U. S. DEPARTMENT OF COMMERCE

RESEARCH PAPER RP1085

Part of Journal of Research of the National Bureau of Standards, Volume 20, April 1938

REFRACTIVE INDEX AND DISPERSION OF DISTILLED WATER FOR VISIBLE RADIATION, AT TEMPERATURES 0 TO 60° C

By Leroy W. Tilton and John K. Taylor

ABSTRACT

All known requisites for precision and accuracy within $\pm 1 \times 10^{-6}$ in refractive index were employed in these determinations made by the minimum-deviation method using specially designed hollow prisms and platinum resistance thermometers. The data were adjusted by least squares and are represented by a general formula having 13 constants, the average of the 133 residuals being 1.2×10^{-6} . A general double-entry table of refractive indices (6,776 listings) with temperature and wave length as arguments has been computed to yield sixthdecimal data by linear interpolation. The maximum refractivity of water is found to be near 0° C, but the exact temperature thereof is a function of wave length, with a total variation of approximately 0.5° C for the visible spectral range. Other more specific tables of indices are given, and evidences of slight systematic errors are discussed. The attained precision is approximately as expected, but there is marked disagreement with some of Flatow's indices, which have been widely used and are the basis for the data on water as given in the International Critical Tables. The authors' opinions concerning the accuracy of their results are qualitatively confirmed by the medial relation of their data to all of those previously published, and quantitatively, within the temperature range 0 to 16° C, there is remarkably close agreement with the interferometrically determined indices of water, as reported by Mlle. O. Jasse.

CONTENTS

		rage
I.	Introduction	420
	1. Purpose of these determinations	420
	2. Variations in published values of the index of water	420
II.	Description of apparatus	
	1. Spectrometer	
	(a) Circle	430
	(b) Microscopes	431
	2. Hollow prisms of nickel	432
	3. Platinum resistance thermometers	433
	4. Thermometer bridge	
III.	Experimental program and procedure	435
	1. Sampling the water	435
	2. Sampling the index surface	
	3. Refracting-angle measurements	
	4. Minimum-deviation measurements	437
	5. Temperature control and measurement	438
IV.	Adjustment of observations	438
	1. Reduction to standard conditions	439
	2. Curve fitting	439
	(a) Isothermally adjusted system of dispersion equa-	
	tions	439
	(b) General interpolation formula for the index surface	
	419	

		rage
V.	Results	444
	1. Adjusted values of index of refraction	444
	2. Temperature of maximum index	462
	3. Specific refraction	464
	4. Partial dispersions	467
VI.	Supplementary discussion	469
	1. Internal evidence of precision and accuracy	469
	2. External confirmation of accuracy	472
	3. Effect of dissolved gases	473
	4. Structure of water	474

I. INTRODUCTION

Precise and accurate measurements on the properties of distilled water are desirable because this substance provides such a very suitable and convenient standard easily obtainable in a highly puri-This has long been recognized in the calibration and fied state. standardization of volumetric apparatus, and very elaborate measurements of the density of water, to six and seven decimals, are available through the work of M. Thiesen¹ and of P. Chappuis.² Moreover, investigations of recent years on the isotopic composition of water have shown that this confidence in its uniformity is justified, the density of ordinary surface waters being constant, after purification, to better than 1 part in $1,000,000.^3$

1. PURPOSE OF THESE DETERMINATIONS

For refractive-index measurements many refractometers permit rapid and precise readings to the fifth decimal place and are used over a wide range in temperatures, for both scientific and industrial purposes. In testing, calibrating, and using these refractometers the correctness of their readings for some comparison standard is a matter of primary importance and, of liquids, distilled water is the standard medium most widely used for this purpose. Consequently, an accurate knowledge of the refractivity of water for the sodium lines, and of its variation with temperature, is required. An extension of such knowledge to other wave lengths is desirable, not only because technical applications of refractometry are being extended throughout the visible spectrum, but also in order to supply accurate initial data that will permit using an interferometer and the "method of coincidences" for the confirmation or revision of existing data.⁴

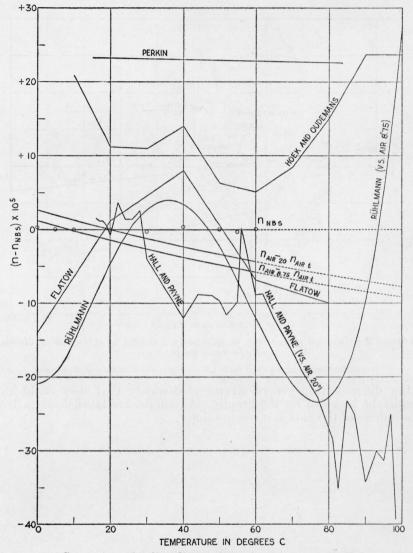
2. VARIATIONS IN PUBLISHED VALUES OF THE INDEX OF WATER

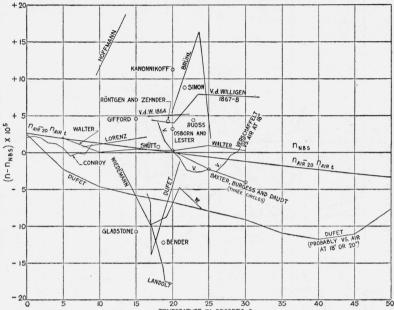
Published data on the refractivity of water are so completely presented by Dr. N. E. Dorsey 5 of this Bureau, that a complete bibliography appears unnecessary here. Several graphs, however, are presented to show at a glance the results obtained by previous investigators. These data are plotted in figures 1 to 6, and for convenience of comparison the plotting is with respect to the NBS values reported in this paper. In some cases this has involved an extrapolation of

¹ Wiss. Abhandl. physik. tech. Reichsanstalt 4, 1 to 32 (1904). ² Travaux et Mémoires du Bureau International des Poids et Mesures 13, D39 (1907). See also J. Re-search NBS 18, 213 (1937) RP971. ³ See, for example, E. R. Smith and H. Matheson, J. Research NBS 17, 627 (1936) RP932; E. W. Washburn and E. R. Smith, BS J. Research 12, 305 (1934) RP656; A. F. Scott, Science 79, 565 (1934). ⁴ See remarks and reference, BS J. Research 2, 916 (1929) RP64. ⁵ This work on the properties of water is appearing in the Monograph Series of the American Chemical Society.

Society.

the NBS formula beyond the range of the observations. Such extrapolation is justified by the desirability of using a consistently continuous reference line for all the observations, and is not to be inter-




FIGURE 1.—Comparison of sodium-lines indices of refraction of distilled water over long temperature ranges.

The line $\Delta n = (n - n_{\text{NHS}}) \times 10^3 = 0$ represents the relative (to air at t° C) index of refraction as computed by the general interpolation formula (see eq 3). Nine circles show the agreement between observed and computed values. Dotted lines indicate extrapolation. Corresponding computed indices relative to air at 20° and at 8.75° C, also indices published by other observers, have been compared with the NBS values by subtracting the latter from all others. Broken lines connect experimentally determined points and the continuous curve for Rühlmann is computed from the equivalent of his formula for index referred to air at 8.75° C.

preted as an indication that one should attach great importance to the formula beyond the experimental range from which it was derived.

Tilton Taylor

In preparing these comparative exhibits an attempt was made to exclude all data taken with commercial refractometers and all data that for any other reason seem to rest on mere comparison bases. Values absolutely determined were not consciously omitted unless

TEMPERATURE IN DEGREES C

FIGURE 2.—Detailed comparison of sodium-lines indices of refraction of distilled water for room temperature.

For explanation see legend under figure 1, the curves of which are not reproduced here.

they differed from general averages so widely that they could not easily be included on the graphs. All curves are labeled and a key to sources of the data is given in table 1.

Refractivity of Distilled Water

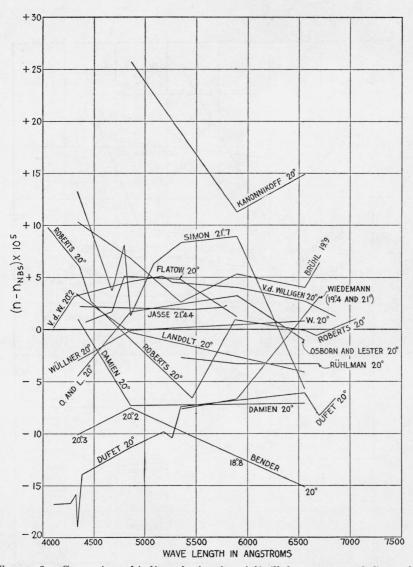
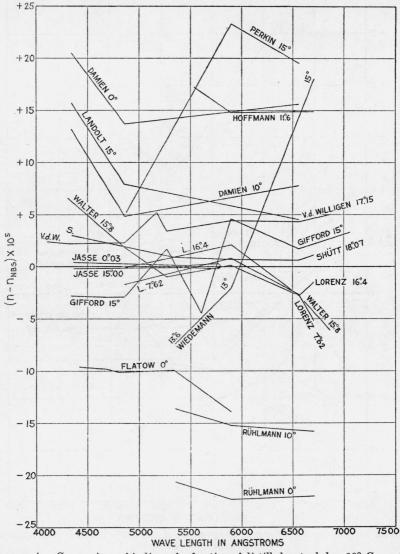


FIGURE 3.—Comparison of indices of refraction of distilled water near 20° C over the visible range of wave lengths.

The line $\Delta n = (n - n_{\rm xns}) \times 10^3 = 0$ represents the relative (to air at t° C) index of refraction at any temperature, *t*, as computed by the general interpolation formula (see eq 3). Indices published by other observers have been compared with the NBS values (for identical temperatures) by subtracting the latter from all others. Broken lines connect experimentally determined points.

423

Tilton Taylor]



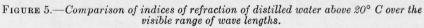


FIGURE 4.—Comparison of indices of refraction of distilled water below 20° C over the visible range of wave lengths.

For explanation see legend under figure 3.

For explanation see legend under figure 3.

Investigator	Refe	erence			Type of data	Method; and remarks	Figure
Investigator	Journal	Volume	Page	Date	cited	Method, and remarks	No.
. Jamin	Compt. rend	43	1193	1856	dn/dt	Jamin interferometer. Gives n as function of t	
						without evaluation of n_0 .	
P. Dale and J. H. Gladstone		148	889	1858	dn/dt	Used a single orientation of prism.	1.1.1
I. Landolt		[Pogg.] 117	359	1862	n	Prisms 50 and 60°	
Do	do	do	361	1862	Dispersion	C, F, and G' of hydrogen Prisms 56, 65, 75, and 88°. Symmetrical aper-	3, 4,
I. Hoek and A. C. Oudemans	toire Utrecht.	(Appendix) 1	62	1864	<i>n</i> _D	tures; repetitions (Bessel's).	
Müttrich		[Pogg.] 121	429	1864	dn/dt	Measured optic axes of immersed aragonite. Function-t equation differentiated.	
. S. M. Van der Willigen	do	[Pogg.] 122	191	1864	np	Prism 34° ; <i>n</i> as function of <i>t</i>	
Do		2	202	1869	n	do	
Do	do	2	202	1869	Dispersion	Twelve solar lines; n as function λ	3, 4, .
A. F. Fouqué	Ann. observatoire Paris	9	196	1867	dn/dt	Prism 60°. Used C, F, and G' lines also	1
Rühlmann			186	1867	nD	Prism 59°. Air at 7° R Corrected to air at t°	
Do		do	186	1867	Dispersion	Corrected to air at to	3, 4,
	do	do	186	1867	dn/dt	Function-t equation differentiated	
. Wüllner		[Pogg.] 133	16	1868	Dispersion	Prism 60°. Šixth-decimal data	
. Hoffmann	do	do	605	1868	<i>n</i> _D	Prism 60°.	
	do	do	605	1868	Dispersion	Data for 9.6 and 11.6° C averaged	
. Lorenz	skab. Skrifter.	[5] 10	504	1875	<i>n</i> _D	Prism 60°	
D0	do	[5] 10	504	1875	Dispersion	do	
	do	[5] 8	220	1869	dn/dt	Jamin interferometer. Lorenz' equation used	1
Do	Ann. Physik	[Wied.] 11	84	1880	$t \text{ of } n_{\max}$	As computed by Lorenz	1:
Do	do	do	100	1880	Spec. ref	0	1
. H. Gladstone	Trans. Roy. Soc. (London)	160	11	1870	nD	Prism	
. Wiedemann	Ann. Physik	[Pogg.] 158	380	1876	np	Total reflection; immersed air	
Do		do	380	1876	Dispersion	do	3, 3,
3. C. Damien		[2] 10 [1] 10	275	1881	Dispersion	Prism 60°.	3, 4
	J. phys	11 10	200	1881	t of nmax	Undercooled to -8° C	(12
I. Dufet Do	do	[2] 4 [2] 4 [2] 4	392	1885	<i>n</i> _D	Prism 90°	
		[2] 4	394 403	1885 1885	Dispersion	do	
D0					dn/dt	Prisms 90, 45°; immersed quartz, glass. As com- puted by Dufet.	
. Kanonnikoff	J. prakt. Chem	[2] 31 [2] 31 [Wied.] 33	352	1885	n	Prism	
D0	do	[2] 31	352	1885	Dispersion	dodo	
. Ketteler		[Wied.] 33	515	1888	dn/dt	Total reflection; immersed air	
Do.	do	do	516	1888	t of nmax	(See Ketteler's footnote 2)	1
. Pulfrich		[Wied.] 34	332	1888	$t \text{ of } n_{\max}$	Pulfrich refractometer. (See footnote 31, this paper.)	1
7. Schütt	Z. physik. Chem	5	358	1890	np	Prism 60°	
De	ob	5	358	1890	Dispersion	do	

1

TABLE 1.-Key to data used for comparative exhibits in figures 1, 2, 3, 4, 5, 6, 12, and 13

D.J of Re ch. of the National Br

426 20

JournalVolumePageDateCitedCitedNo.D.DoAnn. Physik.[Wied.] 39.901890 n_p	T	Re	ference		1.1.212	Type of data	Method; and remarks	Figure
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Investigator	Journal	Volume	Page	Date	cited	Method, and femarks	No.
F. A. Osborn and H. H. Lester Phys. Rev 35 216 1912 n_D Spectrometer and immersed grating Do do 35 216 1912 Dispersion do E. E. Hall and A. R. Payne do 210 223 1922 n_D Prisms 60 and 75°; elaborate prism housing Do do 210 255 1922 dn/dt Function-t equation differentiated B. W. Roberts Phil. Mag 79 378 3013 1931 to f n max Immersion refractometer	W. C. Röntgen and L. Zehnder J. W. Brühl Do Do Do Do Do Do Do Do I. Verschaffelt. H. Th. Simon Do John Conroy. Do John Conroy. Do John Conroy. Do John Conroy. Do John Conroy. Do John Conroy. Do Do Do Do Do Do Do F. Flattow. Do Do Do Do Do Do Do Do Do E. Flattow. Do C. F. A. Osborn and H. H. Lester Do	do 		$\begin{array}{c} 90\\ 90\\ 90\\ 48\\ 648\\ 648\\ 31\\ 424\\ 424\\ 292\\ 535\\ 556\\ 556\\ 556\\ 232\\ 232\\ 232\\ 232\\ 232\\ 232\\ 232\\ 23$	1890 1891 1891 1891 1891 1892 1892 1892 1892 1892 1893 1894 1894 1894 1895 1895 1895 1903 1903 1906-7 1911 1911 1911 1912 1913 1922	Dispersion mp mp Dispersion mp Dispersion mp Dispersion mp mp Dispersion mp	 do	1 3, 4, 1

A

TABLE 1.—Key to data used for comparative exhibits in figures 1, 2, 3, 4, 5, 6, 12, and 13—Continued

Tilton Taylor

427

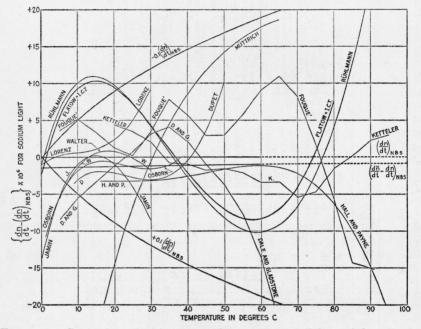


FIGURE 6.—Comparison of various reported temperature coefficients of the refractive index of distilled water.

The line $\Delta \frac{dn}{dt} = \left\{ \frac{dn}{dt} - \left(\frac{dn}{dt} \right)_{\text{xrss}} \right\} \times 10^6 = 0$ represents the coefficient of relative index as computed from approved index data (see eq 5). Dotted lines indicate extrapolation. Corresponding computed coefficients of absolute index, $d\bar{n}/dt$, also coefficients published by other observers, have been compared with the NBS coefficients of relative index by subtracting the latter from all others. All data excepting Osborn's refer to the sodium lines. Heavy lines in the upper and lower portions of this figure show, respectively, the loci corresponding to minus and plus 10 percent deviation from the NBS temperature coefficient of relative index.

In preparing figures 1 to 5, discrete experimental indices as given by previous observers were used in preference to computed values, except in the case of Rühlmann, whose data are so numerous and imprecise that confusion was avoided in figure 1 by using his formula instead of his individual determinations. Flatow's values of index should be especially noticed because they have been much used and because a formula published in the International Critical Tables is exactly equivalent to one computed (perhaps by Martens) to fit closely Flatow's data for the D lines of sodium.

On the other hand, in preparing figure 6, showing the derivatives of the index with respect to the temperature, formulas were preferred to the use of finite differences, except only in the case of the three broken lines which connect temperature coefficients computed by differences. Here the Fouqué data were examined numerically and the coefficients thus deduced were found to differ appreciably from those given by Dufet as the result of his graphical solution. Likewise, the curves drawn here for Rühlmann and for Müttrich are somewhat different from those obtainable from Dufet's tabulated values; probably because Dufet seemingly ignored their published index equations. For the Dale and Gladstone data the temperature coefficients deduced by the present writers are in fair agreement with data listed by Dufet for those investigators. Flatow's curve in figure 6 was computed by use of the formula that fits Flatow's index observations. This curve is drawn slightly prominent because it also represents data on the temperature coefficient of water as given in the International Critical Tables.

With exception of data on the *D* lines of sodium, the only extensive series of explicit values of dn/dt seems to be that published by Osborn for the mercury line $\lambda = 5461$ A. Accordingly, the comparison of his data with the corresponding data of this paper for $\lambda = 5461$ A is combined with the sodium-lines exhibit in figure 6.

Figures 1 and 2 show that even for the \overline{D} lines of sodium it is impossible to select with confidence any value for the fifth decimal place of the refractive index. When other wave lengths are considered, as in figures 3, 4, and 5, it is apparent that the value of (n-1) for water can not be considered as established with an accuracy much greater than 1 part in 1,000. Temperature coefficients of refractivity, some of which have been obtained by interferometric methods, also vary greatly, as shown in figure 6, where the limits of ± 10 percent variation are plainly indicated. All these comparative exhibits, figures 1 to 6, show the rather large spreads in numerical values that have been found by various investigators; and they emphasize the difficulties that seem to characterize precise refractive-index measurements.

II. DESCRIPTION OF APPARATUS

All refractive-index determinations reported here were made by the method of minimum deviation using a hollow prism, intimately water jacketed and immersed in a stirred air bath within a constanttemperature prism housing on the table of a spectrometer. All water temperatures were measured by specially designed platinum resistance thermometers.

Tilton]

1. SPECTROMETER

The spectrometer, figure 7, used in these determinations was made by the Société Genevoise and modified in this Bureau's instrument shop by removing the principal clamps and slow-motion screws and mounting the prism-table axis directly on the central cone of the instrument. The constant-temperature prism housing, the connections to the mixing chamber, and the circulatory system have been described in a previous paper.6

The collimator and telescope objectives are of 405-mm focal length. A rotatable eyepiece micrometer on the telescope permits rapid and accurate measurements on the pyramidal errors of prisms, and also provides for using a series of cross wires of various sizes and patterns when working with spectral lines of various intensities.⁷ A number of evenieces of focal lengths from 5 to 35 mm are provided, and one of the Gauss type is used for autocollimation and for making the usual adjustments with the aid of a plane-parallel plate.

A side-tube pseudo-collimator, essentially as described by Guild,⁸ is used almost exclusively for routine leveling and for measuring prism angles. The leveling is, of course, often checked by using the Gaussian eyepiece.

(a) CIRCLE

The circle is 308 mm in diameter, and is graduated to 5-minute intervals. The errors of position of the degree graduations have not been explicitly investigated. Analyses of many index data indicate that such errors are approximately ± 1 second in magnitude, but in all refracting-angle measurements of importance these errors are practically eliminated by the method of repetitions, using different portions of the circle in proper sequence. In (double) minimumdeviation measurements the errors of graduation are somewhat less important and with proper circle orientations (see section III-4), they also are satisfactorily reduced by the numerous repetitions that must be made for other reasons.

Errors of subdivision of the degree intervals on this circle are fully as large as those of the degree graduations, and perhaps more important. The magnitudes and systematic trends of these errors were determined by measurements on a few degree intervals at widely separated positions around the circumference of the circle. Each of these degree intervals was measured, in turn, by each of four micrometer microscopes. These measurements show that there is a periodic error that repeats three times in each degree interval and has an amplitude of approximately 1.7 seconds, as shown in figure 8. This, presumably, was caused by a periodic error in the mechanism that controlled the degree-subdivision graduations when the circle was ruled. For two micrometer microscopes separated by exactly 180° the same correction would be required for each of them and for the average of their readings, but the periodic nature of these errors is such that by making the separation 179°50' the correction to their averaged reading does not exceed $\pm 0.2^{\prime\prime}$, as is shown by the heavy line in figure 8.

