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The Field Generated by an Arbitrary Current
Distribution Within a Waveqguide

By J. ]. Freeman

Formulas are derived for the electromagnetic field generated by an arbitrary current

distribution within waveguides of rectangular, circular, and coaxial cross sections.

These

formulas are obtained by generalizing analogous formulas obtained in a previous paper 2 for

cavities of the same cross section.

As a check on the formulas, it is shown that the field

from an axially directed dipole within a circular guide reduces to the free space value as the

radius increases indefinitely.

I. Introduction

In pursuing certain investigations, it was found
necessary to derive explicit expressions for the
electromagnetic field generated by an arbitrary

current distribution within a waveguide. Since
the corresponding problem for a cylindrical

cavity had already been worked out in a previous
paper (see footnote 2), henceforth designated as
Paper 1, the results of Paper I were generalized to
apply to a waveguide of corresponding cross sec-
tion by the simple expedient of allowing the
length of the cavity to become infinitely large.
Although the same formulas may be obtained
more directly by a different method,® the present
paper derives these formulas using the above
mentioned limiting process since: (a) no explicit
general solution of the problem has yet been
published; (b) although the expedient of first
using a finite cavity for various computations
involving electromagnetic fields, and then allow-
ing the dimensions of the cavity to become
infinitely large has been widely employed, the
validity of the limiting process is not entirely
obvious, and the following derivation throws light
on this process.

To avoid repetition it will be assumed that

U This paper is a revisicn of Report C RP L-9-3, issued under the same title
(Feb. 28, 1947).

2J. J Freeman, Theory and design of a cavity attenuator, J. Research
NBS 40, 235 (1948) RP1868.

3J. J. Freeman, The noise spectrum of a diode with a retarding field, J.
Research NBS 42, 75 (1949) RP 1953 (see appendix I).
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Paper 1 is available to the reader, and the results
contained therein will be utilized without further
comment. MKS units are employed. Although
it was assumed in Paper I that the medium within
the cavity was lossless, and that the wave number,
/r:w\/ye, was real, the results are still valid for
complex values of £.  Accordingly, in the follow-
ing, we assume that the medium has conductivity
g, so that
k*=w’ue+juwe.

a —

Ficure 1. Cylindrical cavity.

II. The Circular Cylindrical Waveguide

Consider a cylindrical cavity, of length d (fig.
1) containing current of volume density J(r’),
where r’” designates the position vector of J, and
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where the time variation, ¢/*’ is omitted. In eq

15 and 21, Paper I, it was shown that
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In the above, d+’ represents an element of
volume containing J, and r is the position vector
of the point of observation. The m, n, p, 6, and
N in eq 1 and 2 have the identifying subscripts
mn implied but omitted. Also, the even, odd
designations (;) are omitted for convenience, but
are implied. For the case of a cavity of circular
cross-section, of radius a, (fig. 1),
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where i,,i,, and i; are unit vectors in the directions

of increasing r,0, and 2, and
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6:6nm=v;”" where J.(2,,) =0. (5)
Also,
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}\:)\m:ug’f, where J, (Wnm) =0. 9)
To generalize eq 1 and 2 to the case of an n-
finite waveguide, with a conducting plug at z=0,
we let d— , and evaluate the limit of the infinite
summation over the index [ as d— .
Consider the sum over [ in eq 1, multiplied by
the factor 1/d.
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=2

(10)
where

PP=k2—5

The factor 1/d enters because it is contained in
the normalizing factor A2, (eq 4). Let &¢=/l=/d.
Then
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since Al=1. As d—> o, A{—0, and the sum be-
comes in the limit the integral,
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2

Let g, and ¢, be the two square roots of ¢*=k*—6°,
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which lie in the positive- and negative-imaginary
parts of the complex plane, respectively. Then

go= —0h. (12)

For frequencies above cut-off, when w’ue >6*
el
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where
| 9] =[(w?pe— %) 2+ w?u?e?? (14)
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vanishes over the positive-imaginary part of the
plane, as , the integral can be evaluated by
taking the residue around the pole g, (fig. 2). Thus,

@ eJk(z—z1) ‘)7rj(4“1 (z—zr)
f EroG—9 %= o

—- vanishes over the negative-

imaginary half-plane, as |¢|-> and the integral
can be evaluated by taking the residue around the
pole (fig. 2) g,. Thus, for z2< 2",
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—w £ —U g
Ficure 2.  Contour of integration path in complex plane.
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Ficure 3. Contour of integration path used by Sommerfeld.

If ¢=0, instead of integrating along the real
axis of the s-plane it becomes necessary to indent
the path at g; and g, as shown in figure 3, obtaining
the contour that Sommerfeld * used in the complex
integral representation of the Green’s function for
the one-dimensional wave equation.

From eq 11, one recognizes that S; represents
two plane waves traveling in the —i—z-(lir(‘ction

(for z>2"), one having its source at z=z’, and the
other at z=—2".  Also, since m is a vo(,tm lying

in the plane perpendicular to the z-direction and
since only transverse elements of current make a
contribution to the field in eq 1, the first integral
in eq 11 represents the contribution due to a
current element at z=2z’, and the second integral
represents the contribution of its electrical image,
situated at z=—2z’. Both element and image are
necessary to insure the vanishing of the tangential
component of E at z=0, which corresponds to
the case of a conducting plug at z=0. On the
other hand, if the guide is infinitely long in the
negative z-direction, then the contribution of the
image at z=—2z" must be omitted, and the second
integral in eq 11 must be neglected.

Since the case of a perfectly conducting plug at

=0 may be easily derived from the case of an
infinite guide by superposing the electrical image
with respect to the plane z=0, the following is
restricted to the case of a guide extending to
infinity in both directions.

