the difference in the A-values
of the two configurations. In table 3 calculated
H,-values and differences between A-values have
been collected. In a given atom, the differences
between A-values in this table are greater the
greater the ionization; I, is also larger in the spectra
of higher ionization, according to the results obtained
for vanadium.

An extension of this argument indicates that the
polarization energy arising from interactions with
configurations in which only one electron is excited
may be partially included in the second approxima-



TarLe 3. Average term separations and interaction paramelers

: ,,,,,,, S :
Titanium Vanadium ‘ Chromium Zirconium ‘
Al@—A@B) | H | A(@—A@B) ! Hy | A(@—A®@) | H: | A(a)—A®B) ‘ I
A(s)—A(d) 80150 147730 227200 37508 \
A(ds)—A(d?) 34470 92460 162720 16700
“A(st)— A (ds) 20304
A(d? s)—A(dd) a —896 a 42102 103100 b —1260
H, a 172 b 387
A(ds?) — A (a2 ) a 16980 b 3600
A(ds 5)—A(dY) —17140 2 6332 52424 —13230
) a 153
A(d2 ) — A (d8 5) = —13103 —11700
A(d $)— A () ¢ —21335 o 11875
I ¢ 150
A(ds 2)—A(d s) o —8759 30400 ,
1 ¢ 106 | -
a A. Many, Phys. Rev. 70, 511 (1946).
b O. W. Ufford, Phys. Rev. 44, 732 (1933).
¢ A. Schweizer, Phys. Rev. 80, 1080 (1950).
tion of BG. However, it is unlikely that the inter- | and found to have the form
action parameters would behave exactly as required
so that it might not be well accounted for. \/[—%D A+7B+7C 3v21B
is clear from table 3 that in the titanium spectr = o , : 67
It) SC](& f b 3 tll(t/ the Sp ctra Z‘D 3‘2113 41+3B+30 < )

of moderate lonization, the Bacher and Goudsmit
method would not account for the configuration
interaction. Kven though the interaction is weak
enough to be evaluated with second-order perturba-
tion theory, the calculations discussed in section 5
show that errors of 300 to 700 K would be introduced
into formulas (28), (29), (36), and (37). Whenever
the average term separation is small or negative,
which is the case in Ti 1 and Ti 11, no set of values for
the interaction parameters can produce agreement.
When the configuration interaction is so strong that
perturbation theory cannot be used, the errors are
even larger. KFor zirconium, errors in excess of 1000
K result when the formulas are applied directly.
The differences in A-values are all large and positive
in chromium, so that the configuration interaction
would probably be well accounted for in the second
approximation; in this case, however, the interaction
is weak and could be neglected in the linear theory.

7. Irrational Roots

This section deals with one of the simplest exam-
ples in which irrationality of the energy levels plays a
part. As a preliminary, the two *D terms of the *
configuration are discussed.

The determination of the energy levels of the two
2D terms of d® was first carried out by Ufford and
Shortley.?® They chose two mutually orthogonal 2D
eigenfunctions, which they characterized as a *D and
b *D; in the more recent notation of I1I these same
two eigenfunctions are designated as %D and %D,
respectively.? In terms of this choice of eigenfunc-
tions, the electrostatic energy matrix was evaluated

2% C, W. Ufford and G. H. Shortley, Phys. Rev. 42, 167 (1932). See alsc, E. U.
Condon and G. H. Shortley Theory of atomic spectra, p. 233 (Cambridge, 1951).

27 In IIT the classification of terms in d» is carried out by introducing the senior-
ity number; this is given as the prefixed subscript in the notation above.
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The energy eigenvalues of the two %D states of d* are
the characteristic values of this matrix; these values
(as well as the observed energies for the 2D terms)
are specified by W(ED') and W{D~).

" The matrix S that diagonalizes (67) will have the
orm

Y (—vl (Yz Y2 2

S= _(72 ('vl (C/1+n2*1)7 (68)
el (WEDY) 0

A K 1— .
SMS < . 11‘(20-)> (69)

The elements of S can be specified by the condition
for the vanishing of the nondiagonal elements of
SMS,

[AB(d*) +40(d*)]C10s— (C2— C2)3y21B(d*) =0. (70)

Although W(ED) and W(ED) have no physical reality,
they will be wused subsequently to indicate the
energies that would be associated with the diagonal
elements of the matrix (67). The following formulas
are obtained from (69):

WED)=0 WD) +C; WD), (71)

W(ED)=C: WD)+ Cz W(D-). (72)
If the polarization energy can be accounted for with
the L(L-1) correction, then all the preceding dis-
cussion will still apply even when polarization energy
is considered if the constant A in (67) is suitably
redefined.

By direct application of the methods in section 3,
the energy for, say, a d* 3G term, can be expressed in



the form

Wa(d* 3G)*=10/21 W(d? 2D)* + 3/4 W (d? 2F)*
+4/3W(d?® *F)--99/140 W(d?® 2G)*
+11/15W(d?2H)—11/10 W(d? *P)
—9/14W(d? 'D)*—29/10 W (d* °F)
—19/14W(d?'G)+4 W(d). (73)

If the linear theory is valid, W(ED) in (73) can be
replaced by the wvalue (71); the approximation
obtained in this way will be specified by a prime. In
the exact application of the Bacher and Goudsmit
theory, (71) can still be used to replace W(d* 3D),
but ) and C, are not necessarily specified by (70).
Also, instead of evaluating W(d® 3D ;d*) which was
done in deriving (73), it is necessary to evaluate
W(d@|C, 2D~+C, *D*];d%. The following is the

correct formula which is obtained in this way:

Wa(d* 2G)= W i(d* *G)— e(d* *G) (74)
e(d*3G)=C% C2[8/21 W(d*'S)—2/7 W (d? 3P)
—50/147 W (d* D)+ 2/7 W (d* *F)

—o/a9 W(d* Gy — & Cffg_la@ [21W(d? °P)

—15W(d? 'D)—21 W(d? *F)+ 15 W(d* 'G)].