⁶ Leroy W. Tilton. J. Research NBS 17, 389-400 (1936) RP919. ⁷ Most minimum deviations determined by the authors are made with wide collimator slits (in order to lessen "chromatic parallax") as described and recommended by Guild, Proc. Phys. Soc. (London) 29, 329 (1916-17); or Nat. Phys. Lab. Collected Researches 14, 265 (1920). ⁸ Dictionary of Applied Physics 4, p. 115 (Macmillan & Co., Ltd., London, 1923).

Journal of Research of the National Bureau of Standards

Research Paper 1085

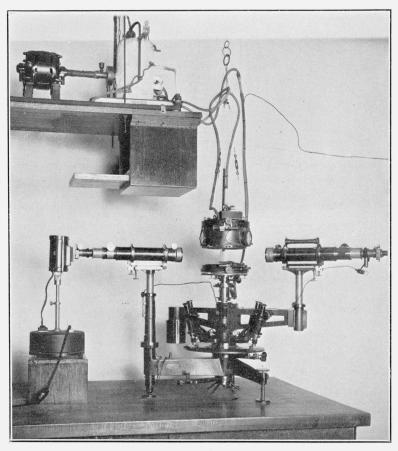


FIGURE 7.—Spectrometer and auxiliary apparatus for temperature control.

Motor, rotary pump, and conditioning chamber with thermoregulator are located on a shelf supported from wall and ceiling. The upper portion of the constant-temperature prism housing is shown suspended by wire, pulley, and counterweight a few inches above its working position. For refractometry of liquids a hollow-prism assembly replaces the glass prism on the spectrometer table.

Journal of Research of the National Bureau of Standards

Research Paper 1085

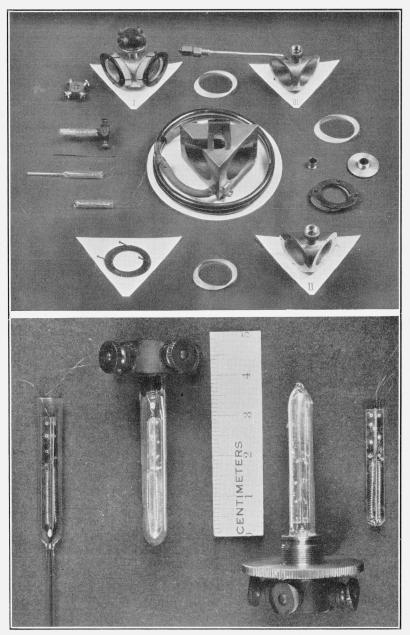


FIGURE 9.—Hollow prisms, water jacket, and platinum resistance thermometers.

In the center (top) is the prismatic water jacket; around it are shown prism I completely assembled and with thermometer in position, prisms II and III unassembled, a completed thermometer, and others in course of construction. The enlarged view shows the thermometers, both completed and in process with metric scale for dimensions.

(b) MICROSCOPES

The circle is read by four 60-power micrometer microscopes situated at approximately 90° intervals around the circle. A fifth microscope of lower power and larger field permits readings to the nearest graduation. The micrometer screws make one revolution per minute of arc and the drums are graduated to read seconds directly, and tenths by estimation.

Figure 8 is drawn for the ideal case in which the microscope tube lengths are perfectly adjusted to correspond with the actual performance of the micrometer screws in connection with this particular circle. In general, however, if x is the fraction of a perfect 5-minute interval which is to be measured and k is the run correction for a full 5-minute interval, then either kx or k (x-1) is the correction to be applied, depending on the choice of scale divisions to which the measurements are referred. In one case there is right-hand (say positive) travel of the micrometer slide between the respective settings of each microscope corresponding to the first and second telescope pointings; in the other case the effective travel is reversed, and the final error is opposite in algebraic sign. To adjust k to negligibly

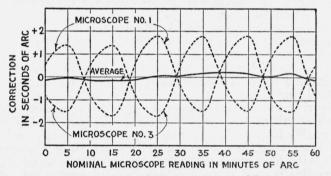


FIGURE 8.—Elimination of positional error in degree subdivisions of the circle by use of microscopes 1 and 3.

 $\begin{array}{c} \mbox{Correction of periodic error is automatically obtained by $\pm 5'$ displacements of two opposite micrometer microscopes. For microscopes 2 and 4 similar conditions exist. \end{array}$

small values, or even to determine k precisely is laborious. Moreover, it varies somewhat with the condition of the oil on the conical bearing and with adjustments of the friction in this bearing. Consequently, in all of these refractive-index determinations, k was merely kept small and the numbers N and N of the positive and negative runs were apportioned approximately in the ratio |x-1|:x so that Nkx, the sum of the corrections of one sign approximates Nk(x-1), the sum of the corrections of opposite sign. Consequently, for averaged angles no explicit correction for the run of the micrometers was necessary.

Tilton]

2. HOLLOW PRISMS OF NICKEL

The prisms used in these measurements on the refractivity of water were especially designed for the purpose. Each prism is a portion of a hollow cylinder of nickel, terminated by oblique sections cut at 54° with the cylinder axis so as to form an angle of 72° with each other. This angle of 72°, one-fifth of a circle, is an important feature of the design, because it permits approximately the maximum tolerance⁹ in error of refracting-angle measurement, and because the average of five repetitions with proper circle orientation is a value for the refracting angle that is entirely free from errors of graduation of the Moreover, for a prism with this angle the double minimum circle. deviations for water are angles of approximately 60°, and therefore are particularly favorable values for the elimination of scale error by three repetitions when using two reading microscopes.

Nickel was chosen for making these prisms because it was readily available, has suitable mechanical properties, and was thought to be satisfactory as a container for distilled water. The prism walls were made especially thick, 6 mm, so as to provide ample bearing surfaces for the windows. The clear aperture is 22 mm in diameter and the capacity 10 ml. A central well is provided for filling and for the insertion of a thermometer.

These nickel prisms were closed on each side by a plane-parallel plate of borosilicate optical glass, 6 mm thick, in direct contact with the optically flat faces of the oblique sections. The plates were not cemented to the nickel faces but each was held in place by gentle pressure exerted by steel screws passing through the periphery of a flat elliptical ring of brass, and threaded into the nickel of the prism. Each brass ring was separated from the glass by a paper washer.

The hollow prisms are carefully dimensioned so that they may be interchangeably inserted in a cylindrical opening in a prismatic water jacket of brass which is semipermanently mounted on the spectrometer table with hose connections for the circulating water. A thin film of vaseline is used to reduce friction and improve thermal conductivity between the prism and its brass water jacket. The interchangeable feature permits convenient and rapid removal of the prism for refillings, without breaking the hose connections and without seriously disturbing the thermostatic adjustment.

Three hollow prisms of this general type have been used extensively in these determinations. They are shown in figure 9 with the brass water jacket in which they are used. Prism I, used almost exclusively in the approved series of measurements, is essentially as described above. Prism II, almost identical with I, but chromium plated on its interior surfaces, was used alternately with I in many preliminary measurements on dispersion of water ¹⁰ at 20° C. The general average of indices determined with prism II exceeded the average with prism Iby 6×10^{-7} , but this was almost entirely the result of relatively imprecise data for the very faint helium line $\lambda = 4026$ A. For the 24 other wave lengths used in this preliminary work the average difference was 1×10^{-7} in index. Apparently, then, nickel and chromium are equally serviceable for such work.

⁹ See figure 1 on p. 921 of BS J. Research 2, 916 (1929) RP64.
 ¹⁰ Leroy W. Tilton. J. Research NBS 17, 639-650 (1936) RP934.

A special prism, *III*, for use in auxiliary determinations of the index in vacuo, was provided with a silver thermometer well, an auxiliary capillary tube of silver for filling, and in this case the windows were cemented to the nickel faces, at times with Duco, a cellulose nitrate material, and again with beeswax.

3. PLATINUM RESISTANCE THERMOMETERS

Small platinum resistance thermometers of the potential-terminal type were made for these experiments and used with a Leeds and Northrup precision thermometer bridge and commutator. Wire 0.05 mm in diameter was annealed and wound on a mandrel (1.7 mm in diameter) to make a 25-ohm coil with a fundamental interval of 10 ohms. This coil was bent into four equal portions which were mounted on a mica cross and inserted in a glass tube in such manner that each quarter of the coil occupied a dihedral angle of 90°. The exterior diameter of the tube was 6 mm and the sensitive or bulb portion was 15 mm in length. Extra leads of the same wire were arcwelded to each end of the coil proper and all leads were threaded through mica for approximately 15 mm. Leads of 0.1-mm platinum wire were used from the top of the mica through the glass seal and into the Bakelite head, where they were soldered to the copper terminal binding posts. After winding and mounting, the wire was washed in water and in alcohol, then heated by current to redness, and after the leads had been sealed through the glass the thermometer was heated in an oven at 200° C for 2 or 3 hours just before filling with dry hydrogen. Copper binding posts were securely threaded into the Bakelite head (exterior diameter 15 mm) and that was attached to the glass with Bakelite cement. The over-all length, including the head, was 54 mm. Standard exterior leads were used from the copper binding posts through a hole in the floor of the prism housing, and thence across the room to the commutator and bridge.

Two thermometers of this type were completed. They are shown in figure 9 with others only partially completed. These thermometers were calibrated by the thermometer section of this Bureau, and the constants are listed in table 2.

The Callendar δ was determined by comparison with a standardized platinum resistance thermometer at approximately 30° C. For thermometer designated as 2, an additional delta determination at approximately 50° gave a value of 1.61, which indicates satisfactory constancy over this range. This δ value is, however, considerably higher than would ordinarily be expected for platinum of the purity indicated by the slightly low value of $(R_{100}-R_0)/R_0$, namely, 0.386, which is found in this case, instead of 0.392 as is found for pure platinum. This platinum was known to be of high purity when in the form of wire 0.4 mm in diameter, and soon after it had been drawn to 0.05 mm diameter by a manufacturer of platinum ware it was sampled at one end and found to have a nearly normal value of $(R_{100}-R_0)/R_0$. Much later, after the completion of these thermometers, further tests along the length of the wire showed progressively increasing contamination. Evidently the existing contamination is different in kind from that ordinarily encountered and the usual inferences relating to values of the fundamental coefficient and of δ are not necessarily applicable.

48258-38-2

Tilton Taylor]

Thermometer (number)	Resistance, R_0 , in melting ice	Fundamental interval	δ of the Cal- lendar formula
1	25. 307 ₆	9. 740 ₄	$\begin{array}{c}1.62_4\\1.62_4\end{array}$
2	25. 732 ₄	9. 945 ₄	

TABLE 2.—Constants of resistance thermometers

Irrespective of the particular degree or kind of existing impurity, the calibration data show that the observed values of resistance at 0, 30, 50, and 100° on the international temperature scale can be reproduced by the Callendar equations which have three adjustable constants. Therefore, the temperatures as determined with these thermometers, especially in the range used (0 to 60° C) may be considered sufficiently accurate even though the value of the constant δ is somewhat unusual.

Since these thermometers were not designed or used for temperatures above 100° C, and since when in use the head and the coil were always at the same temperature within a few tenths of 1° C, the use of short leads is permissible. Ice-point determinations indicate that R_0 decreased about 0.000_3 ohm over a period of 6 years. Individual ice point determinations vary somewhat erratically by $\pm 0.000_2$ ohm and this is attributed to variable strain in portions of the coils that are not adequately supported by mica. Fortunately, this variation is equivalent to only $\pm 0.002^{\circ}$ C and therefore is unimportant for the refractometry of water.

4. THERMOMETER BRIDGE

A precision thermometer bridge of the 5-dial Mueller type, balanced by the null method, was used with a high-sensitivity galvanometer. The effects of lead resistance were completely eliminated by means of a commutator. Each step of the last dial on the bridge corresponds to about 0.001° C and to a deflection of about 1 mm on the scale, with a current of 2.5 milliamperes in the 25-ohm thermometer.

Since for refractometry, expecially of water, an accuracy of $\pm 0.003^{\circ}$ C ($\Rightarrow 0.0003$ ohm approximately) seemed ample, it was decided to insulate the bridge thermally rather than to build an apparatus to control its temperature. Consequently, the bridge a flat water-filled tank of copper that supplied ample heat capacity and also served as a unit of the electrical-shielding system were housed in a box of oak with double walls, each ½-inch thick, interlined with 2-inch cork. The oak box was provided with a lid through which all controls were extended to permit operation from the exterior.

The auxiliary 25-ohm resistance was carefully calibrated for temperatures from 20 to 30° C in the resistance measurements section of this Bureau, and the bridge was initially calibrated at 23.5° C by that section. Also, the 25-ohm resistance was checked at intervals thereafter and other calibrated coils were occasionally borrowed from the resistance measurements section for use in further checking the bridge performance. By such means certain coils of the bridge were calibrated, at different seasons of the year, for all existing room temperatures. Frequently, during index determinations, the 25-ohm standard resistance was used to check the constancy of 25 ohms of the bridge resistance. Occasional ice-point determinations served to check the continued constancy of the thermometers.

At and near each temperature for which indices were to be measured, tables of bridge readings were prepared, with columns for different bridge-box temperatures. In this way it was possible to read and record each water temperature immediately after the resistances were recorded.

III. EXPERIMENTAL PROGRAM AND PROCEDURE

Although the use of water of highest possible purity would be desirable, previous experience had indicated that impurities in freshly distilled water influence refractivity much less than they do electrical conductivity or even density. Certainly, determinations should be made at so many temperatures and wave lengths that regularity over the refractive-index surface could be definitely established, but precise index determinations in this laboratory for 25 wave lengths had yielded no evidence of peculiar behavior, and published densities of water had not indicated irregularities in its expansivity.¹¹ Furthermore, great difficulties are involved in storing or keeping extremely pure water and much time is required for attaining temperature equilibrium and for the satisfactory elimination of certain errors by variations in experimental procedures. Such reasons governed the adoption of the program now to be outlined.

1. SAMPLING THE WATER

The distilled water used in these investigations was made from Washington city water by a Tripure still of 30-gallon-per-hour capacity, which is in daily service at two-thirds capacity to provide distilled water for the Chemistry Division of this Bureau. By means of a tap located in the line adjacent to the condenser, the hot distilled water was collected in a fused-quartz flask, of 125-ml capacity, which was immersed in a vessel containing cold water. Immediately afterward the flask was loosely covered with a small inverted beaker and carried to the refractometric laboratory where a sample of about 9 ml was transferred to the hollow prism, usually within 10 minutes after The transfer was made by means of a 10-ml pipette, distillation. which was thoroughly clean and used for this purpose only. The thermometer was washed in distilled water just before insertion and, to exclude further contact with air of the room, a nickel collar fitting the thermometer was finally screwed into the thermometer well.

Frequent routine measurements made by the Chemistry Division show that the specific conductance of this water at 20° C ordinarily ranged from 0.6 to 1.3×10^{-6} reciprocal ohm-centimeter. Samplings for index measurement were not made unless the still was thought to be in excellent working condition. On one sample a pH determination, made approximately 1 hour after sampling, gave a value of 6.1, which is about what should be expected for pure water nearly, but not fully, saturated with the atmosphere.

For almost all these approved index determinations this sampling of water was done on three different days so that the final results

Tilton Taylor]

¹¹ Leroy W. Tilton and John K. Taylor. J. Research NBS 18, 205-214 (1937) RP971.

436 Journal of Research of the National Bureau of Standards [Vol. 20

are averages for complete measurements on each of three independent samplings.

In this connection, it may be mentioned that one complete measurement of index for the helium line 5876 A, made in January 1932, at the request of the late Dr. Edward W. Washburn, on a sample of redistilled normal water that he had prepared for the purpose, gave 1.332554_4 at 25° C as compared with 1.332554_8 which, at that time,¹² was considered a "best value" for samples from the still, thus confirming the purity of these samples.

2. SAMPLING THE INDEX SURFACE

Index determinations were made at 13 temperatures separated by 5° intervals within the range 0 to 60° C. The four light sources and 13 spectral lines listed in table 3 were used. By using all of these temperatures and wave lengths, the whole refractive-index surface would have been referred to a network of 169 points on the temperature—wave-length plane. This program for sampling the index surface at more or less regularly distributed points was, however, shortened to 133 sets of coordinates by limiting the work at 15, 25, 35, and 45° C to determinations for the four bright lines of helium.

Character of source	Designation of line	Wave length in air ¹ at 15° C and 760 mm of Hg
Helium tube		0.7065188
Do Hydrogen tube	C	. 6562793
Sodium arc.	D_m	2. 589262
Helium tube	_ d	. 5875618
Mercury arc		. 576960
Do Helium tube	e	. 5460740
Helium tube Hydrogen tube	F	. 4861327
Helium tube		. 4713143
Do		. 4471477
Mercury arc		. 4358342
Do	h	. 4046563

TABLE 3.—Light sources, spectral lines, and wave	TABLE	3.—Light	sources.	spectral	lines.	and	wave	lengths
--	-------	----------	----------	----------	--------	-----	------	---------

¹ These wave lengths (international system) in air, expressed in microns, are used in all computations involved in the data of this paper (see J. Research NBS 17, 640 (1936) RP934). ³ Hartmann's weighted mean for lines D₁ and D₂.

It was found advisable to limit the measurements of index to a single temperature on any one day, on account of the time required for establishing a particular temperature equilibrium throughout the sample. It was not difficult, however, for each of two observers, working alternately, to determine minimum deviations for about five spectral lines in a single day. Consequently, to minimize systematic errors, some high and some low temperatures were employed more or less alternately as the whole program advanced, and the spectral lines chosen for use on a given day were always well distributed over the spectral region. The choice of alternately high and low working temperatures was limited, however, by another consideration, namely, the advisability of reserving for winter the work at and near 0° C and for sum-

¹² It may be noticed that this measured index of Dr. Washburn's sample of redistilled water is lower than the corresponding entry in table 5 by 11×10^{-7} . However, this difference is small and involves not only accidental errors but possible secular changes in apparatus over a period of 1 or 2 years. mer the determinations at and near 60° C. Since, however, the approved series of observations extended over the interval from May 11, 1931 to June 18, 1934, it was possible to proceed more or less in accord with each of these considerations.

3. REFRACTING-ANGLE MEASUREMENTS

The windows of the hollow prism are plane parallels within approximately one-fourth second of arc and, moreover, were paired in such manner that the error in deviation at the entrant window was offset by one of opposite sign at the emergent window. Consequently, the refracting angle of the prism of water can be assumed to be identical with the angle between the exterior surfaces of the windows. This angle was determined on each working day both before and after minimum-deviation measurements. At least 6 and usually 10 measurements of this angle were included in each determination, using in a systematic manner various arcs of the circular scale; and duplication of circle orientations was usually avoided during the two complete determinations for any one day. In order to minimize torsional errors of the cone, one-half of all refracting-angle measurements were made on the angle itself, and the others on its explement.¹³ Always, of course, care was taken to use the objectives symmetrically, and only autocollimating methods were employed for refracting-angle measurements.14

In most cases the refracting-angle determination made after minimum-deviation measurements differed from the corresponding initial determination by less than 1 second and sometimes the refracting angles differed less than ± 1 second over periods of several working days. All refracting angles used in computing indices of refraction were linearly interpolated between the two daily determinations, on the basis of elapsed time.

Occasionally the windows were removed in order to rearrange them or to readjust the screws and rings that retained them. To detect distortions by pressure, the planeness of the windows in situ was sometimes tested by interference fringes, and at times the zero deviation of the empty prism was tested by double deviation observations.

4. MINIMUM-DEVIATION MEASUREMENTS

After completion of an initial refracting-angle determination, thermal equilibrium being usually well established, the prism was properly adjusted for deviation measurements, by means of the exterior controls of the prism-table ways.¹⁵ These measurements were always made, in turn, by each of two observers. Since double deviation was always of the order of 60°, three measurements were included in each observer's determination, the circle being advanced 60° between measurements. Each observer used a different initial scale orientation; and for the other samples of water, on second and third days, still other orientations were systematically chosen. Thus the finalaverage deviation at any given temperature, t, and wave length, λ , as measured on 3 samples, involves the use of 18 different sets of scale rulings, all of which were symmetrically distributed on the circle.

Tilton]

 ¹³ See BS J. Research 2, 930 (1929) RP64.
 ¹⁴ See BS J. Research 11, 30 (1933) RP575.
 ¹⁵ See BS J. Research 11, 34 (1933) RP575.

438 Journal of Research of the National Bureau of Standards [Vol. 20

To minimize, especially with respect to dispersion, the effects of possible errors that might progress with time, the two observers used the spectral lines in opposite sequences and the initial measurements on a given day were sometimes made on the shorter and sometimes on the longer wave lengths. Also, the observers often varied the daily sequence of their alternations between making the deviation and the temperature measurements.

5. TEMPERATURE CONTROL AND MEASUREMENT

During all measurements the temperature of the distilled water was controlled by a thermoregulator and a circulatory system, as described in a former paper.¹⁶ A more or less continuous record of the experimental conditions was made by one of the observers. These records included readings of air temperature and humidity in the bath surrounding the hollow prism, barometer readings and temperatures, resistance readings and bridge-box temperatures, together with frequent entries of time and suitable designations of all deviations as they were being observed. By means of the double-entry tables mentioned in section II–4 the resistance measurements were immediately converted into temperatures.

The bridge was balanced between right and left telescope pointings during each minimum-deviation measurement, and thus for the completed program of triple sampling 18 temperature determinations are averaged for the final minimum deviation at any given t and λ . It was sometimes possible to make a full daily set of observations (say 24 measurements of deviation, 3 by each observer on each of 4 spectral lines) while the water temperatures remained constant within $\pm 0.002^{\circ}$ C. The temperature level was so adjusted that the average of the observed temperatures seldom differed from the even values of 0, 5, 10, 15°, etc., by as much as 0.01° C.

