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The Field Generated by an Arbitrary Current 
Distribution Within a Waveguide 

By J. J. Freeman 

Formulas a re deri ved for the electromagnetic field generated by an a rbi t ra ry current 

d ist rib ut ion wit hin waveguid es of rectangular, circular, and coaxia l cross Rect io ns. These 

formulas are ob ta ined by genera lizing a na logous formulas obtained in a previous paper 2 for 

cavities of th,e same cross sectio n. As a check on t he formulas, it is show n t hat t he field 

from a n axially d irected dipole w ith in a circular guide reduces to t he free space valu e a t he 

radius increase indefi nite ly. 

1. Introduction 

In pursuing cer tain inves tigations, it was found 
necessary to derive explicit expressions for th e 
elec tromagnetic field generated by an arbitrary 
curren t distribut ion wi thin a waveguide. Since 
the corresponding problem fol' a cylindrical 
cavity h ad already been worked ou t in a previous 
paper (see foo tno te 2), h encefor th designa ted as 
P aper I , the res ul ts of P aper I were gener:alized to 
apply to a waveguide of corresponding cross sec­
t ion by the simple expedient of allowing the 
leng th of the cavity to become infinitely large. 
Although the same formulas may be ob tained 
more directly by a differen t method,3 th e presen t 
paper derives th ese formulas using the above 
mentioned limiting process since: (a) no explicit 
gener al solution of the problem has yet been 
published ; (b) although the expedient of first 
using a finite cavity for various computa tions 
involving electromagnetic fields, and t.hen allow­
ing the dimensions of the cavity to become 
infinitely large has been widely employed , the 
validity of the limiting process is not en tirely 
obvious, and the following derivation throws ligh t 
on this process. 

To avoid repetition it will be assum ed that 

I T his paper is a revis ion of Report CRPL-9-3, issued under the same tille 
(Feb. 28, 1947) . 

' J . J Freeman , T heory and design of a cavity atteouator, J . Research 
N BS 40, 235 (1948) RP1868. 

' J . J . Freeman, T he noise spectrum of a diode with a retarding field , J. 
R esearch NBS 42, 75 (1949) R P 1953 (see appendix I ). 
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P aper I is ava ilable to the reader , and the res ul ts 
con tained therein will be u tilized without fur ther 
comment. MKS uni ts arc employed . Al though 
it was ass umed in Paper I that the medium within 
the cavity was lossless, and that the wave number, 
k = w..JJ1.€ , was real , th e resul t are still valid for 
compl ex values of k . Accordingly, in the follow­
ing, we assume th at the medium has conductivity 
CT , so that 
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FIGUl~E 1. Cylind1'ical cavity. 

II. The Circular Cylindrical Waveguide 

Consider a cylindrical cavity, of length d (fig. 
1) containing current of volume density J (r /), 
wher e r/ designa t es the position vector of J , and 
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where the time variation, eiwt is omitted. In eq 
15 and 21 , Paper I , it was shown that 

ETE = jWIL to tl A !m J J (r ' ) · m (r ' ) ti 
. 17r Z' . 17rz 

smT sm ([ 
12 2 

02_k2 + _ 7r_ 
d2 

where I , m, n ,=O, 1, 2, ... and, 

17r . 17rz' 17rz 
00 d sm - z cos d 00 ::s G 12 2 + p (r ' )n (r ) ::S 

1=1 , 2 7 2-+ 7r 1= 1 
1\ - Ie -(J} 

(k2 127r2) 17rZ' 17rZ} - - cos - cos -
d2 d d d ' 

( A 2 _ k2 + l~:) (1 + o~) T 

I 0, for 1"",0 
00 = 

1, for 1= 1 

(1) 

)(2 

In the above, dT' rcpresents an element of 
volume containing J , and r is the position vector 
of the point of observation. The m , n, p , 0, and 
A in eq 1 and 2 have the identifying subscripts 
mn implied but omitted. Also, the even, odd 
designations (:) are omitted for convenience, but 
are implied. For the case of a cavity of circular 
cross-section, of radius a, (fig. 1), 

m e _ n (-sin no) J (0 ) . (COS no) oJ' (0 ) . 
~m -r cos nO n r [ 1- sin nO n r [ 2, 

(3) 

where il, iz, and ia are unit vectors in the directions 
of increasing 1',0, and z, and 
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f3 n= 1 for n = O 

f3 n= 2 for n""'O. 
(4) 

Vnm h · J '( ) ° o= onm= - ' w ere n Vnm = . a (5) 

Also , 

n~ = -AJ '(Ar) (c?sno) i +( sin ne)~ I n(or) i 
nm " sIn nO 1 - cos nO r 2 , 

(6) 

p~ = (C?S no) J (Ar) i 
nm sin nO n 3, 

(7) 

To generalize eq 1 and 2 to the case of an in­
finite waveguide, with a conducting plug at z= O, 
we let d~ 00, and evaluate the lim it of the infinite 
summation over the index I as d~ co. 