(75)

Replacing the d* energies by their Slater formulas

(including the L(L-+1) correction) leads to the

following approximate form for (75):

e(d* 3G)=10/21 0, C:{ [4B(d*+40(d?) C, C,— (C?
—0)3y21B(d) } (76}

It follows that when C; and (), are determined from
(70) then (74) will be equivalent to (73) if the ratio
of B to C'is the same in @ as it isin d*. To establish
the general correctness of the method of applying
the Bacher and Goudsmit theory which was devel-
oped in section 5, it is necessary that in general the
ratios of similarly defined radial parameters be the
same in all spectra of a given atom.

It is well known that the ratio of B to C is very
nearly constant. Values of this ratio, obtained
mainly from the calculations discussed in section 5,
are given in table 4. Because of the large errors that
may be present in the theory (£400 K), the values
of 7., obtained by fitting the observed data exactly,
are not well defined; to a lesser extent the d* and @° s
configurations also have too few terms to define 73
precisely. The data as a whole (giving strong weight
to the two well determined 7s-values) support the
conclusion that 7, is a slowly decreasing function of
n. The exception apparent in titanium is less
noticeable if the irrational roots are omitted from
the least-squares calculations for 3d® and 3d® 4s
parameters (the error in fitting the irrational terms
1s then excessive, however).

To estimate roughly the effect that could result
from inequality of this ratio, (76) can be put in the

following form with the help of (70), and by use of an
approximate value of » equal to 0.29:

e(dt3G)—40/21 (”%’") C2 C2 O(d)
3

—=1.16(rs—r) O(d). (77)

In Ti 11, C(d*)=2505 so that if »,—r,=0.05 then
e=145 K. This is likely to overestimate the max-
imum error that can result, yet within the accuracy
of the theory it probably could be neglected. IHow-
ever, the same treatment for the ¢' 'F term shows
that e will have exactly 3 times the value (75), and
for the d* *D term the error will be 2.4 times this
value, so it is not certain that this effect will always
be negligible. The ratio G5/C need not be constant
(it varies considerably, from 0.4 to 0.8 usually).

TaBLE 4. B/C ratios
7x iS the ratio of R(d») to C(d»), P(dr s) to C(d»s), or P(d» s?) to C(dr s?), accord
ing to whichever definition has meaning for the spectrum specified.

i
[ T2 ‘ r3 ‘ 75
IR | 0.289 ‘ ¢ 0.343 (0.319)
Ti 1 . 290 . 317 (0.290) ‘
' 1o 2201 |
Fe mra 0.271
Zr 1 | .304 .279
Zr 11 . 289 . 287
Zr 111 . 297
Mo1b ‘ 5257

a See footnote 8, page 38. b See footnote 3, page 35.
¢ Values in parentheses are calculated with irrational
roots omitted.

Though the method of BG introduces new non-
linear effects if the parameter ratios are not equal,
these effects would probably represent errors in the
method. Because of this, and because the ratios
are so nearly equal, 1t is not expected that a correc-
tion with this wvariation will produce improved
agreement when added to the linear theory. How-
ever, irrational terms often cannot be fitted by the
linear theory with the accuracy that is obtainable
for rational terms * and some additional correction
of this form may be needed. This correction would
not change the agreement obtainable for the rational
terms of d*, but it would introduce corrections into
the irrational terms. These considerations may be
less academic for spectra with p- and d-electrons
where there are more parameter ratios that may
differ, and where most of the terms are irrational.”

I am indebted to C. C. Kiess for suggesting the
problem on which this work is based, and I thank
also G. Racah and C. W. Ufford for their comments
on the original manuscript of this paper.

28 R. E. Trees, Phys. Rev. 85, 382 (1952).

20 Meshkov has introduced a method which combines the Slater theory with
a Bacher and Goudsmit first approximation, and has obtained improved agree-
ment for the 3d2 4p configuration of Ti 11 (footnote 18). A simple extension of
the linear theory to include correlations between p- and d-electrons may explain
this improvement, but the possibility that new types of crorections are needed
to explain it, cannot yvet be excluded. His theory also leads to better agreement
than is obtainable with the Slater theory alone, in the d? configuration of V 1x
and the d¢ configuration of V 11 (Phys. Rev. 93, 270 (1954)). In the d* configura
tion his final mean deviation of 42663 K is still rather large; this may be because
there are a large number of irrational terms present in this configuration or
because configuration interaction was neglected. See also S. Meshkov and C.
W. Ufford, Phys. Rev. 94, 75 (1954).

WasHINGTON, January 8, 1954.

48



	jresv53n1p_35
	jresv53n1p_36
	jresv53n1p_37
	jresv53n1p_38
	jresv53n1p_39
	jresv53n1p_40
	jresv53n1p_41
	jresv53n1p_42
	jresv53n1p_43
	jresv53n1p_44
	jresv53n1p_45
	jresv53n1p_46
	jresv53n1p_47
	jresv53n1p_48