In all cases temperatures were controlled for a preliminary period of at least 30 minutes during the initial adjustments and the refractingangle determinations. Experience showed that very slight temperature changes were optically detectable by the accompanying defective imagery of the collimator slit as viewed through the telescope and prism. Care was exercised to measure deviations only when both the imagery and the resistance measurements had for several minutes continued to indicate satisfactory thermal conditions. Although the water sample was not stirred it should be remembered that the prism was intimately water-jacketed and, moreover, completely surrounded by stirred air having approximately the same temperature as the water.

IV. ADJUSTMENT OF OBSERVATIONS

Throughout these refractive-index measurements care has been taken to avoid, or at least to minimize, systematic error by proper choice of procedures, and to reduce accidental errors by a suitable number of repetitions at each individual step in the observational program. Several references to these matters have been made in this paper but for more complete discussion of many of them reference should be made to previous publications.¹⁷

¹⁶ Leroy W. Tilton. J. Research NBS **17**, 389-400 (1936) RP919. For observations at 0° C alcohol was added to the circulating water and brine was used around the cooling coils. ¹⁷ See summary, J. Research NBS **14**, 417 (1935) RP776.

It should be mentioned, however, that no correction has been made for error in prism orientation. From experience in this laboratory it is estimated that inaccuracies of orientation render the indices reported in this paper systematically high by perhaps 5 or 7×10^{-7} . On the other hand, when the empty prism was from time to time retested for zero deviation it was often found to give slight deviations toward its These deviations were attributed to asymmetrical aberration apex. caused by slight deformation of the window faces. Some slight changes of this nature in the glass windows may occur with time and during temperature changes, even under the very slight pressures to which the windows are initially subjected. As a result of these tests it was concluded that many of the measured indices were too low by a few units in the seventh decimal place. Since these negative errors are of the same small magnitude as the positive error arising from inaccuracy in orientation, it was decided to ignore them both.

1. REDUCTION TO STANDARD CONDITIONS

All indices reported in this paper for water at $t^{\circ}C$ were reduced to refer to dry air at 760 mm (Hg) pressure and at air temperature t by use of tables and procedures that have been described in detail in a former paper.¹⁸ The ventilation of the laboratory was good during all index measurements; consequently, it is thought that the indices given refer to essentially normal air ¹⁹ at Washington during the period 1931–34.

The temperatures at which observations were made were so nearly the preselected values that approximate temperature coefficients of the index of water (as taken from preliminary work and from published data) were amply precise for correcting the observed indices to the preselected temperatures.

All determinations that were approved at the time of taking the observations have been included in the averages for final adjustment. In other words, no data have been rejected after computations were made.

2. CURVE FITTING

By least-squares adjustments, equations have been obtained for representing the observed indices in two complete and practically independent systems. The first of these, called the isothermally adjusted system, is merely a series of dispersion equations, one for each nominal temperature at which observations were made. The second system is in effect a general interpolation formula for the whole index surface within the limits of temperature and wave length used in these investigations.

(a) ISOTHERMALLY ADJUSTED SYSTEM OF DISPERSION EOUATIONS

The corrected indices of water for 13 wave lengths were independently adjusted for each of the temperatures 0, 5, 10, 20, 30, 40, 50, 55, and 60° C. This was done by least squares, and dispersion

¹⁸ See paper cited in footnote 17.
 ¹⁹ The CO₂ content of air must reach approximately 15 times the normal value in order to affect measured indices of water by 1×10⁻⁶. See p. 402 of paper cited in footnote 17.

Tilton Taylor]

equations were used to express index, n, at each temperature, t, as a function of wave length, λ , in the form

$$n_{t}^{2} = a_{t}^{2} - k_{t} \lambda^{2} + \frac{m_{t}}{\lambda^{2} - l_{t}^{2}}, \qquad (1)$$

which had been found to be particularly suitable for this purpose.²⁰ The indices for four wave lengths were similarly adjusted for each of the intermediate temperatures 15, 25, 35, and 45° C, excepting that the values for l^2_{t} were determined by linear interpolation between the adjacent values found for the larger group. Obviously, less weight should be attached to the parameters for these four intermediate temperatures. All these parameters are given in table 4. and the variations of l^2 and of k are shown in figure 10. Those two

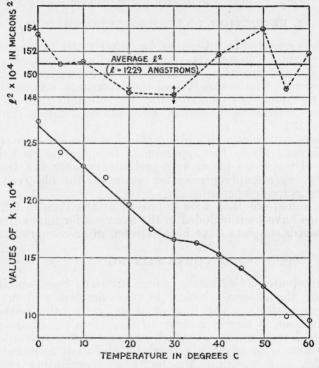


FIGURE 10.—Dispersion parameters l² and k as functions of temperature.

The cross at 20° C shows the value of l³ obtained independently for many preliminary index data at 20° C. The arrows at 30° C indicate the estimated probable error in determinations of l³.

are of special interest as their variations may represent shiftings of the effective absorption bands in the ultraviolet and the infrared, respectively. There is some difficulty in determining l^2 accurately,²¹ but it is thought that the probable errors are not greater than is indicated by the arrows at 30° C in figure 10. It seems possible that the curve of l^2 has a minimum at or near 30° C, which would not be

Tests were made with a series of indices of water determined at 20° C for each of 25 wave lengths. See J. Research NBS 17, 629-650 (1936) RP934.
 See discussion in J. Research NBS 17, 643 (1936) RP934.

surprising in view of prevailing ideas regarding the changes that take place in the association or structure of water as temperature is lowered (see section VI-4), but the evidence for a second minimum at 55° C is not convincing. Certainly, however, these data do not in general confirm the report by Flatow 22 to the effect that an increase of 1° C changes the ultraviolet resonance frequency by 0.3 A (that is changes $l^2 \times 10^4$ in microns squared, by 0.07) toward longer wave lengths. To the authors of this paper it seems probable that Flatow's values for the dispersion parameters may be seriously affected by the fact that he assumed a constant value for k and adjusted only the three others. Instead of a constant k the authors find values that, as shown in figure 10, decrease rather regularly as temperature rises, but indicate some change in trend at or near 30° C. The assumption of a constant value for l^2 instead of for k would seem a preferable procedure, and the unidirectional effect on resonance as temperature increases seems to be a shift in the effective infrared frequency to longer wave lengths.

TABLE 4.—Isothermally adjusted values of dispersion parameters for eq 1

t°C	a ²	k	m	L 2
0	1. 7644735	0.0126866	0.00642337	0.0153533
5	1.7641459	. 0124222	.00644785	.0150877
10	1.7636007	. 0122994	.00644293	.0151148
15	1.7627786	.0121983	.00643914	(.0149759)
20	1. 7616123	.0119672	.00644819	.0148370
25	1.7602512	.0117487	.00644524	(.0148306)
30	1.7587615	. 0116583	.00643138	.0148242
35	1.7571550	.0116365	.00640079	(.0149996)
40	1.7553330	.0115298	.00637442	.0151750
45	1.7533297	. 0114095	. 00635272	(.0152896)
50	1.7511652	. 0112507	.00633171	. 0154043
55	1.7487297	. 0109843	.00635168	.0148684
60	1.7464024	. 0109516	.00630658	.0151833

 $[\lambda \text{ in microns}]$

(b) GENERAL INTERPOLATION FORMULA FOR THE INDEX SURFACE

In addition to representing the index of water as a function of λ , it is customary to express such values for any given λ as a function of t. The utilization of power series in t for this purpose has, in a former paper,²³ been discussed and compared with the use of the equation

$$(n_t - n_{20})_{\lambda} = -\frac{\overline{B}_{\lambda}(\Delta t)^3 + \overline{A}_{\lambda}(\Delta t)^2 + \overline{C}_{\lambda}\Delta t}{(t + \overline{D}) \times 10^7}$$
(2)

where \overline{A}_{λ} , \overline{B}_{λ} , and \overline{C}_{λ} are functions of wave length, \overline{D} is a constant, and $\Delta t = t - 20$. For the *D* lines of sodium eq 2 was found to be more accurate than a power series having the same number of adjustable parameters. It was evident that, by successively using this function-t equation for each of the various wave lengths, determining the parameters independently in each case, a second or isofrequency system of function-t equations could be formed and the observations

441

Tilton Taylor

E. Flatow, Ann. Physik [4] 12, 93 (1903).
 Leroy W. Tilton and John K. Taylor. J. Research NBS 18, 205-214 (1937) RP971.

readjusted for comparison with the results previously obtained by isothermal adjustment. It seemed preferable, however, to combine both dispersion and function-t equations in a single function to represent the index surface over the observed range in the coordinates of temperature and of wave length.

In combining such dispersion and function-t systems it seemed advisable to consider the dispersion system as fundamental, because (1) its basic equation, which has been much used, rests more or less on theoretical grounds, and (2) the distribution of the observations was such that they sufficed for satisfactorily determining nine dispersion formulas whereas only four function-t formulas could be similarly adjusted and compared for as many as 13 observations each. It seemed permissible and convenient, also, to rely primarily on dispersions because (1) the dispersion system had already been completely adjusted and (2) the adjusted values of approved observations at 20° C were somewhat more numerous than those at other temperatures and, moreover, were supported by many preliminary observations at that temperature. Thus the dispersion equation for 20° C formed a very suitable "backbone" to which the other data could safely be referred during all initial adjustments of the proposed formula for the whole index surface.

By holding as constant the adjusted 20° data, and by using the whole isothermally adjusted dispersion system to compute "observed" data for the D lines of sodium, it was possible as described in a former paper²⁴ to determine tentatively by least squares four constants of the function-t formula for the sodium-lines index. More recently, by temporarily considering both 20° and D-line data as constant, it was found feasible, after a number of essays, to write six terms in λ and t and adjust by least squares the six additional parameters in such manner that all 133 observations were approximately represented by a general formula in λ and t with 14 tentatively adjusted constants.

There remained the necessity of either a complete least-squares readjustment of all 14 parameters using 133 observations or, alternatively, a continuation of step-by-step readjustments that would presumably be equivalent thereto, if continued. The latter procedure was adopted ²⁵ and, first, all non-*D*-lines indices (except those for 20° C) were, by means of the six combined λ and t terms, reduced to D-lines equivalents. Then the 4 basic function-t constants, A, B \overline{C} , and \overline{D} were readjusted by least squares, using the 120 observational equations left after excluding the 20° C data. Second, all non-20° indices were reduced to 20° C equivalents by using the latest values for the constants in the whole function-t system, and then the four basic dispersion constants, a^2 , k, m, and l^2 were readjusted, using 133 observational equations. The prospect of gains by further readjustments was not particularly good, but the importance of one

²⁴ J. Research NBS 18, 208 (1937) RP971.

²⁴ J. Research NBS 18, 208 (1937) RP971.
²⁵ A step-by-step adjustment has distinct advantages over a complete single adjustment when one is concerned with several parameters and numerous observations, the curve fitting to have a precision of a few parts in 10,000,000. In initial stages of the progressive method, as used in this instance, the suitability in form of most of the various terms of the function is confirmed or disproved at comparatively early stages and the total extent of provisional computation is greatly reduced. Very definite confirmations of the squares of the residuals. It should be added that one is necessarily conscious of the relationship between additional readjustments and the betterments that they directly produce. Thus it is easier to limit computations made a priori. priori.

of the combined λ and t terms appeared slight and the possibility of its satisfactory elimination seemed indicated. Accordingly, as a third and final step in these readjustments, all non-D and non-20° observations were used in readjusting the constants of the five remaining λ and t terms.

Thus there resulted a 13-constant formula which can, by using eq 1 and 2, be concisely represented by the equation

$$n_{(t,\lambda)} = n_{(20,\lambda)} + (n_t - n_{20})_{\lambda} \tag{3'}$$

provided it be further specified that three parameters of eq 2 are functions of λ as follows:

$$\left. \begin{array}{c} \overline{A}_{\lambda} = \overline{A} - a' \Delta \lambda \left(1 + \frac{a''}{\lambda - l} \right) \\ \overline{B}_{\lambda} = \overline{B} - \frac{b(\Delta \lambda)^{3}}{\lambda - l} \\ \overline{C}_{\lambda} = \overline{C} - c \Delta \lambda \left(1 + \frac{c'}{\lambda - l} \right), \end{array} \right\} (4)$$

where $\Delta \lambda = \lambda - \lambda_{\nu}$, l is determined by the dispersion constant l^2 , and a', a'', b, c, and c' are five arbitrary constants of what may be called the λ and t terms.

The 13 independent constants required for eq 3' as a formula for the computation of refractive indices of water (wave lengths in microns, see table 3) are:

of which the first four are used in eq 1 to write a dispersion formula for 20° C, the second four are used in eq 2 to define temperature effects on the sodium-lines index, and the five that remain are used to express, according to eq 4, the effect of wave-length variations on the thermal behavior of refractive indices.

Equation 3' as written in full is

$$n_{(t,\lambda)} = \left(a_{20}^2 - k_{20}\lambda^2 + \frac{m_{20}}{\lambda^2 - l_{20}^2}\right)^{\frac{1}{2}} - \frac{\left\{\overline{B} - \frac{b(\Delta\lambda)^3}{\lambda - l}\right\}(\Delta t)^3 + \left\{\overline{A} - a'\Delta\lambda\left(1 + \frac{a''}{\lambda - l}\right)\right\}(\Delta t)^2 + \left\{\overline{C} - c\Delta\lambda\left(1 + \frac{c'}{\lambda - l}\right)\right\}\Delta t}{(t + \overline{D}) \times 10^7}$$
(3)

and with proper substitution of the numerical values it becomes a general interpolation formula representing within a very few parts per million the refractive index of distilled water as determined by the authors for 133 pairs of temperature-wave-length coordinates. One-half of all residuals are within the limits $\pm 1, 80$ percent are within ± 2 , and 98 percent are within $\pm 3 \times 10^{-6}$ in refractive index. The average for all residuals is 1.2 and the maximum is 5×10^{-6} . The magnitude and distribution of these residuals are shown by circles in figure 11 where, also, the preliminary or isothermally adjusted system is represented by dotted lines. By comparing the dotted curves with the full straight lines, $\Delta n=0$, it is apparent that the general temperature-wave-length system computed with 13 constants is closely equivalent to the isothermally adjusted system of indices computed by a series of 9 Ketteler-Helmholtz dispersion equations with a total of 36 constants.

V. RESULTS

By using the general interpolation formula (see eq 3) the index of refraction of distilled water was computed and tabulated in detail, the temperature of maximum index was determined as a function of wave length, and certain specific refractivities and partial dispersions were evaluated.

1. ADJUSTED VALUES OF INDEX OF REFRACTION

Table 5 gives, for temperature intervals of 0.5° C, the indices for each of the spectral lines that were used in this series of experiments. Values at 2.5° intervals were directly computed and the others were obtained by systematic interpolation to fifths.²⁶ The symmetrical distribution of the actual observations is shown by the use of boldfaced type at those points.

Since indices for the mean of the sodium lines are used much more frequently than others, calculations were made directly in this case for each 0.5° interval, and then, after interpolation to fifths, table 6 was prepared.

There remained the necessity of providing a general table from which the indices for all other wave lengths could be readily obtained. For this purpose direct calculations of index were made by the general formula (see eq 3) for each degree, and for values of λ in steps of 100 A from 4000 to 7200 A. Then, for each degree, interpolations for intermediate values of λ were made, by interpolation to fifths from 4000 to 5500 A and to halves from 5500 to 7200 A. These data are listed in the double-entry table 7. The tabular intervals of temperature and of wave length are so chosen that one may obtain sixth-decimal-place indices, by linear interpolation, almost as accurately as they can be computed. For temperatures below 10° C, however, the errors of linear interpolation may be as large as 7×10^{-7} in extreme cases.²⁷

²⁶ See, for example, p. 89 of Theory and Practice of Interpolation by H. L. Rice, The Nichols Press, Lynn,

 $^{^{26}}$ See, for example, p. 89 of Theory and Practice of Interpolation by H. L. KICE, THE NUCLOUS FIESS, LYHH, Mass. (1899). 27 No further reduction of such errors seems justifiable for the temperatures mentioned, because there are reasons for suspecting that all tabulated values of index may be relatively low by perhaps 1×10^{-6} at and near 0 and 5° C. At 0° C approximately one-tenth and at 5° one-twentieth of all "approved" observations were, through pressure of circumstances, made on water that had remained in the hollow prism for 24 hours longer than usual. Test data of this sort at 20° had indicated that the error of such procedure would be negligible. However, reference to figure 19 in section VI-4 enables one, by using the weighting factors just mentioned, namely, one-tenth and one-twentieth, to estimate that errors of -7 and -2×10^{-7} , respectively, may have been introduced in the averaged indices for temperatures of 0 and 5° C. Indices recently interpolated from table 5 for λ =5875.6 A and temperatures between 3.4 and 4.0° C averaged 2 $\times10^{-4}$ lower than certain values actually obtained late in March of 1933 by a few check measurements in that temperature range. actually obtained late in March of 1933 by a few check measurements in that temperature range.

Refractivity of Distilled Water

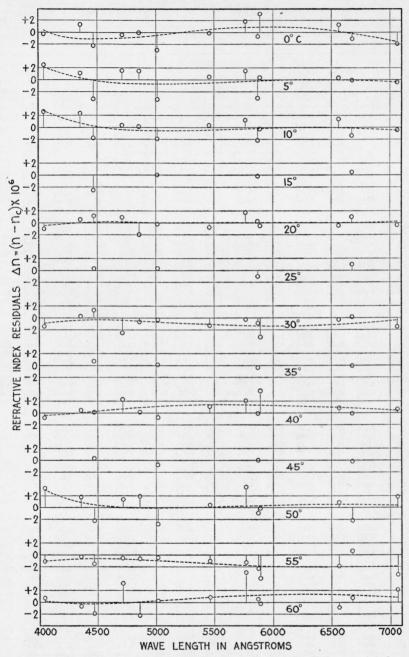


FIGURE 11.—Deviations of the observed refractive indices of distilled water (circles for $n_o - n_c$) and of their isothermally adjusted values (dotted lines for $n_a - n_c$) from values, n_c , computed by the general interpolation formula (see eq 3).

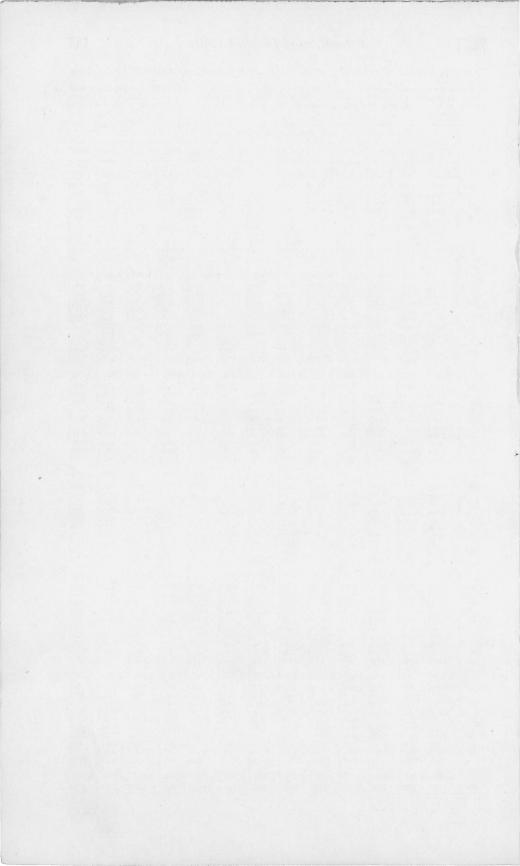
Of all residuals, $\Delta n = (n_o - n_e)$, 80 percent are within $\pm 2 \times 10^{-6}$, 50 percent are within $\pm 1 \times 10^{-6}$, and the average residual is 1.2×10^{-6} .