Consider the sum over I in eq 1 , multiplied by 
the factor l id. 

(10) 
where 

g2= k2_ 02 • 

The factor l id enters because it is contained in 
the normalizing factor A~m' (eq 4) . Let ~= I7rld . 
Then 

S - I?d ~ sin~z' sin_~ l=~ "" sin~ z ' sin~z ~t 
1 - 1 ~.L..J t 2 2 ~ 2.L..J t ? 2 <;; , 

l=- oo <; - g IT ~ <; - fl 

since ~l= l. As d~ 00, ~~~O, and the sum be­
comes in the limit the in tegral, 

~JOO COS Hz-z' )-cosHz+z' ) d~. 
47r -00 e - qZ 

Since 

f oo sin ~~z-;' ) d~ = 0, because the sin is an odd 
-00 - g 

function, 

(11) 

Let gl and g2 be the two square roots of g2= P _ 02, 
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which lie in the positive- and negative-imaginar y 
parts of the complex plan e, r espectively. Then 

(12) 

For frequencies above cut-off , when w2fJ.~ > (l , 

(13) 

where 

and 

WfJ.(J 
(I5) ta n if; = 1 2 <21 · W fJ.~ - u 

For frequ encies b elow cut-off, when W2fJ.~< 02, 

(10) 

Co nsider 

ej~(z-z' ) 
Sin ce, fo r z>z' , /:2 2 

<; - g 

vanishes over the positive-imaginary par t of the 
plan c, as 1 ~ 1--7 ro, the integral can be evalu aLed by 
taking the res idue aro und the pole g, (fig. 2). Thu , 

f a> eJ!(z-z') 27rje Jg ,(z-Z') 

-a> (~+ g) ( ~ - g) d~= 2rlt . 

eJ!(Z-Z' ) 
For z<z', e- g2 vanishes over th e J1 egaLive-

imaginary half-plane, as 1 ~ 1--7 ro, and the integral 
can be evaluated by taking the residue aroun d the 
pole (fig. 2) g2. Thus, for z<z', 

or 

f a> eJ~ (z-z') _ . e Jg2(Z-Z') 

~ d~--- 27rJ ------;2:---
-a> <; -g g2 

Q 
Q 

27rje - Jg ,(Z-Z') 

2g, 

(1 7) 

F 1GU HE 2. Contollr of integmtion path in complex plane. 
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F' GU RE 3. Contour of integration 1Jath used by SO?n11w ljeld. 

If 0" = 0,· instead of integrating along the r eal 
axis of the s-plane it b ecomes necessary to indent 
the path at gl and g2 as shown in figure 3, obtaining 
th e contour that Sommerfeld 4 used in th e complex 
integral representation of the Green's function for 
the one-dimensional wave equation. 

From eq 11 , one r ecognizes that 8 1 r epresents 
two plane waves traveling in the +z-direction 
(for z>z' ), one baving i ts source at z=z', and the 
other at z=-z'. Also, ince m is a vector lying 
in the pla ne perpendicula r to the z-direction and 
sin ce only transversc elemenLs of curren t m ak e a 
co nLribulion to the field in eq ] , Lhe firs t in tegral 
in eq 11 r epresent the contribution due to a 
currenl clem ent at z=z' , and th e second integral 
represents the con Lri bu tion of its elecLrical image, 
ituaLecl at z=-z'. BoLh element a ncl image are 

necessary to insure the vani hing of the tangential 
component of E at z= O, which corresponds to 
th e case of a cond uct ing plug aL z= O. On the 
other h a nd , if Lh e guid e is infiniLely 10n o- in th e 
negative z-d irec ti on, th en the conLribution of th e 
im age a t z= - z' m ust be omi tted, a nd Lhc second 
integral in eq 1 1 musL be neglec ted. 