Accordingly, from eq 11 and 17, neglecting the
contribution from the image,

Slzzlj(]; elnlz=21 (z=2’). (18)
Substituting eq 18 in eq 1,

Brpm S S0 30 B M)

2w n=0 m=1 (70 (l nm 712)‘] (vnm)
(z=2). (19)

4 A, Sommerfeld, Deutsche Mathematiker—Vereinigung Jahresbericht,
21, 309 (1912).
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The various summations over the index [ in
eq 2 may likewise be extended to the case of a guide
extending to infinity in the positive z-direction,
with a conducting plug at z=0. By omitting
contributions to the field arising from the electrical
image with respect to the perfectly conducting
plane at z=0 of current elements within the guide,
the boundary conditions are changed from the
case of a perfectly conducting plug to the case of a
guide infinite in both directions. Then, if one
computes the limiting values of the summations
by the method of residues and omits the contribu-
tion from the image one obtains:
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r Ll
(23)
where, for brevity,
hr=k*—N. (23a)

If eq 8, 18, 20, 21, 22, and 23, are substituted
in eq 2, one finally obtains

SIE) (== B
{’ﬂZ:‘)) gl ngl(unm)

Ery=— 2Twe?
n(r')n(r)£jn(r’)p(r) Fjpr')nr+

h]

nm
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Here &, is that square root of £*—\* that lies in
the positive-imaginary half-plane.

As a check on the derivation, it will be shown
that waveguide eq 19 and 24 reduce to the correct
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value for the free space field, as the boundaries
recede indefinitely.

Consider a current filament of length dl, carry-
ing current I parallel to the axis of the guide

and situated at the origin of coordinates. Then
Er;=0, and eq 24 becomes,
—1 & SJ-pd+’ p
D - Yom eimz
ETM 2w wea? m=1 J%(uom) +_ ’
(25)

since only the symmetric modes for which n=0
are excited, and .J is normal to n.

SI-pdv' = fd-iz], \r)dr’ =1l.

Since Nyp=—N\J,(\r)i,= —i J,,()\r)il, from eq 6,

and p,,=J,(\r)is, from eq 7, eq 25 becomes
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Equation 26 may be rearranged into the follow-
ing more convenient form:

o(Nr)el"z . .
Epy= o (gtad div-+e9) > hlaﬁ J,;)( @)
Consider the sum
J,(\r) e?™?
S= 2 bt i) 22

There exists an integer M such that for m>M,
Uom Will be large enough so that .J;(u,,) may be
replaced by its asymptotic value?,

1r>~ (29)

2 )
o (Uom) = \/7%2 - COos (u,,m_,‘f’:;l
29 yields,

Since u,,, is the m* root of J,(u,,) =0, eq
for m >M,

uorn:W(’72+3//4)' (30)

Accordingly,
S ) =27 Wy DL (31)
Equation 28 may then be separated into two sums,

5J. A. Stratton, Electromagnetic theory, p. 359, eq 18 (McGraw-Hill Book
Co., Inc., New York, N. Y., 1941).
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From eq 30, Am:—Ai:—:”; and since A=

Am=2 A\, (33)

™

Accordingly, eq 32 may be rewritten as follows:
J,(A\r)eit: 1 2

L= Z i@ (o) + 2]

A= (MA3/4)
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ha

AN.

(34)

Now let a—>=. As a increases without limit
the first sum in eq 34 approaches zero, AN—0; the
second summation becomes, by definition, an in-
tegral; and the lower limit of integration becomes
Zero. :

Thus, as a—

f J"()" N (35)
0
Substituting from (eq 23a),
Ghy=— N —F?
into eq 35, one obtains
AR SRS (36)
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where that square root is to be taken whose real
part 1s positive.

But
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is the well-known ¢ expansion for o where

R=+/r’+2z%.  Accordingly, eq 27 becomes

kR
gldl eJ .
= (grad div +k* -5 ) 21
Ery=(g Sice) P 3 (37)
which is the field due to a current element /dl i,
in free space.’

S.J. A. Stratton, Electromagnetic theory, p. 576, eq 17 (McGraw-

Hill Book Co., Inc., New York, N. Y., 1941).

“J. A. Stratton, Electromagnetic theory, p. 431, eq 44 (McGraw-
Hill Book Co., Inc., New York, N. Y., 1941).
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ITI. Rectangular Cross Section

The same general formulas (eq 1 and 2), hold
in the case of a cavity of length ¢, and of rectangu-
lar cross section, whose z and % dimensions are a

ZaN

Ficure 4. Cavity of rectangular cross section.

X

and b, respectively, with the origin at one corner
(fig. 4). Here, however, the normalizing factors
and vector functions corresponding to the rectan-
gular cross section are as follows:

—mm mmwiy nmr
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Accordingly, when eq 38 through eq 44 are
substituted in eq 1 and 2, and eq 18, 20 to 23 are

197



substituted for the infinite summations over the
index I, one gets for the case of a guide infinite in
both directions,

e m(r), z=z" (45)
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that lies in the positive-imaginary part of the
complex plane.

IV. Coaxial Cross Section

Similar computations for the case of a coaxial
cross-section guide of inner radius a and outer
radius b yield the following formulas:
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Here, g is that root of
g =k*—n (51)

that lies in the positive-imaginary part of the
plane.
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The unit vectors 7,, is, i3 are defined in figure 1.

Here
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and A is that square root of
W=k—d, (56)

which lies in the positive-imaginary part of the
plane.
V. Conclusion

The fields within a waveguide excited by an
arbitrary current distribution have been calculated
for the cases of circular, rectangular, and coaxial
cross section by taking the limit of the correspond-
ing expressions for cylindrical cavities of corres-
ponding cross section as the length of the cavities
becomes infinitely great.

WasHINGTON, April 20, 1949.
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