445

Tilton Taylor

446 Journal of Research of the National Bureau of Standards [Vol. 20

TABLE 5.-Index of refraction of distilled water for various spectral lines


[These values were computed by means of the general interpolation formula (see eq 3). Observations were made at the points indicated by bold-faced type; their deviations from these computed values are shown in figure 11. Read initial digits in same column above tabulated values unless asterisk refers to initial digits below]

	Wave lengths in angstroms													
t°C	7065.2 Heli- um	6678.1 Heli- um	6562.8 Hy- drogen	5892.6 Sodi- um	5875.6 Heli- um	5769.6 Mer- cury	5460.7 Mer- cury	5015.7 Heli- um	4861.3 Hy- drogen	4713.1 Heli- um	4471.5 Heli- um	4358.3 Mer- cury	4046.6 Mer- cury	
	1. 330	1.331	1.332	1.333	1.334	1.334	1.335	1. 337	1.338	1.338	1.340	1.341	1.343	
$ \begin{array}{c} 0 \\ .5 \\ 1 \\ .5 \\ 2 \\ .5 \\ 3 \\ .5 \\ 4 \\ .5 \\ \end{array} $	9477 9482 9472 9447 9409 9356 9290 9210 9117 9011	8155 8158 8145 8118 8077 8022 7954 7872 7776 7667	0939 0940 0927 0900 0858 0802 0733 0650 0554 0444	9493 9491 9474 9443 9398 9338 9265 9178 9078 8964	0028 0026 0010 *9978 *9933 *9873 *9800 *9712 *9612 *9498	3453 3450 3433 3401 3355 3295 3221 3133 3032 2918	4397 4393 4374 4341 4293 4231 4156 4066 3964 3848	3391 3385 3364 3329 3279 3215 3137 3045 2940 2821	1129 1122 1101 1065 1014 0950 0871 0778 0672 0553	9254 9247 9225 9188 9137 9071 8992 8898 8792 8672	4248 4240 4217 4179 4126 4059 3978 3884 3776 3654	2144 2135 2112 2073 2020 1953 1871 1776 1667 1545	7564 7553 7528 7488 7433 7364 7281 7184 7074 6950	
					1.333									
5 .5 .5 .6 .7 .5 .5 .5 .5 .5	8892 8761 8617 8461 8292 8112 7920 7717 7502 7276	$\begin{array}{c} 7546 \\ 7412 \\ 7265 \\ 7106 \\ 6935 \\ 6752 \\ 6558 \\ 6352 \\ 6134 \\ 5906 \end{array}$	0322 0187 0040 *9880 *9708 *9525 *9330 *9123 *8904 *8675	8838 8699 8547 8383 8207 8019 7819 7607 7384 7150	9372 9233 9081 8917 8740 8552 8352 8141 7918 7683	2791 2651 2499 2334 2157 1968 1767 1555 1331 1096	3719 3577 3422 3256 3077 2886 2683 2469 2243 2006	2690 2545 2388 2219 2037 1844 1638 1420 1192 0951	0420 0275 0117 *9947 *9764 *9569 *9363 *9144 *8914 *8914	8538 8392 8233 8062 7878 7683 7475 7256 7025 6782	3520 3372 3212 3039 2854 2656 2447 2226 1994 1750	1410 1262 1100 0927 0741 0543 0333 0111 *9878 *9633	$\begin{array}{c} 6812\\ 6662\\ 6499\\ 6324\\ 6136\\ 5936\\ 5724\\ 5500\\ 5264\\ 5017\end{array}$	
			1.331						1. 337			1.340		
10 11 5 12 5 13 5 14 5	$\begin{array}{c} 7040\\ 6792\\ 6533\\ 6264\\ 5984\\ 5694\\ 5394\\ 5084\\ 4764\\ 4435\end{array}$	$\begin{array}{c} 5666\\ 5415\\ 5154\\ 4882\\ 4599\\ 4306\\ 4004\\ 3690\\ 3368\\ 3035\\ \end{array}$	$\begin{array}{c} 8434\\ 8183\\ 7920\\ 7648\\ 7364\\ 7071\\ 6767\\ 6453\\ 6129\\ 5795\end{array}$	6905 6648 6381 6104 5815 5517 5208 4889 4560 4221	7438 7181 6914 6636 6348 6049 5740 5421 5092 4753	0850 0593 0325 0046 *9757 *9457 *9147 *8827 *8498 *8158	1757 1498 1228 0947 0655 0353 0041 *9719 *9386 *9044	0700 0437 0164 *9880 *9585 *9279 *8964 *8638 *8302 *7956	8420 8157 7597 7301 6994 6677 6350 6013 5666	6528 6264 5988 5702 5404 5097 4779 4451 4112 3764	1494 1228 0950 0662 0363 *9733 *9403 *9063 *8713	9377 9110 8831 8542 7932 7611 7280 6938 6587	$\begin{array}{r} 4758\\ 4489\\ 4208\\ 3916\\ 3614\\ 3301\\ 2978\\ 2644\\ 2300\\ 1946\end{array}$	
						1.333	1.334	1.336			1.339			
5.5 6.5 7.5 9.5	$\begin{array}{r} 4095\\ 3746\\ 3388\\ 3020\\ 2643\\ 2257\\ 1862\\ 1459\\ 1046\\ 0625\\ \end{array}$	2692 2340 1979 1608 1228 0839 0441 0034 *9619 *9194	$\begin{array}{c} 5452\\ 5099\\ 4737\\ 4365\\ 3984\\ 3594\\ 3196\\ 2788\\ 2371\\ 1946\\ \end{array}$	$\begin{array}{c} 3872\\ 3514\\ 3146\\ 2770\\ 2383\\ 1988\\ 1584\\ 1170\\ 0748\\ 0317\\ \end{array}$	4404 4046 3678 3301 2915 2519 2114 1701 1279 0847	$\begin{array}{c} 7808 \\ 7449 \\ 7080 \\ 6702 \\ 6315 \\ 5919 \\ 5513 \\ 5099 \\ 4676 \\ 4244 \end{array}$	8692 8331 7960 7579 7189 6790 6382 5965 5539 5104	7601 7236 6861 6476 6083 5680 5268 4847 4417 3979	$5309 \\ 4943 \\ 4567 \\ 4181 \\ 3786 \\ 3382 \\ 2969 \\ 2546 \\ 2115 \\ 1675 \\$	3406 3038 2661 2274 1878 1472 1057 0634 0201 *9760	8352 7983 7603 7214 6816 6408 5991 5565 5130 4686	$\begin{array}{c} 6226\\ 5855\\ 5475\\ 5085\\ 4685\\ 4276\\ 3858\\ 3431\\ 2995\\ 2550\\ \end{array}$	1582 1208 0825 0432 0029 *9618 *9196 *8766 *8327 *7879	
		1.330		1.332						1.337			1.342	
20.5 21.5 22.5 23.5 23.5 24.5 .5	0195 *9757 *9310 *8855 *8392 *7920 *7441 *6954 *6458 *5955	8761 8320 7870 7412 6945 6471 5988 5497 4999 4492	1512 1069 0618 0159 *9692 *9216 *8733 *8241 *7741 *7234	9877 9429 8973 8508 8034 7553 7064 6566 6061 5547	0408 *9959 *9503 *9038 *8564 *8083 *7593 *7095 *6590 *6076	3303 3354 2896 2430 1956 1473 0983 0484 *9978 *9463	4661 4209 3749 3280 2803 2318 1824 1323 0813 0296	$\begin{array}{c} 3531\\ 3075\\ 2611\\ 2138\\ 1656\\ 1167\\ 0669\\ 0164\\ *9650\\ *9128\end{array}$	1226 0769 0303 *9828 *9346 *8854 *8355 *7848 *7333 *6809	9309 8850 8383 7907 7423 6930 6430 6430 5921 5404 4879	4234 3772 3302 2824 2338 1842 1339 0828 0308 *9781	2096 1634 1163 0684 0196 *9699 *9195 *8682 *8162 *7633	$\begin{array}{c} 7422\\ 6956\\ 6482\\ 5999\\ 5508\\ 5508\\ 4500\\ 3983\\ 3459\\ 2926 \end{array}$	
	1. 329		1.330		1.332	1.332	1.333	1.335	1. 336		1.338	1.339		
25.5 26.5 27.5 28.5 29.5 .5	$\begin{array}{c} 5445\\ 4926\\ 4400\\ 3866\\ 3326\\ 2777\\ 2222\\ 1659\\ 1089\\ 0512\\ \end{array}$	3978 3456 2927 2390 1846 1294 0735 0169 *9595 *9015	$\begin{array}{c} 6719\\ 6196\\ 5666\\ 5128\\ 4582\\ 4030\\ 3470\\ 2902\\ 2328\\ 1746\end{array}$	5026 4497 3961 3417 2866 2307 1740 1167 0586 *9998	5555 5026 4490 3945 3394 2835 2268 1695 1114 0526	8941 8411 7873 7328 6776 6216 5648 5073 4492 3902	9771 9238 8697 8149 7594 7031 6460 5882 5298 4705	$\begin{array}{c} 8599\\ 8061\\ 7516\\ 6964\\ 6404\\ 5836\\ 5261\\ 4679\\ 4089\\ 3492 \end{array}$	$\begin{array}{c} 6278 \\ 5739 \\ 5193 \\ 4639 \\ 4077 \\ 3508 \\ 2931 \\ 2347 \\ 1756 \\ 1157 \end{array}$	4347 3806 3258 2702 2139 1568 0990 0404 *9811 *9211	9246 8703 8152 7593 7027 6453 5872 5284 4688 4085	$\begin{array}{c} 7096\\ 6552\\ 6000\\ 5440\\ 4872\\ 4297\\ 3715\\ 3125\\ 2528\\ 1923\\ \end{array}$	2386 1838 1282 0718 0146 *9567 *8980 *8386 *7785 *7176	
	1. 328	1.329		1. 331	1.331					1.336			1.341	
30	9927	8427	1157	9403	9930	3306	4106	2888	0551	8603	3474	1311	656	

TABLE 5.-Index of refraction of distilled water for various spectral lines-Con.

[These values were computed by means of the general interpolation formula (see eq 3). Observations were made at the points indicated by bold-faced type; their deviations from these computed values are shown in figure 11. Read initial digits in same column above tabulated values unless asterisk refers to initial digits below]

					W	ave leng	gths in a	angstron	ns				
t°C	7065.2	6678.1	6562.8	5892.6	5875.6	5769.6	5460.7	5015.7	4861.3	4713.1	4471.5	4358.3	4046.6
	1.328	1. 329	1.330	1. 331	1.331	1.332	1.333	1.335	1.336	1.336	1.338	1.339	1.341
30 31 32 33 33 33 34 5	9927 9336 8738 8133 7521 6903 6278 5646 5007 4362	$\begin{array}{c} 8427\\ 8427\\ 7832\\ 7231\\ 6622\\ 6007\\ 5385\\ 4756\\ 4121\\ 3479\\ 2830\end{array}$	1157 0562 *9959 *9350 *8733 *8110 *7480 *6844 *6200 *5551	9403 8801 8192 7576 6954 6324 5688 5045 4395 3739	9930 9328 8719 8103 7480 6850 6214 5571 4921 4264	3306 2703 2093 1476 0852 0221 *9583 *8939 *8288 *7631	4106 3500 2886 2266 1639 1005 0364 *9717 *9063 *8402	2888 2277 1659 1034 0402 *9763 *9118 *8466 *7806 *7141	0551 *9939 *9319 *8692 *8058 *7418 *6770 *6116 *5455 *4788	8603 7989 7367 6739 6103 5461 4812 4156 3493 2824	3474 2857 2232 1601 0962 0317 *9664 *9005 *8340 *7667	1311 0692 0066 *9433 *8793 *8146 *7492 *6832 *6164 *5490	6561 5937 5307 4669 4025 3373 2715 2050 1378 0699
			1.329			1.331	1.332	1.334	1.335		1.337	1.338	
35 36 37 37 38 38 39 5	3711 3053 2388 1718 1041 0357 *9668 *8972 *8270 *7563	2175 1513 0845 0171 *9490 *8803 *8110 *7411 *6705 *5994	4894 4232 3563 2887 2205 1517 0823 0122 *9416 *8703	3076 2407 1731 1049 0361 *9666 *8965 *8258 *7544 *6825	3602 2932 2256 1574 0886 0191 *9489 *8782 *8069 *7349	$\begin{array}{c} 6967\\ 6296\\ 5619\\ 4936\\ 4246\\ 3550\\ 2848\\ 2140\\ 1425\\ 0704 \end{array}$	$\begin{array}{c} 7735\\ 7061\\ 6381\\ 5694\\ 5001\\ 4302\\ 3596\\ 2885\\ 2167\\ 1443\\ \end{array}$	6469 5790 5105 4413 3715 3010 2300 1583 0860 0130	4114 3433 2746 2052 1352 0646 *9934 *9215 *8490 *7758	$\begin{array}{c} 2148 \\ 1465 \\ 0776 \\ 0081 \\ *9379 \\ *8671 \\ *7956 \\ *7235 \\ *6508 \\ *5775 \end{array}$	6988 6302 5610 4911 4206 3495 2777 2052 1322 0585	4810 4122 3428 2021 1308 0588 *9863 *9130 *8392	0014 *9322 *8623 *7918 *7206 *6488 *5763 *5032 *4295 *3551
	1.327	1.328	1.328	1.330	1.330	1.330		1.333	1.334	1.335	1.336	1.337	1.340
$40 \\ .5 \\ 41 \\ .5 \\ 42 \\ .5 \\ 43 \\ .5 \\ 44 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5$	$\begin{array}{c} 6849\\ 6129\\ 5403\\ 4671\\ 3934\\ 3190\\ 2441\\ 1686\\ 0925\\ 0158\end{array}$	5276 4552 3823 3087 2346 1598 0845 0086 *9321 *8551	7984 7260 6529 5792 5050 4301 3547 - 2787 2021 1249	6099 5368 4630 3887 3137 2382 1621 0854 0081 *9302	6623 5891 5154 4410 3660 2905 2143 1376 0603 *9825	9977 9244 8506 7761 7010 6253 5491 4722 3948 3168	0712 *9976 *9234 *8486 *7732 *6971 *6205 *5434 *4656 *3873	9395 8653 7906 7152 6393 5627 4856 4079 3296 2507	$\begin{array}{c} 7021 \\ 6277 \\ 5528 \\ 4772 \\ 4011 \\ 3243 \\ 2470 \\ 1691 \\ 0906 \\ 0115 \end{array}$	5036 4290 3539 2781 2018 1248 0473 *9691 *8904 *8111	9842 9094 8338 7577 6810 6037 5258 4473 3682 2886	$\begin{array}{c} 7647\\ 6897\\ 6140\\ 5377\\ 4608\\ 3833\\ 3052\\ 2266\\ 1473\\ 0674\\ \end{array}$	2301 2045 1283 0514 *9740 *8960 *8173 *7381 *6582 *5778
	1.326	1.327		1.329	1.329		1. 331		1. 333	1.334		1.336	1,339
$45 \\ .5 \\ 46 \\ .5 \\ 47 \\ .5 \\ 48 \\ .5 \\ 49 \\ .5 $	$\begin{array}{c} 9386\\ 8608\\ 7825\\ 7036\\ 6241\\ 5441\\ 4636\\ 3824\\ 3008\\ 2186\end{array}$	$\begin{array}{c} 7775\\6993\\6206\\5413\\4614\\3810\\3001\\2186\\1366\\0540\end{array}$	0472 *9689 *8900 *8106 *7307 *6501 *5691 *4875 *4053 *3226	$\begin{array}{c} 8518\\ 7728\\ 6933\\ 6132\\ 5325\\ 4512\\ 3695\\ 2872\\ 2043\\ 1209 \end{array}$	9040 8250 7454 6653 5846 5034 4216 3392 2564 1729	2383 1592 0795 *9992 *9184 *8371 *7552 *6727 *5897 *5061	3084 2289 1489 0683 *9871 *9054 *8231 *7403 *6570 *5730	1712 0912 0106 *9295 *8478 *7655 *6827 *5993 *5154 *4309	$\begin{array}{c} 9318\\ 8516\\ 7708\\ 6894\\ 6075\\ 5250\\ 4420\\ 3584\\ 2742\\ 1896\end{array}$	7313 6508 5698 4882 4061 3234 2401 1563 0720 *9870	2083 1275 0461 *9642 *8816 *7986 *7149 *6307 *5459 *4607	$\begin{array}{c} 9870\\ 9060\\ 8244\\ 7423\\ 6596\\ 5763\\ 4924\\ 4080\\ 3231\\ 2376\end{array}$	4968 4152 3330 2503 1670 0831 *9986 *9136 *8280 *7419
		1.326	1.327			1.329	1.330	1.332		1.333	1.335		1.338
$50 \\ .5 \\ 51 \\ .5 \\ 52 \\ .5 \\ 53 \\ .5 \\ 54 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5$	13 59 0527 *9689 *8846 *7998 *7144 *6286 *5422 *4553 *3678	9709 8872 8030 7183 6331 5473 4610 3742 2869 1991	2394 1556 0713 *9865 *9011 *8152 *7288 *6419 *5545 *4665	0369 *9524 *8674 *7819 *6958 *6092 *5221 *4344 *3463 *2576	0889 0044 *9194 *8338 *7477 *6611 *5740 *4863 *3981 *3094	4221 3374 2523 1666 0804 *9936 *9964 *8186 *7303 *6415	4886 4036 3181 2321 1455 0584 *9708 *8826 *7939 *7048	3459 2603 1742 0876 0005 *9128 *8246 *7358 *6466 *5568	1043 0186 *9322 *8454 *7580 *6701 *5817 *4927 *4033 *3133	9016 8156 7291 6420 5544 4663 3776 2884 1987 1085	3748 2884 2015 1140 0260 *9375 *8484 *7588 *6687 * 57 80	1515 0649 *9778 *8901 *8019 *7131 *6238 *5340 *4437 *3528	6552 5680 4802 3918 3030 2135 1236 0331 *9421 *8505
	1.325		1.326	1.328	1.328	1.328	1. 329	1. 331	1. 332		1.334	1. 335	1.337
$55 \\ 56 \\ 57 \\ 57 \\ 58 \\ 58 \\ 59 \\ 59 \\ 59 \\ 59 \\ 55 \\ 59 \\ 59$	2799 1915 1026 0131 *9232 *8328 *7418 *6504 *5585 *4661	1108 0219 *9326 *8427 *7524 *6615 *5702 *4783 *3860 *2931	3781 2891 1996 1096 0192 *9282 *8367 *7447 *6523 *5593	1634 0787 *9885 *8978 *8066 *7148 *6226 *5299 *4367 *3430	2202 1305 0403 *9496 *8583 *7666 *6743 *5816 *4884 *3947	5521 4623 3720 2811 1898 0979 0055 *9127 *8193 *7255	6151 5248 4341 3429 2512 1590 0662 *9730 *8793 *7850	4665 3757 2844 1926 1003 0075 *9141 *8203 *7260 *6312	2227 1317 0402 *9482 *8556 *7625 *6690 *5749 *4803 *3853	0177 *9265 *8347 *7424 *6496 *5563 *4625 *3682 *2734 *1781	4868 3952 3030 2102 1170 0233 *9290 *8343 *7390 *6433	2614 1695 0771 *9842 *8907 *7968 *7023 *6073 *5118 *4159	7584 6658 5727 4791 3849 2902 1950 0994 0031 *9064
60	1.324 373 2	1. 325 1998	1. 325 4659	1. 327 2488	1. 327 3005	1. 327 6312	1. 328 6904	1. 330 5358	1. 331 2897	1. 332 0823	1. 333 5471	1. 334 319 4	1.336 8092

Tilton Taylor]