Since the case of fl perfec tly co nd uct ing plug at 
Z= O may b e easily derived from Lhe case of an 
infinite guide by superposing the eleetrical image 
with r espect to the plane z= O, the following is 
r estricted to the case of a g uide extending to 
infinity in both directions . 

Accordingly, from eq 11 and 17, neglecting lhe 
contribution from the image, 

8 =~ e jy,Jz-z' l (z>-z' ). 
1 4g1 -< (18) 

Substituting oq 18 in eq 1, 

- WfJ. a> a> (311 J J . m (r ' )ejg,IZ-z ' l m (r) , 
E TE= - ~ ~ - ( 2 2) J 2( ) dT 21r n=0 m = l g l vmn- n n Vnm 

(z:<z'). (1 g) 

• A. Sommerfeld, Deutsche Matbematiker- Vereinigung Jahresbericbt, 
21, 309 (1912). 
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The various summations over the index l in 
eq 2 may likewise be' extended to the case of a guide 
extending to infinity in the positive z-direction, 
with a conducting plug at z= O. By omitting 
contributions to the field arising from the electrical 
image with respect to the perfectly conducting 
plane at z= o of current elements within the guide, 
the boundary conditions are changed from the 
case of a perfectly conducting plug to the case of a 
guide infinite in both directions. Then, if one 
computes the limiting values of the summations 
by the method of residues and omits the contribu­
tion from the image one obtains: 

(20) 

(21) 
l7r . l7rz' 

1 "' d Slll a l7rz 1 
- ~ 2 2 cos = =F - e + Jh 'lz- z' l (z:< z') 
d 1- 0 "-~_h2 d 4 

d2 

(22) 

(23) 

where, for brevity, 

(23a) 

If eq 8,18,20, 21, 22, and 23, are substituted 
in eq 2, one finally obtains 

[hl~2 n (r ') n (r ) ± jn (r' )p (r ) =F jp (r' ) n (r )+ 
U mn 

U
2 

] } ~7:2 p (r ') p (r ) e+jh>!z - z' [ dT' for z:<z' . (24) 

Here hi is that square root of lc 2 _ }..2 that lies in 
the positive-imaginary half-plane . 

As a check on the derivation, it will be shown 
that waveguide eq 19 and 24 reduce to the correct 
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yalue for the fr ee space field , as the boundaries 
recede indefinitely, 

Consider a current filament of length dl , carry­
ing current I parallel to the axis of the guide 
and situated at the origin of coordinates. Then 
ETE= O, and eq 24 becomes , 

since only the symmetric modes for which n= O 
are excited, arid J is normal to n . 

Since norn=- }"J~( "r) i l = -:rJo("/')i l' from eq 6, 

and Porn= J o(}..r)i3, from eq 7, eq 25 becomes 

- Idl "' 
ET.w-= ---2 ~ 

27rwea m=1 

Equation 26 may be rearranged into the follow­
ing more convenient form: 

Consider the sum 

There exists an integer M such that for m > M , 
U om will be large enough so that Jo (uom) may be 
replaced by its asymptotic valueS, 

(29) 

Since U om is the m th root of J o (u om ) = 0, eq 29 yields, 
for m > M, 

U om = 7r (m+ 3/4), (30) 

Accordingly, 

J i(uom ) = 2/7r u o;", m> M. (31 ) 

Equation 28 may then be separated into two sums, 

' J. A. Stratton. Electromagnetic t heory, p . 359, eq 18 (McGraw.HiII Book 
Co ., Inc., New York. N. Y .. 1911) , 
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F 6uom d' U "m rom eq 30, 6m=--, an since }.. = - , 
7r a 

'(33) 

Accordingly, eq 32 may be rewritten as follows: 

(34) 

Now let a---">oo. As a increases without limit 
the first sum in eq 34 approaches zero , 6}..---,,> 0; the 
second summation becomes, by definition, an in­
tegral; and the lower limi t of integration becomes 
zero. 

Thus, as a---"> 00, 

(35) 

Substit,uting from Ceq 23a), 

I . jhl = - }..2_ 1c 2 

into eq 35, one obtains 

(36) 

wher e that square root is to be taken whose r eal 
part is positive. 