Refractivity of Distilled Water

TABLE 6.-Sodium-lines index of refraction of distilled water

°C				Г	enths o	f degree	S				Mean differ-	n ₅₈₇₆ minus
U	0	1	2	3	4	5	6	7	8	9	ences	<i>n</i> 5893 (a)
0 1 2 3 4	1. 333 9493 9474 9398 9265 9078	9494 9469 9387 9249 9056	9494 9464 9376 9232 9034	9494 9458 9364 9214 9011	9493 9451 9351 9196 8988	9491 9443 9338 9178 8964	9489 9435 9325 9159 8940	9486 9427 9310 9139 8915	9483 9418 9296 9119 8890	9479 9408 9281 9099 8864	277131824	531 531 531 534 534
5 6 7 8 9	8838 8547 8207 7819 7384	8811 8515 8170 7777 7338	8784 8483 8133 7736 7292	8756 8450 8095 7693 7245	8727 8417 8057 7650 7198	8699 8383 8019 7607 7150	8669 8349 7980 7564 7102	8639 8314 7940 7519 7053	8609 8279 7900 7475 7004	8578 8243 7860 7430 6955	29 34 38 43 48	534 534 534 533 533
$10 \\ 11 \\ 12 \\ 13 \\ 14$	$\begin{array}{r} 6905\\ 6381\\ 5815\\ 5208\\ 4560\end{array}$	$6854 \\ 6327 \\ 5756 \\ 5145 \\ 4493$	$\begin{array}{c} 6804 \\ 6271 \\ 5697 \\ 5081 \\ 4425 \end{array}$	$\begin{array}{r} 6752 \\ 6216 \\ 5637 \\ 5018 \\ 4358 \end{array}$	$\begin{array}{c} 6700 \\ 6160 \\ 5577 \\ 4953 \\ 4289 \end{array}$	6648 6104 5517 4889 4221	$\begin{array}{c} 6596 \\ 6047 \\ 5456 \\ 4824 \\ 4152 \end{array}$	$\begin{array}{r} 6543 \\ 5989 \\ 5394 \\ 4758 \\ 4083 \end{array}$	$\begin{array}{r} 6489 \\ 5932 \\ 5332 \\ 4692 \\ 4013 \end{array}$	$\begin{array}{c} 6436 \\ 5874 \\ 5270 \\ 4626 \\ 3943 \end{array}$	$52 \\ 56 \\ 60 \\ 64 \\ 68$	533 533 533 533 533
15 16 17 18 19	3872 3146 2383 1584 0748	$3802 \\ 3072 \\ 2305 \\ 1502 \\ 0662$	$3730 \\ 2997 \\ 2226 \\ 1419 \\ 0576$	3659 2921 2147 1336 0490	$\begin{array}{r} 3587 \\ 2846 \\ 2068 \\ 1254 \\ 0404 \end{array}$	3514 2770 1988 1170 0317	$\begin{array}{r} 3441 \\ 2693 \\ 1908 \\ 1086 \\ 0230 \end{array}$	3368 2616 1827 1002 0142	$3295 \\ 2539 \\ 1746 \\ 0918 \\ 0054$	3221 2461 1665 0833 *9966	72 76 80 83 87	53: 53: 53: 53: 53: 53:
20 21 22 23 24	$\begin{array}{c} \textbf{1.332} \hspace{0.1cm} 9877 \\ \hspace{0.1cm} 8973 \\ \hspace{0.1cm} 8034 \\ \hspace{0.1cm} 7064 \\ \hspace{0.1cm} 6061 \end{array}$	9788 8880 7939 6965 5959	9699 8788 7843 6866 5856	9609 8695 7746 6766 5754	$\begin{array}{r} 9520 \\ 8601 \\ 7650 \\ 6666 \\ 5651 \end{array}$	9429 8508 7553 6566 5547	$\begin{array}{r} 9339 \\ 8414 \\ 7456 \\ 6466 \\ 5444 \end{array}$	9248 8319 7358 6365 5340	$\begin{array}{c} 9156 \\ 8225 \\ 7260 \\ 6264 \\ 5236 \end{array}$	$9065 \\8130 \\7162 \\6162 \\5131$	90 94 97 100 103	530 530 530 529 529
25 26 27 28 29	$5026 \\ 3961 \\ 2866 \\ 1740 \\ 0586$	$\begin{array}{r} 4921 \\ 3853 \\ 2754 \\ 1626 \\ 0469 \end{array}$	$\begin{array}{r} 4816\\ 3744\\ 2643\\ 1512\\ 0352 \end{array}$	$\begin{array}{r} 4710\\ 3635\\ 2531\\ 1397\\ 0234 \end{array}$	$\begin{array}{r} 4604\\ 3526\\ 2419\\ 1282\\ 0116\end{array}$	4497 3417 2307 1167 *9998	4391 3307 2194 1051 *9880	$\begin{array}{r} 4284\\ 3197\\ 2081\\ 0935\\ *9761 \end{array}$	4176 3087 1968 0819 *9642	4069 2976 1854 0703 *9523	$ \begin{array}{r} 106 \\ 109 \\ 112 \\ 115 \\ 118 \end{array} $	52 52 52 52 52 52
30 31 32 33 34	$\begin{array}{c} \textbf{1, 331} \hspace{0.1cm} \begin{array}{c} 9403 \\ 8192 \\ 6954 \\ 5688 \\ 4395 \end{array}$	$\begin{array}{r} 9283 \\ 8070 \\ 6828 \\ 5560 \\ 4264 \end{array}$	$9163 \\7947 \\6702 \\5431 \\4133$	9043 7824 6577 5303 4002	$\begin{array}{r} 8922 \\ 7700 \\ 6450 \\ 5174 \\ 3871 \end{array}$	8801 7576 6324 5045 3739	8680 7452 6197 4915 3607	8558 7328 6070 4786 3474	$\begin{array}{r} 8437 \\ 7203 \\ 5943 \\ 4656 \\ 3342 \end{array}$	8315 7079 5815 4525 3209	$ \begin{array}{r} 121 \\ 124 \\ 126 \\ 129 \\ 132 \end{array} $	52 52 52 52 52 52
35 36 37 38 39	$\begin{array}{r} 3076 \\ 1731 \\ 0361 \\ 1.330 \ 8965 \\ 7544 \end{array}$	$2943 \\ 1695 \\ 0222 \\ 8824 \\ 7401$	2809 1459 0083 8683 7257	$2675 \\ 1323 \\ *9944 \\ 8541 \\ 7113$	$2541 \\ 1186 \\ *9805 \\ 8400 \\ 6969$	$2407 \\ 1049 \\ *9666 \\ 8258 \\ 6825$	$\begin{array}{r} 2272 \\ 0912 \\ *9526 \\ 8116 \\ 6680 \end{array}$	$2137 \\ 0774 \\ *9386 \\ 7973 \\ 6535$	$2002 \\ 0637 \\ *9246 \\ 7830 \\ 6390$	$1867 \\ 0499 \\ *9106 \\ 7688 \\ 6245$	$ 134 \\ 137 \\ 139 \\ 142 \\ 144 $	52 52 52 52 52
40 41 42 43 44	$\begin{array}{r} 6099\\ 4630\\ 3137\\ 1621\\ 0081 \end{array}$	5954 4482 2986 1468 *9926	5807 4333 2836 1314 *9770	$5661 \\ 4185 \\ 2685 \\ 1161 \\ *9614$	5514 4036 2533 1008 *9458	5368 3887 2382 0854 *9302	5221 3737 2230 0699 *9146	5073 3588 2078 0545 *8989	4926 3438 1926 0391 *8832	4778 3288 1773 0236 *8675	$ \begin{array}{r} 147 \\ 149 \\ 152 \\ 154 \\ 156 \end{array} $	52 52 52 52 52 52
45 46 47 48 49	$\begin{array}{c} 1,329 \\ 6933 \\ 5325 \\ 3695 \\ 2043 \end{array}$	8361 6773 5163 3531 1876	$\begin{array}{r} 8203 \\ 6613 \\ 5001 \\ 3366 \\ 1710 \end{array}$	$\begin{array}{r} 8045 \\ 6453 \\ 4838 \\ 3202 \\ 1543 \end{array}$	7886 6292 4675 3037 1376	$7728 \\ 6132 \\ 4512 \\ 2872 \\ 1209$	$7569 \\ 5971 \\ 4349 \\ 2706 \\ 1041$	$7411 \\5810 \\4186 \\2541 \\0874$	$7252 \\ 5648 \\ 4022 \\ 2375 \\ 0706$	7092 5487 3859 2209 0538	$ \begin{array}{r} 158 \\ 160 \\ 163 \\ 165 \\ 167 \end{array} $	52 52 52 52 52 52
50 51 52 53 54	$\begin{array}{c} 0369\\ 1.328 \\ \begin{array}{c} 8674\\ 6958\\ 5221\\ 3463 \end{array}$	$\begin{array}{c} 0201 \\ 8504 \\ 6785 \\ 5046 \\ 3286 \end{array}$	$\begin{array}{c} 0032\\ 8333\\ 6612\\ 4871\\ 3109 \end{array}$	*9863 8162 6439 4696 2931	*9694 7990 6266 4520 2754	*9524 7819 6092 4344 2576	*9355 7647 5918 4168 2398	*9185 7475 5744 3992 2220	*9015 7303 5570 3816 2041	*8845 7131 5396 3639 1863	$ \begin{array}{r} 169 \\ 171 \\ 174 \\ 176 \\ 178 \end{array} $	52 52 51 51 51
55 56 57 58 59	$1.327 \begin{array}{c} 1684 \\ 9885 \\ 8066 \\ 6226 \\ 4367 \end{array}$	$1505 \\9704 \\7883 \\6041 \\4180$	1326 9523 7699 5856 3993	$1146 \\9341 \\7516 \\5671 \\3806$	$\begin{array}{c} 0967\\ 9160\\ 7332\\ 5485\\ 3618\\ \end{array}$	0787 8978 7148 5299 3430	$\begin{array}{c} 0607 \\ 8796 \\ 6964 \\ 5113 \\ 3242 \end{array}$	$\begin{array}{r} 0427 \\ 8614 \\ 6780 \\ 4927 \\ 3054 \end{array}$	$\begin{array}{c} 0246 \\ 8431 \\ 6596 \\ 4741 \\ 2866 \end{array}$	$\begin{array}{c} 0066 \\ 8248 \\ 6411 \\ 4554 \\ 2677 \end{array}$	$ 180 \\ 182 \\ 184 \\ 186 \\ 188 $	51 51 51 51 51
60	2488											

• To get n_{5876} add $10^{-7} \times (n_{5876} - n_{5893})$ as tabulated in right-hand column.

48258-38-3

450 Journal of Research of the National Bureau of Standards [Vol. 20

TABLE 7.—General interpolation table for index of refraction of distilled water

t°C	4000	4020	4040	wave	lengtins	in angstro		1	1		$-10^7 \times \frac{dz}{d}$ ($\lambda = 4200$ Å
t°C	4000 (extra- polated)	(extra- po- lated)	(extra- po- lated)	4060	4080	4100	4120	4140	4160	4180	$(\lambda = 4200 \text{ A})$
0	1.34 41907	40022	38166	$36340 \\ 36304 \\ 36210 \\ 36058 \\ 35850$	34542	32771	31028	29312	27621	25956	3. 63. 122. 178. 232.
2	41871 41776	39986 39891 39739	38036	36210	34412	32642	30993 30899 30748	29183	27586 27493 27342	25828	122.
$\begin{array}{c} 1\\ 2\\ 3\\ 4\end{array}$	41623 41415	39739 39531	38130 38131 38036 37884 37676	36058 35850	$\begin{array}{r} 34506\\ 34412\\ 34260\\ 34053\end{array}$	$32736 \\ 32642 \\ 32490 \\ 32284$	30748 30541	29277 29183 29032 28826	27342 27136	$\begin{array}{r} 25920\\ 25922\\ 25828\\ 25678\\ 25472 \end{array}$	178. 232.
5	41154	39269	$37415 \\ 37102 \\ 36738 \\ 36326 \\ 3632$	$35589 \\ 35276 \\ 34913 \\ 34501 \\ 34049$	33792 33480 33117 32705	$\begin{array}{c} 32023\\ 31711 \end{array}$	30281	$\begin{array}{r} 28566 \\ 28254 \\ 27891 \\ 27480 \\ 27480 \end{array}$	$\begin{array}{r} 26876 \\ 26564 \\ 26202 \\ 25792 \\ 05224 \end{array}$	$\begin{array}{r} 25212 \\ 24900 \\ 24539 \\ 24128 \\ 290071 \end{array}$	285.
6 7	40840 40476	38956 38592	36738	35276 34913	33480 33117	$31711 \\ 31348 \\ 30936$	30281 29969 29606	28254 27891	26564 26202	24900 24539	336. 386.
5 6 7 8 9	4 1154 4 0840 4 0476 4 0063 3 9602	39269 38956 38592 38179 37719	$36326 \\ 35866$	$\begin{array}{r} 34501 \\ 34042 \end{array}$	$\begin{array}{r} 32705\\ 32246 \end{array}$	30936 30478	$29195 \\ 28736$	$27480 \\ 27022$	$25792 \\ 25334$	24128 23671	285. 336. 386. 434. 480.
-1072	$\times \frac{dn_{10}}{d\lambda} = 94.92$	93. 40	91. 93	90.49	89.08	87.71	86.37	85.06	83.77	82. 5	2
10	1.34 39096	37213 36662	35360	33536	31740	29973	28232 27682	26518	24830	23167	526.
11 12	38545 37950	36662 36068	$\begin{array}{r} 34810\\ 34215\end{array}$	32986 32392	31190 30597	29423 28830	27682 27090	$25969 \\ 25376$	24281 23689	22618 22027	526. 570. 612.
13 14	37313 36634	$35431 \\ 34753$	33579 32901	32392 31756 31078	$29961 \\ 29284$	28194 27518	$26454 \\ 25778$	$24742 \\ 24065$	$23054 \\ 22379$	21392 20717	654. 695.
15	35916 35158	34035	32183	30361	28567	26801	25062	23349	21663		734.
16 17	35158 34361	$33277 \\ 32481$	31426 30630	$29604 \\ 28809$	$27810 \\ 27016$	26044 25250	24306 23512	$22594 \\ 21800$	20908 20114	19247 18454	734. 773. 811.
18 19	34361 33528 32657	31648 30778	30630 29797 28928	$27976 \\ 27107$	$26183 \\ 25314$	25250 24418 23550	23512 22680 21812	20969 20102	20114 19284 18417	$\begin{array}{r} 20002 \\ 19247 \\ 18454 \\ 17624 \\ 16757 \end{array}$	848. 884.
20	31751	29872	28022	26202	24410	22646	20000	19198 18260	17514	15855	919.
$\frac{21}{22}$	30810 29835	$28931 \\ 27956$	$27082 \\ 26108$	$25262 \\ 24288$	$23471 \\ 22497$	$21707 \\ 20734$	19970 18998	18260 17288	$16576 \\ 15605$	14,918 13946	953. 987.
23 24	$\begin{array}{r} 31751\\ 30810\\ 29835\\ 28826\\ 27784 \end{array}$	26948 25907	$25100 \\ 24059$	$23281 \\ 22241$	$21490 \\ 20450$	$21707 \\20734 \\19728 \\18688$	$\begin{array}{r} 20303\\ 19970\\ 18998\\ 17992\\ 16953 \end{array}$	$ \begin{array}{r} 18200 \\ 17288 \\ 16283 \\ 15244 \end{array} $	$14600 \\ 13562$	$ 13946 \\ 12942 \\ 11904 $	919. 953. 987. 1020. 1053.
25	$26710 \\ 25605$		22986	21168		17617	$15882 \\ 14780$	14174	$12492 \\ 11390$	10835	1084.
26 27	25605 24468	$\begin{array}{r} 24833 \\ 23728 \\ 22592 \end{array}$	$\begin{array}{c} 21882\\ 20746 \end{array}$	$20064 \\ 18930$	$\begin{array}{c} 19379 \\ 18275 \\ 17141 \end{array}$	$16514 \\ 15380$	13646	$ \begin{array}{r} 13072 \\ 11939 \end{array} $	11390 10258 09096	$10835 \\ 09734 \\ 08602 \\ 07440 \\ 0740 \\ 070 \\ 07$	1116. 1146.
26 27 28 29	24468 23301 22104	$\begin{array}{c} 21426\\ 20230 \end{array}$	20746 19581 18385	$17764 \\ 16569$	$15976 \\ 14782$	$17617 \\ 16514 \\ 15380 \\ 14216 \\ 13022$	$12483 \\ 11289$	$ \begin{array}{r} 11939 \\ 10776 \\ 09583 \end{array} $	09096 07903	$07440 \\ 06248$	1084. 1116. 1146. 1176. 1206.
-107	$\times \frac{dn_{30}}{d\lambda} = 94.48$	92.96	91.49	90.06	88.65	87.28	85.93	84.62	83.35	82.10	
- 30	1.34 20878	19004	17160	15345	13558	11798	10066	08361	06682	05027	1235.
$\frac{31}{32}$	$\begin{array}{r}19623\\18340\end{array}$	19004 17750 16467 15157	$17160 \\ 15906 \\ 14624 \\ 13314 \\ 11076$	$15345 \\ 14092 \\ 12810 \\ 11501 \\ 10164$	$12305 \\ 11024$	$10546 \\ 09266$	08815 07535	07110 05831	05431 04153	03777 02499	1235. 1263. 1291. 1319.
31 32 33 34	1. 34 20378 19623 18340 17030 15690	$15157 \\ 13818$	$ \begin{array}{r} 13314 \\ 11976 \end{array} $	$ 11501 \\ 10164 $	$\begin{array}{r} 13558 \\ 12305 \\ 11024 \\ 09716 \\ 08379 \end{array}$	$\begin{array}{c} 11798 \\ 10546 \\ 09266 \\ 07958 \\ 06622 \end{array}$	$\begin{array}{c} 10000\\ 08815\\ 07535\\ 06228\\ 04893 \end{array}$	$\begin{array}{c} 08361 \\ 07110 \\ 05831 \\ 04524 \\ 03190 \end{array}$	$\begin{array}{c} 00082 \\ 05431 \\ 04153 \\ 02846 \\ 01512 \end{array}$	01194 *99860	1319. 1346.
	14324	12453		08800	07016	05260	03531	01828	00152	*98500	1372.
36 37	12932 11513	11061	09221	07409	05626	03871	02142	00440	*98764	*97114 *95701	1399. 1425
35 36 37 38 39	14324 12932 11513 10068 08598	$\begin{array}{c} 12453 \\ 11061 \\ 09643 \\ 08199 \\ 06730 \end{array}$	$\begin{array}{c} 10612 \\ 09221 \\ 07804 \\ 06360 \\ 04892 \end{array}$	08800 07409 05993 04550 03082	07016 05626 04210 02768 01301	05260 03871 02455 01014 *99548	03531 02142 00728 *99287 *97822	01828 00440 *99027 *97586 *96122	00152 *98764 *97351 *95912 *94448	*98500 *97114 *95701 *94263 *92799	1372. 1399. 1425. 1450. 1475.
39 40	08598	05236	03398	01589	*99809	*08056	*06331	*94632	*92958	*92799	1475.
41 42	05583	$\begin{array}{c} 05236 \\ 03716 \\ 02172 \end{array}$	01879	01589 00071 *98529	*99809 *98292 *96750	*96540 *94999 *93434	*94815	*93117 *91577	*91444 *89905	*91310 *89796 *88259 *86697	1525.
43	07103 05583 04038 02470 00877	00604	03398 01879 00336 *98769	*96963	*95184	*93434	*94815 *93275 *91711 *90123	*90014	*88343	*86697	1500. 1525. 1549. 1573. 1596.
44 45	1. 33 99260	*99013 97397	-9/1/8	*95372 93758	*93595 91982	*91845	*90123	*88426	*86756	*85111 83502	1596. 1620.
45 46 47 48	97621	97397 95758 94097	93926	92121	90346	90233 88598	86877	85182	83513	81869	1643.
48	1.33 99260 97621 95958 94273 92565	94097 92412 90705	95563 93926 92264 90581	$90461 \\ 88778$	90346 88686 87004	86939 85258	88511 86877 85219 83539	86816 85182 83525 81846	85146 83513 81857 80178	83502 81869 80214 78536	1620. 1643. 1665. 1688. 1710.
49		1	88874	87073	85300	83554	81836	80144	78477	76836	1710.
-107	$\times \frac{dn_{50}}{d\lambda} = 93.72$	92. 21	90.74	89.32	87.92	86.56	85. 22	83.92	82.65	81.40	
50 51	$1.33{\begin{array}{c}90834\\89082\end{array}}$	88975 87224	$87146 \\ 85395$	85345 83596	83573 81824	81828 80080	80111 78364	78419 76673	76754 75009	75113 73369	1732. 1754.
52	87308	85451	83623	81824	80054	78311	76595	74905	73241	71603	1776.
53 54	85512 83694	83656 81839	81829 80014	80031 78217	$78262 \\ 76448$	76520 74707	74805 72993	$73116 \\ 71305$	$\begin{array}{c} 71453 \\ 69643 \end{array}$	69815 68006	1797. 1818.
55	81856	80002	78177	76381	74614	72873	71160	69474	67812	66176	1839.
56 57	79996 78116	$78143 \\ 76264$	$\begin{array}{r} 76320\\74441\end{array}$	$74525 \\ 72647$	72758 70882	$71019 \\ 69143$	$69307 \\ 67432$	$\begin{array}{c} 67621\\ 65747\end{array}$	$65960 \\ 64088$	$64325 \\ 62454$	1860. 1880.
58 59	76214 74293	$74364 \\ 72443$	$72542 \\ 70623$	$70749 \\ 68831$	$68985 \\ 67067$	$67248 \\ 65331$	$65537 \\ 63622$	$63853 \\ 61939$	$62195 \\ 60282$		1901. 1921.
00	14290	12110	10025	00001	01001	00001	00022	60004	58348	56716	1921.

Tilton Taylor]

Range: (15-30°C) Refractivity of Distilled Water

TABLE 7.—General interpolation table for index of refraction of distilled water—Con.