But 

ejkR 

is the well-known 6 expansion for -if wher e 

R = .../r2+z2• Accordingly , eq 27 becom es 

. • ? (jldl eikR • ) 
E1'M = (grad dlv + Ic-) 47rWE R l 3 ' (37) 

which is the field due to a ClUTent element I clL i3 
in free space. 7 

OJ . A. S tJ'~ tton , Electro mag neti c thco l'.v, p. 5 76, eq 17 (l\lCGl'fiW­
Hill Book Co .. Inc., New Yo rk , N. Y. , 1941) . 

' J . A. Stratton , E l ectrOlllngnet ie t heo ry , p. 431, cq 44 (McG raw­
Hill Book Co., Inc. , New Yo rk , N. Y., 1941 ) . 
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III. Rectangular Cross Section 

The same general formulas (rq 1 and 2), hold 
in the case of a cavity of length c, and of rectangu­
lar cross section, whose x and y dimensions are a 

c 

/' 
/' 

/' b 
a. 

y 

FIGURE 4. Cavity of rectangular cross section. 

and b, respectively, with the origin at one corner 
(fig. 4) . H ere, however , the normalizing facto rs 
and vedor functions corresponding to the r ectan­
gul ar eros section arc as follows: 

n = - - cos - sm - l+ [ n7r n7rx. m 7ry . 
nrn a a b 

where 

. n 7rX . m7ry k 
P nm= sm a sin - b-

1 for n or m=O 
f3 nm = 

2 for nand mr'O 

F=(~)> . 
abc 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

Accordingly, when eq 38 through eq 44 are 
substituted in eq 1 and 2, and eq 18, 20 to 23 are 
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substituted for the infinite summations over th e 
index l , one gets for the case of a guide infinite in 
both directions, 

e±jg(z- ZIldT' m er), z=<.z' (45) 

- 1 f ro ro { 9 E TM·=-- b J (r ' ) ~ ~ (3 nm n (r ' )n (r) ~ ± 
wea rt = 0 m=O I\ nm 

j n (r ') p (r) ~jp (r') n (r) + A!m p (r' )p (r ) } 
9 

e ±jg(z -z IldT' for z=<.z' . 

H ere, 9 is that square root of 

(46) 

that lies in the positive-imaginary part of the 
complex plane. 

IV. Coaxial Cross Section 

Similar computations for the case of a coaxial 
cross-section guide of inner radius a and outer 
radius b yield the following formulas: 

- WWTT" '" '" 
ETE=-S- ~ L: 

n=O m=l 

(3n.]~2(TJb)J J (r' ) · m (r' )e ±jg(Z-ZIldT' m (r) z=<.z' 

{.]~2(TJa) (1 - TJ~;2)- J~2 (TJ b) (1 - TJ~~2) } 9 (47) 

where 

m e n ( - sin no) A ( ) . (COS no) A I ( ) . nm=- T l - . T l o 
• T cos nO Zn TJ I sm nO Z" 7) -, 

(4S) 

}jn(TJT ) =In(TJT)N~(TJa) -Nn(TJT) J~(TJa), (49) 

and 

(50) 
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Here, 9 is that root of 

(51) 

that lies 111 the positive-imaginary part of the 
plane. 

E 7r ~ -.0 (3n A~mJ~ (Ab) J J ( ' ) 
1 TM = - -S L..J L..J J 2('a) - J 2(' b) r · 

WE n= U 77l=l n 1\ n 1\ 

v;' b J J . !J, !t. e±jk(z-zIl dT' z=<.z'. 
47rln _ r T 

a 

The unit vectors ii, i 2, ia are defined in figure 1. 
H ere 

e [ Z '() (cos no) . ( sin nO ) n Z . ] n nm = - a n aT . 0 I I + 0 - unl Z , 
o sm n - COS n T 

. (52) 

e (cos nO) Z ( ) . Pnm= . 0 n aT l 3, 
o SIn n 

(53) 

I 
I n(aa) 

wher e an,,, is a solution of 
I n(ab) 

N ,,(aa) I 
= 0 

Nn(ab) 
(55) 

and h is that square root of 

(56) 

which lies in the positive-imaginary part of the 
plane. 

V. Conclusion 

The fields within a waveguide excited by an 
arbitrary current distribution have been calculated 
for the cases of circular, rectangular, and coaxial 
cross section by taking the limit of the correspond­
ing expressions for cylindrical cavities of corres­
ponding cross section as the length of the cavities 
becomes infinitely great. 

WASHINGTON, April 20, 1949. 
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