°C		1	1	1		ns in ang	1			1	
	4200	4220	4240	4260	4280	4300	4320	4340	4360	4380	4400
0 1 2 3 4	1.34 24315 24281 24188 24038 23832	22699 22666 22572 22422 22217	$\begin{array}{c} 21107 \\ 21073 \\ 20980 \\ 20830 \\ 20625 \end{array}$	19538 19504 19412 19262 19057	17991 17958 17866 17716 17511	$\begin{array}{c} 16467 \\ 16434 \\ 16342 \\ 16193 \\ 15988 \end{array}$	$\begin{array}{r} 14965\\ 14932\\ 14840\\ 14691\\ 14486\end{array}$	$\begin{array}{r} 13484 \\ 13451 \\ 13360 \\ 13211 \\ 13006 \end{array}$	$\begin{array}{c} 12024 \\ 11991 \\ 11900 \\ 11752 \\ 11547 \end{array}$	$10584 \\ 10552 \\ 10460 \\ 10312 \\ 10108$	0916 0913 0904 0889 0868
5 6 7 8 9	23573 23261 22900 22490 22032	21958 21647 21286 20876 20418	20366 20056 19695 19285 18828	18798 18488 18127 17718 17261	$\begin{array}{r} 17253 \\ 16943 \\ 16582 \\ 16173 \\ 15717 \end{array}$	15730 15420 15060 14651 14195	14229 13919 13559 13150 12695	12749 12439 12080 11671 11216	$11290 \\10980 \\10621 \\10213 \\09758$	09851 09542 09183 08775 08320	0843 0812 0776 0735 0690
-10	$dx \times \frac{dn_{10}}{d\lambda} = 81.29$	80.08	78.92	77.77	76.64	75. 54	74.46	73.41	72.38	71.37	70. 38
10 11 12 13 14	$\begin{array}{r} 1.34 \ \ 21529 \\ 20981 \\ 20389 \\ 19756 \\ 19080 \end{array}$	19915 19368 18776 18143 17468	18326 17778 17187 16554 15879	$\begin{array}{c} 16759 \\ 16212 \\ 15621 \\ 14988 \\ 14314 \end{array}$	$\begin{array}{c c} 15215 \\ 14668 \\ 14078 \\ 13445 \\ 12771 \end{array}$	$\begin{array}{c c} 13693 \\ 13146 \\ 12556 \\ 11924 \\ 11251 \end{array}$	$\begin{array}{c} 12193 \\ 11647 \\ 11057 \\ 10425 \\ 09752 \end{array}$	10714 10168 09579 08948 08275	09257 08711 08122 07491 06818	$\begin{array}{c} 07819 \\ 07274 \\ 06685 \\ 06054 \\ 05382 \end{array}$	0640 0585 0526 0463 0396
15 16 17 18 19	$18365 \\ 17611 \\ 16818 \\ 15989 \\ 15122$	$\begin{array}{r} 16753 \\ 15999 \\ 15207 \\ 14378 \\ 13512 \end{array}$	$\begin{array}{c} 15165\\ 14412\\ 13620\\ 12791\\ 11925 \end{array}$	$\begin{array}{r} 13600 \\ 12847 \\ 12055 \\ 11227 \\ 10362 \end{array}$	$12058 \\ 11305 \\ 10514 \\ 09685 \\ 08821$	10538 09785 08994 08166 07302	09039 08287 07497 06669 05805	$\begin{array}{c} 07562 \\ 06810 \\ 06021 \\ 05194 \\ 04330 \end{array}$	$\begin{array}{c} 06106 \\ 05355 \\ 04565 \\ 03738 \\ 02875 \end{array}$	04670 03919 03130 02304 01441	0325 0250 0171 0088 0002
20 21 22 23 24	14220 13284 12313 11309 10272	$12610 \\ 11674 \\ 10704 \\ 09700 \\ 08664 \\ 05505$	11024 10088 09118 08115 07079	09461 08526 07556 06553 05518	07920 06986 06016 05014 03979	06402 05468 04499 03497 02462	04906 03972 03004 02002 00968	03431 02497 01529 00528 *99495	01977 01043 00076 *99075 *98042	00543 *99610 *98643 *97643 *96610	*9912 *9819 *9723 *9623 *9519
25 26 27 28 29	09203 08102 06971 05810 04618	07595 06495 05364 04203 03012	$\begin{array}{c} 06011\\ 04912\\ 03781\\ 02621\\ 01430 \end{array}$	04450 03351 02221 01061 *99872	02912 01813 00684 *99524 *98335	01396 00298 *99169 *98010 *96821	*99902 *98804 *97676 *96517 *95329	*98429 *97332 *96204 *95046 *93858	*96977 *95880 *94753 *93595 *92408	*95545 *94449 *93322 *92165 *90978	*9413 *9303 *9191 *9075 *8956
-10	$\sqrt[7]{\frac{dn_{20}}{d\lambda}} = 80.86$	79.66	78.50	77.36	76.23	75.13	74.04	73.00	71.97	70.96	69.98
30 31 32 33 34	$\begin{array}{c} \textbf{1.34} & \textbf{03398} \\ & \textbf{02148} \\ & \textbf{00871} \\ \textbf{1.33} & \textbf{99566} \\ & \textbf{98233} \end{array}$	01793 00544 *99267 97962 96630	00211 *98963 *97687 96383 95051	*98653 *97405 *96129 94826 93495	*97117 *95870 *94595 93292 91962	*95604 *94357 *93082 91780 90450	*94112 *92866 *91592 90290 88961	*92642 *91396 *90123 88821 87493	*91192 *89947 *88674 87373 86045	*89763 *88518 *87246 85946 84618	*8838 *8711 *8583 8453 8321
35 36 37 38 39	96874 95488 94076 92638 91175	95272 93886 92475 91038 89575	93693 92308 90897 89461 87999	$\begin{array}{r} 92137 \\ 90753 \\ 89343 \\ 87907 \\ 86446 \end{array}$	90604 89221 87811 86376 84916	89094 87711 86302 84867 83408	87605 86223 84814 83380 81921	86138 84756 83348 81915 80456	84690 83310 81902 80470 79012	83264 81884 80477 79045 77587	8183 8047 7907 7764 7618
40 41 42 43 44	89687 88174 86637 85076 83490	88088 86576 85039 83479 81894	86512 85001 83465 81905 80322	84960 83449 81914 80355 78772	83430 81920 80386 78827 77245	81923 80413 78880 77322 75740	80437 78928 77395 75838 74257	78972 77464 75932 74376 72796	77529 76021 74489 72934 71354	76105 74598 73067 71512 69933	7470 7319 7160 7011 6853
45 46 47 48 49	81882 80250 78596 76919 75219	80287 78656 77002 75326 73627	78715 77085 75432 73756 72058	77166 75536 73884 72209 70512	75640 74011 72359 70685 68989	74136 72508 70857 69184 67488	72653 71026 69376 67703 66008	$71192 \\ 69566 \\ 67916 \\ 66244 \\ 64550$	$\begin{array}{c} 69752 \\ 68126 \\ 66477 \\ 64806 \\ 63112 \end{array}$	$\begin{array}{c} 68331 \\ 66706 \\ 65058 \\ 63388 \\ 61695 \end{array}$	6693 6530 6364 6199 6029
-107	$d \times \frac{dn_{50}}{d\lambda} = 80.18$	78.98	77.83	76. 70	75. 57	74.48	73.40	72.36	71.34	70.33	69.3
50 51 52 53 54	$\begin{array}{c} 1.\ 33 \ \ 73498 \\ 71754 \\ 69989 \\ 68202 \\ 66394 \end{array}$	71906 70163 68399 66613 64806	70338 68596 66832 65047 63241	68793 67052 65289 63504 61699	67270 65530 63768 61984 60180	65770 64030 62269 60486 58683	64291 62552 60792 59010 57207	62834 61096 59336 57555 55753	61397 59660 57901 56120 54319	59980 58244 56486 54706 52905	5858 5684 5509 5331 5151
	$\begin{array}{r} 64565\\ 62715\\ 60844\\ 58953\\ 57041 \end{array}$	62977 61128 59258 57368 55458	61413 59565 57696 55807 53897	59872 58025 56157 54269 52360	58354 56508 54640 52753 50845	$56858 \\ 55012 \\ 53146 \\ 51259 \\ 49352$	55383 53538 51673 49787 47881	$53929 \\ 52085 \\ 50221 \\ 48336 \\ 46431$	$52496 \\ 50653 \\ 48789 \\ 46905 \\ 45001$	51084 49241 47378 45495 43591	4969 478- 4599 4410 4220
58 59 60						51259 49352 47425					

TABLE 7.—General interpolation table for index of refraction of distilled water—Con.

t°C	Wave lengths in angstroms										$-10^7 \times \frac{d^2}{d}$ ($\lambda = 4600 \text{ A}$
0	4400	4420	4440	4460	4480	4500	4520	4540	4560	4580	$(\lambda = 4600 \text{ A})$
0 1 2 3 4	$\begin{array}{c} 1.34 & 09164 \\ 09132 \\ 09041 \\ 08893 \\ 08689 \end{array}$	07764 07732 07641 07492 07290	06383 06352 06261 06112 05910	05021 04990 04899 04750 04549	03678 03646 03556 03408 03206	02352 02321 02230 02083 01881	01044 01013 00923 00776 00574	*99753 *99722 *99633 *99486 *99284	*98480 *98449 *98359 *98213 *98011	*97223 *97192 *97102 *96956 *96754	$\begin{array}{c c} 0. \\ 60. \\ 118. \\ 174. \\ 228. \end{array}$
5 6 7 8 9	$\begin{array}{c} 08432 \\ 08124 \\ 07765 \\ 07357 \\ 06902 \end{array}$	$\begin{array}{c} 0.7033 \\ 06725 \\ 06366 \\ 05959 \\ 05504 \end{array}$	$\begin{array}{c} 05653 \\ 05345 \\ 04987 \\ 04580 \\ 04126 \end{array}$	04292 03984 03626 03220 02766	02950 02642 02284 01878 01424	01625 01318 00960 00554 00100	00318 00011 *99653 *99247 *98794	*99028 *98721 *98364 *97959 *97506	*97756 *97449 *97092 *96687 *96234	*96500 *96193 *95836 *95431 *94979	280. 331. 380. 428. 475.
-107>	$<\frac{dn_{10}}{d\lambda}=70.38$	69.40	68.45	67.53	66.62	65.72	64.85	63.99	63.16	62.33	
10 11 12 13 14	$\begin{array}{cccc} 1.34 & 06402 \\ & 05857 \\ & 05269 \\ & 04638 \\ & 03966 \end{array}$	$\begin{array}{c} 05004 \\ 04460 \\ 03871 \\ 03241 \\ 02570 \end{array}$	03626 03081 02494 01864 01193	02266 01722 01134 00505 *99834	00925 00381 *99794 *99164 *98494	*99601 *99058 *98471 *97842 *97172	*98296 *97752 *97166 *96537 *95868	*97007 *96464 *95878 *95250 *94580	*95736 *95193 *94607 *93979 *93310	*94481 *93939 *93353 *92726 *92057	520. 563. 606. 648. 688.
15 16 17 18 19	03255 02504 01715 00889 00027	01858 01108 00320 *99494 *98632	00482 *99732 *98944 *98118 *97257	*99124 *98374 *97586 *96761 *95900	*97784 *97034 *96247 *95423 *94562	*96462 *95713 *94926 *94102 *93242	*95158 *94409 *93623 *92799 *91939	*93871 *93123 *92337 *91513 *90654	*92602 *91854 *91068 *90245 *89386	*91348 *90601 *89815 *88993 *88134	727 766 803 840 876
20 21 22 23 24	1.33 99129 98197 97230 96230 95198	97735 96803 95837 94837 93805	96360 95428 94462 93464 92432	95004 94072 93107 92109 91078	93666 92735 91770 90772 89741	92346 91415 90451 89453 88423	91044 90113 89150 88152 87122	89759 88829 87866 86869 85839	88491 87562 86598 85602 84573	87239 86310 85348 84352 83323	911. 945. 979. 1011. 1044.
25 26 27 28 29	94134 93038 91911 90755 89569	92741 91646 90520 89364 88179	91369 90274 89148 87993 86808	90014 88920 87795 86640 85456	88679 87585 86460 85306 84122	87361 86268 85144 83989 82806	86061 84968 83844 82690 81507	84778 83686 82562 81409 80226	83512 82420 81298 80145 78963	82263 81171 80049 78897 77715	1075 1106 1136 1166 1195
-1072	$\times \frac{dn_{30}}{d\lambda} = 69.98$	69.00	68.05	67,13	66.22	65.33	64.45	63.60	62.76	61.94	
30 31 32 33 34	$ \begin{vmatrix} 1.33 & 88354 \\ & 87110 \\ & 85838 \\ & 84538 \\ & 83211 \end{vmatrix} $	86964 85720 84449 83150 81824	85593 84351 83080 81781 80456	84242 82999 81729 80431 79106	82908 81666 80397 79099 77774	81593 80352 79082 77785 76461	80295 79054 77786 76489 75166	79015 77774 76506 75210 73887	77751 76512 75244 73948 72626	76504 75265 73998 72703 71381	1224 1252 1280 1308 1334
35 36 37 38 39	81858 80478 79072 77640 76183	80471 79091 77686 76255 74799	79103 77724 76319 74889 73433	77754 76376 74971 73542 72087	76423 75045 73642 72213 70758	75110 73733 72330 70902 69448	$73815 \\72439 \\71036 \\69608 \\68155$	72538 71161 69759 68332 66879	$\begin{array}{c} 71277 \\ 69901 \\ 68500 \\ 67073 \\ 65621 \end{array}$	70032 68657 67256 65830 64378	$ 1361 \\ 1387 \\ 1413 \\ 1438 \\ 1463 $
40 41 42 43 44	74702 73195 71665 70110 68532	73318 71812 70282 68728 67151	71953 70448 68919 67366 65789	$\begin{array}{c} 70607 \\ 69102 \\ 67574 \\ 66021 \\ 64445 \end{array}$	69279 67775 66247 64695 63120	67969 66466 64938 63387 61812	$\begin{array}{r} 66677\\ 65174\\ 63647\\ 62097\\ 60522 \end{array}$	$\begin{array}{r} 65402 \\ 63900 \\ 62374 \\ 60824 \\ 59250 \end{array}$	$\begin{array}{c} 64144\\ 62642\\ 61117\\ 59567\\ 57994 \end{array}$	62902 61401 59876 58327 56755	$ \begin{array}{c c} 1488\\ 1512\\ 1536\\ 1560\\ 1583 \end{array} $
45 46 47 48 49	66931 65307 63659 61990 60298	$\begin{array}{c} 65550 \\ 63927 \\ 62280 \\ 60611 \\ 58920 \end{array}$	$\begin{array}{c} 64189 \\ 62566 \\ 60920 \\ 59252 \\ 57561 \end{array}$	$\begin{array}{c} 62846 \\ 61223 \\ 59578 \\ 57911 \\ 56221 \end{array}$	$\begin{array}{c} 61521 \\ 59899 \\ 58255 \\ 56588 \\ 54898 \end{array}$	$\begin{array}{c} 60214 \\ 58593 \\ 56949 \\ 55283 \\ 53594 \end{array}$	58925 57305 55661 53996 52308	57653 56033 54391 52726 51039	56398 54779 53137 51473 49786	55159 53541 51900 50236 48550	$ \begin{array}{c c} 1606 \\ 1629 \\ 1652 \\ 1674 \\ 1696 \end{array} $
-107	$\times \frac{dn_{50}}{d\lambda} = 69.35$	68.38	67.44	66.52	65.62	64.74	63.86	63.01	62.18	61.37	
50 51 52 53 54	$ \begin{vmatrix} 1.33 & 58584 \\ & 56848 \\ & 55090 \\ & 53312 \\ & 51512 \end{vmatrix} $	57206 55471 53714 51936 50137	55848 54114 52358 50580 48782	$\begin{array}{c c} 54509 \\ 52775 \\ 51020 \\ 49243 \\ 47446 \end{array}$	53187 51454 49700 47924 46127	$51884 \\ 50152 \\ 48398 \\ 46623 \\ 44826$	50598 48866 47113 45339 43543	49330 47599 45846 44072 42278	48078 46347 44596 42823 41028	46842 45113 43362 41589 39796	1718 1739 1761 1782 1803
55 56 57 58 59	$\begin{array}{r} 49691 \\ 47849 \\ 45987 \\ 44104 \\ 42202 \end{array}$	48317 46476 44615 42733 40831	$\begin{array}{r} 46963 \\ 45123 \\ 43262 \\ 41381 \\ 39480 \end{array}$	45627 43788 41928 40048 38147	44309 42471 40612 38732 36833	43009 41171 39313 37434 35536	$\begin{array}{r} 41727\\ 39890\\ 38032\\ 36154\\ 34256\end{array}$	40462 38626 36769 34892 32994	39214 37378 35522 33645 31749	37982 36146 34291 32416 30520	1823 1844 1864 1885 1905
60	40279	38909	37559	36227	34913	33617	32338	31077	29832	28604	1924

Tilton Taylor]

TABLE 7.—General	interpolation ta	for index of	f refraction of	distilled water—Con.
------------------	------------------	--------------	-----------------	----------------------

°C -				Wa	ve lengtl	ns in ang	stroms				
	4600	4620	4640	4660	4680	4700	4720	4740	4760	4780	4800
0 1 2 3 4	1.33 95982 95951 95862 95716 95514	94757 94727 94638 94492 94290	93548 93518 93429 93283 93082	92357 92324 92235 92090 91889	91175 91146 91057 90912 90711	90011 89982 89894 89748 89548	88862 88832 88744 88599 88399	87726 87698 87610 87465 87265	$\begin{array}{r} 86605 \\ 86577 \\ 86489 \\ 86344 \\ 86144 \end{array}$	85498 85469 85381 85237 85038	84403 84375 84288 84143 83944
56789	95260 94954 94597 94192 93740	94036 93730 93374 92969 92518	92828 92522 92166 91762 91310	91635 91330 90974 90570 90119	90457 90152 89797 89393 88942	89294 88989 88634 88231 87780	88146 87841 87486 87083 86633	87012 86707 86353 85950 85500	85891 85587 85233 84830 84380	84785 84481 84127 83724 83275	83692 83388 83034 82632 82632 82182
-107	$\times \frac{dn_{10}}{d\lambda} = 61.52$	60.73	59.96	59. 20	58.45	57.72	57.00	56.30	55.61	54.93	54. 27
10 11 12 13 14	1.33 93243 92701 92115 91488 90820	92020 91478 90894 90266 89598	90813 90272 89687 89061 88393	89622 89081 88496 87870 87203	88446 87905 87320 86694 86027	87284 86743 86160 85534 84867	86137 85596 85013 84387 83721	85004 84464 83881 83256 82589	83885 83345 82762 82137 81472	82780 82240 81658 81033 80368	81688 81148 80566 79942 79277
15 16 17 18 19	90111 89364 88579 87757 86898	88890 88144 87359 86537 85679	$87685 \\ 86939 \\ 86154 \\ 85333 \\ 84475$	$\begin{array}{r} 86495 \\ 85749 \\ 84965 \\ 84144 \\ 83287 \end{array}$	85320 84575 83791 82970 82113	$\begin{array}{r} 84160 \\ 83415 \\ 82632 \\ 81811 \\ 80955 \end{array}$	83015 82270 81487 80667 79810	81884 81139 80356 79536 78681	80766 80022 79239 78420 77564	79662 78918 78136 77317 76462	78572 77828 77046 76228 75373
20 21 22 23 24	86004 85076 84114 83118 82090	84785 83857 82895 81900 80872	83582 82654 81693 80698 79671	82394 81467 80505 79511 78484	81221 80294 79333 78339 77313	80063 79136 78176 77182 76156	78919 77993 77033 76040 75014	77789 76864 75904 74911 73886	76674 75748 74789 73797 72772	$\begin{array}{c} 75572 \\ 74647 \\ 73688 \\ 72696 \\ 71672 \end{array}$	74483 73558 72600 71609 70583
25 26 27 28 29	81030 79939 78817 77665 76484	79813 78722 77601 76450 75269	78612 77522 76401 75250 74069	$\begin{array}{c} 77426 \\ 76336 \\ 75216 \\ 74065 \\ 72885 \end{array}$	$76255 \\ 75165 \\ 74045 \\ 72896 \\ 71716$	75098 74010 72890 71741 70562	73957 72868 71749 70600 69422	$72829 \\71741 \\70622 \\69474 \\68296$	$71716 \\ 70628 \\ 69510 \\ 68362 \\ 67184$	$70616 \\ 69528 \\ 68411 \\ 67263 \\ 66086$	69529 68442 67329 66178 65001
-107	$\times \frac{dn_{30}}{d\lambda} = 61.13$	60. 34	59.57	58.81	58.06	57.34	56.62	55.92	55. 23	54. 55	53. 89
30 31 32 33 34	$\begin{array}{c} 1.33 & 75274 \\ 74035 \\ 72768 \\ 71474 \\ 70152 \end{array}$	74059 72821 71554 70261 68940	72860 71622 70356 69063 67743	$71676 \\70439 \\69174 \\67881 \\66561$	$70507 \\ 69271 \\ 68006 \\ 66714 \\ 65394$	$\begin{array}{c} 69354\\ 68117\\ 66853\\ 65561\\ 64242\end{array}$	$\begin{array}{r} 68214\\ 66978\\ 65714\\ 64423\\ 63105\end{array}$	$\begin{array}{r} 67089 \\ 65854 \\ 64590 \\ 63299 \\ 61981 \end{array}$	$\begin{array}{r} 65978 \\ 64743 \\ 63480 \\ 62190 \\ 60872 \end{array}$	$\begin{array}{c} 64880\\ 63645\\ 62383\\ 61093\\ 59776\end{array}$	6379 6256 6130 6001 5869
35 36 37 38 39	$\begin{array}{c} 68804 \\ 67430 \\ 66029 \\ 64604 \\ 63152 \end{array}$	$ \begin{array}{r} 67592 \\ 66218 \\ 64818 \\ 63393 \\ 61943 \end{array} $	$\begin{array}{c} 66395 \\ 65022 \\ 63623 \\ 62198 \\ 60748 \end{array}$	$\begin{array}{c} 65214\\ 63841\\ 62443\\ 61018\\ 59569\end{array}$	$\begin{array}{r} 64048 \\ 62676 \\ 61278 \\ 59854 \\ 58405 \end{array}$	$\begin{array}{r} 62897 \\ 61525 \\ 60127 \\ 58704 \\ 57256 \end{array}$	$\begin{array}{r} 61760 \\ 60388 \\ 58991 \\ 57568 \\ 56121 \end{array}$	$\begin{array}{r} 60637\\ 59266\\ 57869\\ 56447\\ 55000 \end{array}$	59528 58158 56762 55340 53893	$\begin{array}{r} 58433 \\ 57063 \\ 55667 \\ 54246 \\ 52800 \end{array}$	5735 5598 5458 5316 5172
40 41 42 43 44	61677 60176 58652 57104 55532	$\begin{array}{r} 60467 \\ 58968 \\ 57444 \\ 55896 \\ 54325 \end{array}$	$59274 \\ 57774 \\ 56251 \\ 54704 \\ 53134$	58095 56596 55074 53528 51957	$56932 \\ 55434 \\ 53912 \\ 52366 \\ 50796$	$55783 \\ 54285 \\ 52764 \\ 51218 \\ 49650$	$54648 \\ 53152 \\ 51630 \\ 50086 \\ 48518$	$\begin{array}{r} 53528\\ 52032\\ 50512\\ 48967\\ 47400\end{array}$	$52422 \\ 50926 \\ 49406 \\ 47863 \\ 46296$	$51329 \\ 49834 \\ 48315 \\ 46772 \\ 45205$	5025 4875 4723 4569 4412
45 46 47 48 49	53937 52319 50678 49015 47330	$52731 \\ 51114 \\ 49473 \\ 47811 \\ 46126$	$51540 \\ 49923 \\ 48284 \\ 46622 \\ 44938$	50364 48748 47109 45448 43765	49204 47588 45950 44289 42607	$\begin{array}{r} 48058 \\ 46443 \\ 44805 \\ 43145 \\ 41463 \end{array}$	$\begin{array}{r} 46926 \\ 45312 \\ 43675 \\ 42016 \\ 40334 \end{array}$	$\begin{array}{r} 45809 \\ 44195 \\ 42559 \\ 40900 \\ 39219 \end{array}$	44705 43092 41456 39798 38118	43615 4200 3 40368 38710 37030	42539 4092 39293 3763 35959
-107	$\times \frac{dn_{50}}{d\lambda} = 60.56$	59.77	59.01	58.25	57. 51	56.78	56.07	55.37	54.69	54.02	53.36
50 51 52 53 54	$\begin{array}{r} 1.33 45623 \\ 43894 \\ 42144 \\ 40372 \\ 38579 \end{array}$	44420 42692 40942 39171 37379	43232 41505 39755 37985 36194	42060 40333 38584 36815 35024	40902 39176 37428 35659 33869	$\begin{array}{c} 39759\\ 38033\\ 36286\\ 34518\\ 32728 \end{array}$	$38631 \\ 36906 \\ 35159 \\ 33391 \\ 31603$	$37516 \\ 35792 \\ 34046 \\ 32279 \\ 30491$	$36416 \\ 34692 \\ 32947 \\ 31180 \\ 29393$	35329 33605 31861 30095 28308	3425 3253 3078 2902 2723
55	$36766 \\ 34932$	35566 33732	$34382 \\ 32549$	$33212 \\ 31380$	32058 30226	30918 29088	29793 27963	$28682 \\ 26852$	$27584 \\ 25756$	26500 24672	2543 2360

454	Journal of	of	Research	of	the	National	Bureau	of	Standards	[Vol. 20	
-----	------------	----	----------	----	-----	----------	--------	----	-----------	----------	--

				Wave l	engths ir	angstro	ms				$-10^7 \times \frac{dn}{dt}$
t°C	4800	4820	4840	4860	4880	4900	4920	4940	4960	4980	$-10^{7} \times \frac{dn}{dt}$ $(\lambda = 5000 \text{ A})$
0 1 2 3 4	1.33 84403 84375 84288 84143 83944	83322 83294 83207 83063 82864	82254 82226 82139 81995 81796	81199 81171 81084 80940 80742	80156 80128 80041 79898 79699	79125 79097 79011 78868 78669	78106 78078 77992 77849 77651	77099 77072 76985 76842 76645	76103 76076 75990 75848 75650	$75119 \\ 75092 \\ 75006 \\ 74864 \\ 74667$	[-3.4] 56.4 114.2 170.0 223.9
56789	83692 83388 83034 82632 82182	82612 82308 81954 81552 81103	81544 81241 80888 80486 80037	80490 80187 79834 79432 78984	79448 79145 78792 78391 77943	78418 78115 77763 77362 76914	77400 77098 76745 76345 75897	76394 76092 75740 75339 74892	75399 75097 74746 74345 73898	74416 74114 73763 73363 72916	$\begin{array}{c} 276.1\\ 326.8\\ 375.7\\ 423.3\\ 469.5\end{array}$
-107>	$\langle \frac{dn_{10}}{d\lambda} = 54.27$	53.62	52.98	52.35	51.73	51.13	50.53	49.95	49.38	48.82	
10 11 12 13 14	1,33 81688 81148 80566 79942 79277	80609 80070 79488 78864 78199	79543 79004 78423 77799 77135	78490 77951 77370 76747 76083	77449 76911 76330 75707 75043	76420 75883 75302 74679 74016	75404 74866 74286 73664 73000	74399 73862 73282 72660 71997	73406 72869 72289 71667 71005	72424 71887 71308 70686 70024	514. 4 557. 9 600. 4 641. 7 681. 9
15 16 17 18 19	78572 77828 77046 76228 75373	77495 76751 75970 75152 74297	76430 75687 74906 74088 73235	75379 74636 73855 73038 72184	74340 73597 72817 72000 71146	73313 72570 71791 70974 70121	72298 71556 70776 69960 69107	71294 70553 69774 68958 68106	70302 69561 68783 67967 67115	69322 68581 67803 66988 66136	721. 2 759. 4 796. 7 833. 3 868. 8
20 21 22 23 24	74483 73558 72600 71609 70585	73408 72484 71526 70534 69511	72345 71421 70464 69473 68450	71295 70372 69415 68424 67402	70258 69335 68378 67388 66366	69233 68310 67354 66364 65342	68220 67297 66341 65352 64331	67218 66296 65340 64352 63331	66228 65306 64351 63363 62342	65249 64328 63373 62385 61365	903.7 937.8 971.1 1003.8 1035.8
25 26 27 28 29	69529 68442 67325 66178 65001	68456 67370 66253 65106 63930	67395 66309 65193 64046 62871	$\begin{array}{c} 66348 \\ 65262 \\ 64146 \\ 63000 \\ 61825 \end{array}$	$\begin{array}{c} 65312 \\ 64227 \\ 63111 \\ 61966 \\ 60791 \end{array}$	64289 63204 62089 60944 59769	63278 62193 61079 59934 58760	$\begin{array}{c} 62278 \\ 61194 \\ 60080 \\ 58936 \\ 57762 \end{array}$	61290 60207 59093 57949 56776	60313 59230 58117 56972 55801	1067. 2 1097. 9 1128. 0 1157. 7 1186. 9
-1072	$\times \frac{dn_{30}}{d\lambda} = 53.89$	53.24	52.60	51.98	51.36	50.75	50.16	49.58	49.01	48.45	
30 31 32 33 34	${ \begin{array}{c} 1.33 & 63796 \\ 62562 \\ 61300 \\ 60010 \\ 58694 \end{array} } }$	$\begin{array}{r} 62724\\ 61491\\ 60229\\ 58940\\ 57624 \end{array}$	$61666 \\ 60433 \\ 59172 \\ 57884 \\ 56568$	60620 59388 58127 56839 55524	59587 58355 57095 55807 54493	58566 57334 56075 54788 53474	57557 56326 55066 53780 52466	56560 55329 54070 52784 51471	55574 54343 53085 51800 50487	54599 53369 52112 50826 49514	1215. 41243. 51271. 11298. 31325. 1
35 36 37 38 39	57351 55981 54586 53166 51720	$\begin{array}{r} 56282 \\ 54913 \\ 53518 \\ 52098 \\ 50653 \end{array}$	55226 53858 52464 51044 49600	$\begin{array}{r} 54183\\ 52815\\ 51421\\ 50002\\ 48558\end{array}$	53152 51785 50391 48973 47529	$52133 \\ 50766 \\ 49374 \\ 47956 \\ 46513$	51126 49760 48368 46950 45508	50131 48765 47374 45957 44515	49148 47782 46391 44975 43533	$\begin{array}{r} 48175 \\ 46810 \\ 45420 \\ 44004 \\ 42563 \end{array}$	$1351. 4 \\ 1377. 3 \\ 1402. 9 \\ 1428. 1 \\ 1452. 9$
40 41 42 43 44	50250 48755 47236 45694 44128	49184 47690 46171 44629 43064	48130 46637 45119 43578 42013	47089 45596 44079 42538 40974	46061 44569 43052 41512 39948	45045 43553 42037 40497 38934	44041 42549 41034 39494 37932	43048 41557 40042 38503 36941	42067 40576 39062 37524 35962	41097 39607 38093 36556 34994	1477. 4 1501. 6 1525. 4 1549. 0 1572. 2
45 46 47 48 49	42539 40927 39292 37635 35956	$\begin{array}{r} 41475\\ 39864\\ 38230\\ 36573\\ 34895 \end{array}$	40425 38814 37180 35525 33847	$\begin{array}{r} 39387\\ 37776\\ 36143\\ 34488\\ 32811 \end{array}$	38361 36751 35119 33464 31787	37347 35738 34106 32452 30776	36346 34737 33106 31452 29777	35356 33748 32117 30464 28789	34377 32770 31140 29487 27813	$\begin{array}{r} 33410 \\ 31803 \\ 30174 \\ 28522 \\ 26848 \end{array}$	$\begin{array}{r} 1595.1\\ 1617.8\\ 1640.3\\ 1662.4\\ 1684.4 \end{array}$
-1072	$\times \frac{dn_{50}}{d\lambda} = 53.36$	52.70	52.07	51.45	50.84	50.24	49.65	49.08	48.51	47.94	
50 51 52 53 54	$\begin{array}{c} 1.33 & 34255 \\ 32532 \\ 30788 \\ 29023 \\ 27237 \\ 25430 \end{array}$	33195 31472 29729 27964 26179 24372	32147 30426 28682 26918 25133 23328	31112 29391 27648 25885 24101 22296	30089 28369 26627 24864 23080 21276	29078 27358 25617 23855 22072 20268	28079 26360 24620 22858 21075 19272	27092 25374 23634 21872 20090 18288	26116 24398 22659 20898 19117 17315	$\begin{array}{r} 25152\\ 23434\\ 21696\\ 19936\\ 18155\\ 16353\end{array}$	1706. 1 1727. 5 1748. 9 1769. 8 1790. 6 1811. 4
55 56 57 58 59 60	25430 23602 21754 19886 17998 16090	24372 22546 20698 18831 16943 15036	23328 21501 19655 17788 15901 13994	22296 20470 18624 16758 14872 12965	21276 19451 17605 15740 13854 11948	20268 18443 16599 14734 12849 10944	19272 17448 15604 13740 11855 09951	18288 16464 14621 12757 10873 08970	17315 15492 13649 11786 09903 08000	10353 14531 12689 10826 08944 07041	1811, 4 1831, 7 1851, 9 1872, 0 1892, 0 1911, 7

TABLE 7.—General interpolation table for index of refraction of distilled water—Con.

Tilton Taylor]

				Wa	ve length	ns in angs	stroms				
°C -	5000	5020	5040	5060	5080	5100	5120	5140	5160	5180	5200
0 1 2 3 4	$\begin{array}{r} 1.33 & 74146 \\ & 74119 \\ & 74034 \\ & 73891 \\ & 73694 \end{array}$	73184 73157 73072 72930 72733	72232 72206 72121 71979 71782	71291 71265 71180 71038 70842	70361 70335 70250 70108 69912	$\begin{array}{r} 69440 \\ 69414 \\ 69330 \\ 69189 \\ 68993 \end{array}$	68530 68504 68420 68279 68083	67629 67604 67520 67379 67183	$\begin{array}{r} 66738\\ 66713\\ 66629\\ 66489\\ 66293\end{array}$	$\begin{array}{r} 65857\\ 65832\\ 65748\\ 65608\\ 65412\end{array}$	6498 6496 6487 6473 6473 6454
5 6 7 8 9	73444 73142 72791 72392 71945	72483 72182 71830 71431 70985	$71532 \\71231 \\70880 \\70481 \\70035$	$70593 \\ 70292 \\ 69941 \\ 69542 \\ 69097$	69663 69362 69012 68613 68168	$\begin{array}{c} 68744 \\ 68443 \\ 68093 \\ 67695 \\ 67250 \end{array}$	$\begin{array}{c} 67834\\ 67534\\ 67184\\ 66786\\ 66341 \end{array}$	$\begin{array}{c} 66935\\ 66635\\ 66285\\ 65888\\ 65443\end{array}$	$\begin{array}{c} 66045\\ 65745\\ 65396\\ 64998\\ 64554\end{array}$	$\begin{array}{r} 65164 \\ 64865 \\ 64516 \\ 64118 \\ 63674 \end{array}$	6429 6399 6364 6324 6280
-107	$\times \frac{dn_{10}}{d\lambda} = 48.26$	47.72	47. 20	46.67	46.16	45.66	45.16	44.67	44.19	43.73	43. 27
10 11 12 13 14	$\begin{array}{c} 1.33 & 71453 \\ & 70917 \\ & 70338 \\ 69716 \\ 69054 \end{array}$	70493 69957 69378 68757 68096	69544 69008 68430 67809 67148	$\begin{array}{c} 68605\\ 68070\\ 67492\\ 66871\\ 66210 \end{array}$	$\begin{array}{r} 67677\\ 67142\\ 66564\\ 65944\\ 65283\end{array}$	$\begin{array}{c} 66759\\ 66224\\ 65646\\ 65027\\ 64366\end{array}$	$\begin{array}{c} 65851 \\ 65316 \\ 64739 \\ 64120 \\ 63460 \end{array}$	$\begin{array}{c} 64953 \\ 64418 \\ 63841 \\ 63222 \\ 62563 \end{array}$	$\begin{array}{c} 64064\\ 63530\\ 62953\\ 62335\\ 61675\end{array}$	63185 62651 62075 61456 60797	6231 6178 6120 6058 5992
15 16 17 18 19	$\begin{array}{c} 68353\\ 67612\\ 66834\\ 66019\\ 65168\end{array}$	$\begin{array}{r} 67394 \\ 66654 \\ 65877 \\ 65062 \\ 64211 \end{array}$	$\begin{array}{r} 66447 \\ 65707 \\ 64930 \\ 64115 \\ 63265 \end{array}$	$\begin{array}{c} 65510 \\ 64770 \\ 63993 \\ 63179 \\ 62329 \end{array}$	$\begin{array}{r} 64583 \\ 63844 \\ 63067 \\ 62254 \\ 61404 \end{array}$	$\begin{array}{c} 63666\\ 62928\\ 62151\\ 61338\\ 60489 \end{array}$	$\begin{array}{c} 62760 \\ 62022 \\ 61246 \\ 60433 \\ 59584 \end{array}$	$\begin{array}{c} 61863 \\ 61125 \\ 60350 \\ 59537 \\ 58688 \end{array}$	60976 60238 59463 58651 57803	$\begin{array}{r} 60099\\ 59361\\ 58586\\ 57774\\ 56926\end{array}$	5923 5849 5771 5690 5605
20 21 22 23 24	$\begin{array}{r} 64282\\ 63361\\ 62406\\ -61419\\ 60399\end{array}$	$\begin{array}{c} 63325\\ 62405\\ 61451\\ 60464\\ 59444 \end{array}$	$\begin{array}{c} 62379 \\ 61459 \\ 60506 \\ 59519 \\ 58500 \end{array}$	$\begin{array}{r} 61444 \\ 60524 \\ 59571 \\ 58585 \\ 57566 \end{array}$	$\begin{array}{c} 60519 \\ 59600 \\ 58647 \\ 57661 \\ 56643 \end{array}$	$59604 \\ 58685 \\ 57733 \\ 56747 \\ 55729$	58699 57781 56829 55844 54826	$57804 \\ 56886 \\ 55934 \\ 54950 \\ 53933$	56919 56001 55050 54066 53049	$56043 \\ 55126 \\ 54175 \\ 53191 \\ 52174$	5517 5426 5330 5232 5130
25 26 27 28 29	59348 58265 57152 56009 54837	$58393 \\ 57311 \\ 56198 \\ 55056 \\ 53884$	57449 56367 55255 54113 52942	$56516 \\ 55434 \\ 54323 \\ 53181 \\ 52010$	$\begin{array}{c} 55593 \\ 54512 \\ 53400 \\ 52259 \\ 51089 \end{array}$	$54680 \\ 53599 \\ 52488 \\ 51348 \\ 50178$	$53777 \\ 52697 \\ 51586 \\ 50446 \\ 49276$	$52884 \\ 51804 \\ 50694 \\ 49554 \\ 48385$	$52001 \\ 50921 \\ 49812 \\ 48672 \\ 47503$	$51127 \\ 50048 \\ 48938 \\ 47799 \\ 46631$	5026 4918 4807 4693 4576
-107	$\times \frac{dn_{30}}{d\lambda} = 47.90$	47.36	46.83	46.30	45.79	45. 29	44. 79	44.30	43.83	43.36	42.90
30 31 32 33 34	${ \begin{array}{c} 1.33 & 53636 \\ & 52406 \\ & 51149 \\ & 49864 \\ & 48552 \end{array} } }$	$52683 \\ 51454 \\ 50197 \\ 48913 \\ 47602$	$51742 \\ 50513 \\ 49256 \\ 47973 \\ 46662$	$50810 \\ 49582 \\ 48326 \\ 47043 \\ 45732$	49889 48662 47406 46123 44813	$\begin{array}{r} 48978\\ 47751\\ 46496\\ 45214\\ 43904 \end{array}$	$\begin{array}{r} 48078 \\ 46851 \\ 45596 \\ 44314 \\ 43005 \end{array}$	$\begin{array}{r} 47187\\ 45960\\ 44706\\ 43425\\ 42116\end{array}$	$\begin{array}{r} 46306\\ 45080\\ 43826\\ 42545\\ 41236\end{array}$	$\begin{array}{r} 45434\\ 44208\\ 42955\\ 41674\\ 40366\end{array}$	4457 4334 4209 4081 3950
35 36 37 38 39	$\begin{array}{r} 47214\\ 45850\\ 44460\\ 43044\\ 41604\end{array}$	$\begin{array}{r} 46264 \\ 44900 \\ 43510 \\ 42096 \\ 40656 \end{array}$	45324 43961 42572 41157 39718	44396 43032 41644 40230 38791	$\begin{array}{r} 43477\\ 42114\\ 40726\\ 39312\\ 37874 \end{array}$	42568 41206 39818 38405 36967	$\begin{array}{r} 41670 \\ 40308 \\ 38921 \\ 37508 \\ 36071 \end{array}$	$\begin{array}{r} 40781\\ 39420\\ 38033\\ 36621\\ 35184 \end{array}$	$39902 \\ 38541 \\ 37155 \\ 35743 \\ 34307$	39032 37672 36286 34875 33439	3817 3681 3542 3401 3258
40 41 42 43 44	40139 38649 37136 35598 34038	39191 37702 36189 34652 33092	$38254 \\ 36765 \\ 35253 \\ 33717 \\ 32157$	37327 35839 34327 32792 31232	36411 34923 33412 31877 30318	$35505 \\ 34018 \\ 32507 \\ 30972 \\ 29414$	34609 33122 31612 30077 28520	 33722 32236 30726 29192 27636 	$\begin{array}{r} 32846\\ 31360\\ 29850\\ 28317\\ 26761 \end{array}$	31978 30493 28984 27451 25895	3112 2963 2812 2659 2503
45 46 47 48 49	32454 30848 29218 27567 25894	$\begin{array}{c} 31509 \\ 29903 \\ 28274 \\ 26624 \\ 24951 \end{array}$	$\begin{array}{r} 30574 \\ 28969 \\ 27341 \\ 25690 \\ 24018 \end{array}$	$\begin{array}{r} 29650 \\ 28045 \\ 26418 \\ 24768 \\ 23096 \end{array}$	$\begin{array}{r} 28736 \\ 27132 \\ 25505 \\ 23856 \\ 22185 \end{array}$	$\begin{array}{r} 27833 \\ 26229 \\ 24602 \\ 22954 \\ 21283 \end{array}$	26939 25336 23710 22062 20391	$\begin{array}{r} 26055\\ 24453\\ 22827\\ 21180\\ 19510 \end{array}$	25181 23579 21954 20307 18637	$\begin{array}{r} 24316\\ 22714\\ 21090\\ 19443\\ 17774 \end{array}$	2346 2185 2023 1858 1692
-107	$\times \frac{dn_{50}}{d\lambda} = 47.40$	46.86	46. 33	45.81	45.30	44.81	44.31	43.82	43.35	42.89	42. 43
50 51 52 53 54	$\begin{array}{c} 1.33 24198 \\ 22482 \\ 20743 \\ 18984 \\ 17204 \end{array}$	$\begin{array}{c} 23256 \\ 21540 \\ 19802 \\ 18043 \\ 16264 \end{array}$	$\begin{array}{c} 22324\\ 20608\\ 18871\\ 17113\\ 15334 \end{array}$	$\begin{array}{c} 21403 \\ 19688 \\ 17951 \\ 16193 \\ 14415 \end{array}$	$\begin{array}{c} 20492 \\ 18777 \\ 17041 \\ 15284 \\ 13506 \end{array}$	$19590 \\ 17876 \\ 16141 \\ 14384 \\ 12607$	$\begin{array}{c} 18699 \\ 16986 \\ 15251 \\ 13495 \\ 11718 \end{array}$	$17818 \\ 16105 \\ 14371 \\ 12615 \\ 10839$	$16946 \\ 15234 \\ 13500 \\ 11745 \\ 09969$	16084 14372 12639 10884 09109	$1523 \\ 1351 \\ 1178 \\ 1003 \\ 0825$
55 56 57 58 59 60	15403 13581 11739 09877 07995 06094	14463 12642 10801 08939 07058 05157	13534 11714 09873 08012 06131 04231	12616 10796 08956 07095 05215 03315	11707 09888 08048 06189 04309 02409	10809 08990 07151 05292 03413 01514	09920 08102 06264 04405 02527 00628	09042 07224 05386 03528 01650 *99753	08173 06356 04518 02661 00783 *98886	07313 05496 03660 01803 *99926 *98029	0646 0464 0281 0095 *9907 *9718

456	Journal of	of Research	of the	National	Bureau	of Standards	[Vol. 20
-----	------------	-------------	--------	----------	--------	--------------	----------

t°C				Wave l	engths in	n angstro	ms	-			$-10^7 \times \frac{dn}{dt}$
	5200	5220	5240	5260	5280	5300	5320	5340	5360	5380	$(\lambda = 5400)$ A)
0 1 2 3 4	$\begin{array}{cccc} \textbf{1. 33} & 64985 \\ & 64960 \\ & 64876 \\ & 64736 \\ & 64541 \end{array}$	$\begin{array}{r} 64122 \\ 64097 \\ 64014 \\ 63874 \\ 63679 \end{array}$	$\begin{array}{r} 63268 \\ 63243 \\ 63160 \\ 63020 \\ 62826 \end{array}$	$\begin{array}{r} 62423 \\ 62398 \\ 62315 \\ 62176 \\ 61981 \end{array}$	$\begin{array}{r} 61586\\ 61562\\ 61479\\ 61340\\ 61146\end{array}$	$\begin{array}{r} 60758 \\ 60734 \\ 60652 \\ 60512 \\ 60318 \end{array}$	59939 59915 59832 59693 59500	59127 59104 59021 58883 58689	58324 58301 58218 58080 57887	57529 57506 57424 57285 57092	$\begin{bmatrix} -6.8\\52.8\\110.2\\165.8\\219.5\end{bmatrix}$
5 6 7 8 9	$\begin{array}{r} 64293 \\ 63994 \\ 63645 \\ 63248 \\ 62804 \end{array}$	$\begin{array}{c} 63431 \\ 63132 \\ 62784 \\ 62387 \\ 61943 \end{array}$	$\begin{array}{c} 62578 \\ 62280 \\ 61931 \\ 61535 \\ 61091 \end{array}$	$\begin{array}{c} 61734 \\ 61436 \\ 61088 \\ 60691 \\ 60248 \end{array}$	$\begin{array}{r} 60899\\ 60600\\ 60252\\ 59856\\ 59414\end{array}$	60072 59774 59426 59030 58588	$59253 \\ 58955 \\ 58608 \\ 58212 \\ 57770$	58443 58145 57798 57403 56961	$57641 \\ 57343 \\ 56996 \\ 56602 \\ 56160$	56846 56550 56203 55808 55367	271.8 321.9 370.7 418.0 464.0
-107>	$< \frac{dn_{10}}{d\lambda} = 43.27$	42.81	42.36	41.93	41.50	41.07	40.65	40.25	39.84	39.45	
$10 \\ 11 \\ 12 \\ 13 \\ 14$	$\begin{array}{c} 1.\ 33 \ \ 62315 \\ 61782 \\ 61205 \\ 60587 \\ 59929 \end{array}$	$\begin{array}{c} 61454 \\ 60921 \\ 60345 \\ 59728 \\ 59069 \end{array}$	60603 60070 59494 58877 58219	59760 59227 58652 58035 57377	58926 58393 57818 57202 56544	58100 57568 56993 56377 55720	$\begin{array}{c} 57283 \\ 56751 \\ 56177 \\ 55560 \\ 54904 \end{array}$	$\begin{array}{c} 56474 \\ 55942 \\ 55368 \\ 54752 \\ 54096 \end{array}$	55673 55142 54568 53952 53296	$\begin{array}{c c} 54880 \\ 54349 \\ 53776 \\ 53160 \\ 52504 \end{array}$	508. 7 552. 1 594. 3 635. 5 675. 6
$15 \\ 16 \\ 17 \\ 18 \\ 19$	59230 58493 57718 56907 56059	58371 57634 56860 56049 55201	57521 56784 56010 55200 54353	$56680 \\ 55944 \\ 55170 \\ 54359 \\ 53513$	55847 55111 54338 53528 52682	55023 54288 53514 52705 51859	54207 53472 52699 51890 51044	53400 52665 51892 51083 50238	$52600 \\ 51866 \\ 51094 \\ 50285 \\ 49440$	$51809 \\ 51075 \\ 50303 \\ 49495 \\ 48650$	714. 6 752. 7 789. 9 826. 3 861. 7
20 21 22 23 24	55177 54260 53309 52325 51309	$\begin{array}{r} 54319\\ 53402\\ 52452\\ 51469\\ 50454\end{array}$	53471 52554 51604 50622 49607	52631 51715 50766 49783 48768	51800 50885 49936 48953 47939	50978 50063 49114 48132 47118	50164 49248 48300 47319 46306	49358 48444 47496 46514 45501	48560 47646 46699 45718 44705	47771 46857 45910 44929 43917	896. 4 930. 3 963. 6 996. 1 1028. 0
25 26 27 28 29	$50262 \\ 49183 \\ 48074 \\ 46936 \\ 45768$	49406 48328 47220 46081 44914	$\begin{array}{r} 48560 \\ 47482 \\ 46374 \\ 45236 \\ 44069 \end{array}$	$\begin{array}{r} 47722 \\ 46645 \\ 45537 \\ 44400 \\ 43233 \end{array}$	46893 45816 44709 43572 42405	$\begin{array}{r} 46072 \\ 44996 \\ 43889 \\ 42752 \\ 41586 \end{array}$	45260 44184 43078 41942 40776	44456 43381 42275 41139 39974	43661 42586 41480 40344 39180	$\begin{array}{r} 42873 \\ 41798 \\ 40693 \\ 39558 \\ 38393 \end{array}$	1059.1 1089.8 1119.9 1149.5 1178.4
-107)	$< \frac{dn_{30}}{d\lambda} = 42.90$	42.45	42.00	41.56	41.14	40.72	40.30	39.89	39.49	39.10	
30 31 32 33 34	$\begin{array}{c} 1.\ 33 \\ 44571 \\ 43346 \\ 42093 \\ 40813 \\ 39505 \end{array}$	$\begin{array}{r} 43717\\ 42493\\ 41240\\ 39960\\ 38654\end{array}$	42873 41649 40397 39117 37811	42037 40814 39562 38283 36977	41210 39987 38736 37457 36152	40392 39169 37918 36640 35335	39582 38359 37109 35831 34527	38780 37558 36308 35030 33726	37986 36764 35515 34238 32934	37200 35979 34730 33454 32150	$1206.8 \\ 1234.8 \\ 1262.4 \\ 1289.5 \\ 1316.1$
35 36 37 38 39	38172 36812 35427 34016 32580	$37320 \\ 35961 \\ 34576 \\ 33166 \\ 31731$	$36478 \\ 35119 \\ 33735 \\ 32325 \\ 30890$	$35645 \\ 34286 \\ 32902 \\ 31493 \\ 30059$	34820 33462 32078 30669 29236	$\begin{array}{r} 34004\\ 32646\\ 31263\\ 29854\\ 28421 \end{array}$	33196 31838 30456 29048 27615	32396 31039 29657 28250 26817	$\begin{array}{r} 31604 \\ 30248 \\ 28866 \\ 27459 \\ 26027 \end{array}$	30 821 29465 28083 26677 25245	$\begin{array}{c} 1342.3\\ 1368.2\\ 1393.7\\ 1418.7\\ 1443.5\end{array}$
40 41 42 43 44	$\begin{array}{r} 31120 \\ 29635 \\ 28127 \\ 26594 \\ 25039 \end{array}$	$30271 \\ 28787 \\ 27279 \\ 25747 \\ 24192$	$\begin{array}{r} 29431 \\ 27947 \\ 26440 \\ 24908 \\ 23354 \end{array}$	$\begin{array}{r} 28600 \\ 27117 \\ 25610 \\ 24079 \\ 22525 \end{array}$	$\begin{array}{r} 27777\\ 26294\\ 24788\\ 23258\\ 21704 \end{array}$	$\begin{array}{r} 26963 \\ 25481 \\ 23975 \\ 22445 \\ 20892 \end{array}$	$\begin{array}{r} 26158 \\ 24676 \\ 23170 \\ 21641 \\ 20088 \end{array}$	$\begin{array}{r} 25360 \\ 23879 \\ 22374 \\ 20845 \\ 19292 \end{array}$	$\begin{array}{r} 24570 \\ 23090 \\ 21585 \\ 20057 \\ 18505 \end{array}$	23789 22309 20804 19276 17725	1467.8 1491.9 1515.7 1539.2 1562.3
45 46 47 48 49	23460 21859 20235 18589 16921	$\begin{array}{c} 22614\\ 21013\\ 19390\\ 17744\\ 16076 \end{array}$	$\begin{array}{c} 21776 \\ 20176 \\ 18553 \\ 16908 \\ 15241 \end{array}$	20948 19348 17725 16081 14414	$\begin{array}{c} 20127 \\ 18528 \\ 16906 \\ 15262 \\ 13596 \end{array}$	$\begin{array}{c c} 19316 \\ 17717 \\ 16095 \\ 14452 \\ 12786 \end{array}$	$\begin{array}{c} 18512 \\ 16914 \\ 15293 \\ 13650 \\ 11985 \end{array}$	$17717 \\16119 \\14499 \\12856 \\11192$	16930 15333 13713 12070 10406	16151 14554 12935 11293 09629	$\begin{array}{c} 1585.\ 2\\ 1607.\ 8\\ 1630.\ 2\\ 1652.\ 3\\ 1674.\ 1\end{array}$
-107>	$<\frac{dn_{50}}{d\lambda}=42.43$	41.98	41. 53	41. 11	40.68	40.25	39.83	39.43	39.04	38.64	
$50 \\ 51 \\ 52 \\ 53 \\ 54$	$\begin{array}{c} 1.\ 33 \ \ 15231 \\ 13519 \\ 11787 \\ 10033 \\ 08258 \end{array}$	14387 12676 10944 09190 07416	13552 11841 10110 08357 06583	12726 11016 09284 07532 05759	11908 10198 08468 06716 04943	11099 09390 07659 05908 04136	10298 08589 06860 05109 03337	09505 07797 06068 04318 02546	08720 07013 05284 03534 01764	07944 06237 04508 02759 00989	1695. 7 1717. 1 1738. 3 1759. 2 1780. 0
55 56 57 58 59	06462 04646 02810 00954 1. 32 99078	$\begin{array}{c} 05621 \\ 03806 \\ 01970 \\ 00114 \\ 98238 \end{array}$	04789 02974 01138 *99283 97408	03965 02151 00316 *98461 96586	03150 01336 *99502 *97648 95773	02343 00530 *98696 *96842 94969	01545 *99732 *97899 *96046 94173	00755 *98942 *97110 *95257 93385	*99972 *98161 *96329 *94477 92604	*99198 *97387 *95556 *93704 91832	1800. 6 1820. 9 1841. 1 1861. 1 1880. 9
60	97181	96343	95513	94692	93880	93076	92280	91492	90713	89941	1900. 5

TABLE 7.—General interpolation table for index of refraction of distilled water—Con.

TABLE	7.—Genera	l interpolation t	able for	index of	refraction	of	distilled	water-Con.
-------	-----------	-------------------	----------	----------	------------	----	-----------	------------

t°C		Wave le	ngths in	angstron	ns	a gable
	5400	5420	5440	5460	5480	5500
0 1 2 3 4	$\begin{array}{r} \textbf{1. 33} & 56742 \\ & 56718 \\ & 56637 \\ & 56498 \\ & 56306 \end{array}$	55962 55939 55857 55719 55527	$\begin{array}{r} 55190 \\ 55167 \\ 55086 \\ 54948 \\ 54755 \end{array}$	$54425 \\ 54402 \\ 54321 \\ 54184 \\ 53992$	$\begin{array}{r} 53668\\ 53645\\ 53564\\ 53427\\ 53235\end{array}$	$52917 \\52895 \\52814 \\52677 \\52486$
5 6 7 8 9	$56060 \\ 55763 \\ 55417 \\ 55022 \\ 54581$	$\begin{array}{c} 55282 \\ 54985 \\ 54639 \\ 54244 \\ 53804 \end{array}$	54510 54214 53868 53474 53034	53747 53451 53105 52711 52271	52990 52694 52349 51956 51516	$\begin{array}{r} 52241 \\ 51946 \\ 51600 \\ 51207 \\ 50768 \end{array}$
-107>	$< \frac{dn_{10}}{d\lambda} = 39.06$	38.68	38.30	37.93	37.57	37.22
10 11 12 13 14	$\begin{array}{r} \textbf{1.33} & 54095 \\ & 53564 \\ & 52991 \\ & 52376 \\ & 51720 \end{array}$	53318 52787 52214 51600 50944	52548 52018 51445 50831 50176	51785 51256 50683 50069 49414	51030 50501 49929 49315 48661	$50282 \\ 49753 \\ 49182 \\ 48568 \\ 47914$
15 16 17 18 19	51025 50292 49520 48712 47868	50250 49516 48745 47937 47094	49481 48748 47977 47170 46326	$\begin{array}{r} 48720 \\ 47988 \\ 47217 \\ 46410 \\ 45567 \end{array}$	$\begin{array}{r} 47967 \\ 47234 \\ 46464 \\ 45658 \\ 44815 \end{array}$	47220 46488 45719 44912 44070
20 21 22 23 24	$\begin{array}{r} \textbf{46989} \\ \textbf{46076} \\ \textbf{45128} \\ \textbf{44149} \\ \textbf{43136} \end{array}$	$\begin{array}{r} 46215\\ 45302\\ 44355\\ 43376\\ 42364\end{array}$	$\begin{array}{r} 45448\\ 44536\\ 43589\\ 42610\\ 41599\end{array}$	$\begin{array}{r} 44689\\ 43777\\ 42831\\ 41852\\ 40841 \end{array}$	$\begin{array}{r} 43937 \\ 43025 \\ 42080 \\ 41101 \\ 40091 \end{array}$	43193 42281 41336 40358 39348
25 26 27 28 29	42093 41018 39914 38779 37615	$\begin{array}{r} 41321 \\ 40246 \\ 39142 \\ 38008 \\ 36844 \end{array}$	40556 39482 38378 37244 36081	39799 38725 37622 36488 35325	39049 37976 36872 35739 34577	38306 37233 36130 34998 33836
-107)	$\times \frac{dn_{30}}{d\lambda} = 38.71$	38.33	37.95	37.58	37.22	36.87
30 31 32 33 34	$\begin{array}{r} \textbf{1.33} & 36422 \\ & 35201 \\ & 33953 \\ & 32677 \\ & 31374 \end{array}$	$35652 \\ 34432 \\ 33183 \\ 31908 \\ 30605$	$34889 \\ 33669 \\ 32421 \\ 31146 \\ 29844$	$\begin{array}{r} 34134\\ 32914\\ 31667\\ 30392\\ 29091 \end{array}$	$\begin{array}{r} 33386\\32167\\30920\\29645\\28344\end{array}$	$\begin{array}{r} 32645 \\ 31426 \\ 30180 \\ 28906 \\ 27605 \end{array}$
35 36 37 38 39	$\begin{array}{c} 30045 \\ 28689 \\ 27308 \\ 25902 \\ 24471 \end{array}$	$\begin{array}{r} 29276\\ 27922\\ 26541\\ 25135\\ 23705 \end{array}$	$\begin{array}{r} 28516 \\ 27162 \\ 25781 \\ 24376 \\ 22946 \end{array}$	$\begin{array}{r} 27763 \\ 26409 \\ 25029 \\ 23624 \\ 22194 \end{array}$	$\begin{array}{r} 27017 \\ 25663 \\ 24284 \\ 22880 \\ 21450 \end{array}$	$\begin{array}{r} 26278 \\ 24925 \\ 23546 \\ 22142 \\ 20713 \end{array}$
40 41 42 43 44	$23015 \\ 21536 \\ 20032 \\ 18504 \\ 16954$	$\begin{array}{r} 22250\\ 20770\\ 19267\\ 17740\\ 16189 \end{array}$	$\begin{array}{c} 21491 \\ 20012 \\ 18509 \\ 16983 \\ 15433 \end{array}$	$\begin{array}{r} 20740 \\ 19262 \\ 17759 \\ 16233 \\ 14684 \end{array}$	$19996 \\18518 \\17016 \\15491 \\13942$	$19260 \\17782 \\16281 \\14756 \\13207$
45 46 47 48 49	$\begin{array}{c} 15380 \\ 13783 \\ 12164 \\ 10523 \\ 08860 \end{array}$	$\begin{array}{c} 14616 \\ 13020 \\ 11401 \\ 09761 \\ 08098 \end{array}$	$\begin{array}{c} 13860 \\ 12264 \\ 10646 \\ 09006 \\ 07344 \end{array}$	$\begin{array}{c} 13111\\ 11516\\ 09899\\ 08259\\ 06597\end{array}$	$\begin{array}{c} 12370 \\ 10775 \\ 09158 \\ 07519 \\ 05857 \end{array}$	$\begin{array}{c} 11636 \\ 10041 \\ 08425 \\ 06786 \\ 05125 \end{array}$
-107)	$\times \frac{dn_{50}}{d\lambda} = 38.25$	37.87	37.50	37.14	36.78	36.43
50 51 52 53 54	$\begin{array}{c} \textbf{1.33} & 07175 \\ & 05468 \\ & 03741 \\ & 01992 \\ & 00222 \end{array}$	06414 04708 02980 01232 *99463	05660 03954 02228 00480 *98711	04914 03208 01482 *99735 *97967	04174 02470 00744 *98997 *97230	03442 01738 00013 *98267 *96500
5 5 56 57 58 59	1.32 98432 96621 94790 92939 91068	97673 95863 94032 92182 90311	96922 95112 93282 91432 89562	96178 94369 92539 90690 88820	$\begin{array}{r} 95441 \\ 93632 \\ 91803 \\ 89954 \\ 88085 \end{array}$	$\begin{array}{r} 94712 \\ 92904 \\ 91075 \\ 89226 \\ 87358 \end{array}$
60	89177	88421	87672	86931	86197	85470

°C				Wave	lengths i	n angstro	oms				$-10^7 \times \frac{d\pi}{dt}$
	5500	5550	5600	5650	5700	5750	5800	5850	5900	5950	$-10^{7} \times \frac{d\pi}{dt}$ $(\lambda = 6000 \text{ A})$
0 1 2 3 4	$\begin{array}{r} 1.33 & 52917 \\ & 52895 \\ & 52814 \\ & 52677 \\ & 52486 \end{array}$	51073 51051 50971 50834 50643	49271 49250 49170 49034 48843	47510 47489 47410 47274 47084	$\begin{array}{r} 45788\\ 45767\\ 45688\\ 45554\\ 45364\end{array}$	44103 44083 44005 43871 43682	42455 42436 42358 42224 42036	40842 40823 40746 40612 40424	39262 39243 39167 39034 38847	37714 37696 37620 37488 37301	[-12.4 46.8 104.0 159.2 212.7
56789	$\begin{array}{c} 52241 \\ 51946 \\ 51600 \\ 51207 \\ 50768 \end{array}$	50399 50104 49760 49367 48928	48600 48306 47962 47570 47131	$\begin{array}{r} 46841\\ 46547\\ 46204\\ 45813\\ 45375\end{array}$	$\begin{array}{r} 45122 \\ 44829 \\ 44486 \\ 44096 \\ 43658 \end{array}$	43440 43148 42806 42416 41979	41795 41503 41162 40772 40337	40184 39893 39552 39164 38728	38607 38316 37976 37588 37154	37062 36772 36432 36045 35611	264.3 314.4 363.0 410.0 455.2
-107>	$\langle \frac{dn_{10}}{d\lambda} = 37.22$	36.35	35.52	34.72	33.94	33.20	32.50	31.81	31.16	30.52	
10 11 12 13 14	$\begin{array}{r} 1.33 \begin{array}{c} 50282 \\ 49753 \\ 49182 \\ 48568 \\ 47914 \end{array}$	48444 47915 47344 46732 46078	46648 46120 45550 44938 44285	44892 44365 43796 43185 42533	43176 42650 42081 41471 40820	41498 40972 40404 39794 39144	39856 39331 38764 38155 37505	38248 37724 37158 36549 35901	36674 36151 35585 34978 34330	35133 34610 34045 33438 32791	500. 543. 585. 626. 666.
15 16 17 18 19	47220 46488 45719 44912 44070	45386 44654 43885 43080 42238	43593 42863 42095 41290 40449	41842 41112 40345 39541 38701	40129 39400 38634 37831 36992	38455 37727 36961 36159 35321	36816 36089 35324 34523 33686	$\begin{array}{r} 35213 \\ 34486 \\ 33722 \\ 32922 \\ 32086 \end{array}$	33643 32917 32154 31354 30519	32105 31380 30617 29818 28984	705. 743. 779. 816. 851.
20 21 22 23 24	43193 42281 41336 40358 39348	41362 40451 39507 38530 37520	39574 38664 37721 36744 35736	37826 36917 35975 35000 33992	36118 35210 34269 33294 32288	$\begin{array}{r} 34448\\ 33541\\ 32600\\ 31626\\ 30621 \end{array}$	32814 31907 30968 29995 28990	31214 30309 29370 28398 27394	$\begin{array}{r} 29648 \\ 28744 \\ 27806 \\ 26835 \\ 25832 \end{array}$	$\begin{array}{r} 28114\\ 27211\\ 26274\\ 25304\\ 24302 \end{array}$	885. 919. 952. 985. 1016.
25 26 27 28 29	38306 37233 36130 34998 33836	36480 35408 34306 33174 32014	34696 33626 32525 31394 30234	32954 31884 30784 29654 28495	$\begin{array}{r} 31250 \\ 30181 \\ 29082 \\ 27953 \\ 26795 \end{array}$	$\begin{array}{c} 29584 \\ 28516 \\ 27418 \\ 26290 \\ 25133 \end{array}$	$\begin{array}{c} 27954 \\ 26887 \\ 25790 \\ 24663 \\ 23507 \end{array}$	26359 25293 24197 23071 21916	24798 23733 22637 21512 20358	23268 22204 21110 19986 18833	1048. 1078. 1108. 1137. 1166.
-107>	$\langle \frac{dn_{30}}{d\lambda} = 36.87$	36.00	35.17	34.37	33.60	32.86	32.15	31.47	30.82	30.19	
30 31 32 33 34	$\begin{array}{c} \textbf{1.33} & \textbf{32645} \\ & \textbf{31426} \\ & \textbf{30180} \\ & \textbf{28906} \\ & \textbf{27605} \end{array}$	30824 29606 28360 27088 25788	$\begin{array}{r} 29045\\ 27828\\ 26584\\ 25312\\ 24014 \end{array}$	27307 26092 24848 23577 22280	$\begin{array}{c c} 25608 \\ 24394 \\ 23151 \\ 21882 \\ 20585 \end{array}$	23947 22734 21492 20223 18928	22322 21110 19869 18602 17307	20732 19520 18281 17014 15721	$\begin{array}{c c} 19176 \\ 17965 \\ 16726 \\ 15460 \\ 14168 \end{array}$	$\begin{array}{c} 17651 \\ 16441 \\ 15203 \\ 13938 \\ 12647 \end{array}$	1194. 1222. 1250. 1277. 1303.
35 36 37 38 39	$\begin{array}{c} 26278 \\ 24925 \\ 23546 \\ 22142 \\ 20713 \end{array}$	$\begin{array}{r} 24462 \\ 23110 \\ 21732 \\ 20330 \\ 18902 \end{array}$	22689 21338 19961 18559 17132	20956 19606 18230 16830 15404	19262 17913 16539 15139 13714	$\begin{array}{r} 17606 \\ 16258 \\ 14885 \\ 13486 \\ 12062 \end{array}$	15986 14639 13267 11869 10447	$\begin{array}{r} 14401 \\ 13055 \\ 11684 \\ 10287 \\ 08866 \end{array}$	12849 11504 10134 08738 07318	$\begin{array}{c} 11329 \\ 09985 \\ 08616 \\ 07222 \\ 05802 \end{array}$	1329. 1355. 1381. 1406. 1430.
40 41 42 43 44	$19260 \\ 17782 \\ 16281 \\ 14756 \\ 13207$	$\begin{array}{r} 17449 \\ 15973 \\ 14472 \\ 12948 \\ 11401 \end{array}$	$15681 \\ 14206 \\ 12706 \\ 11184 \\ 09637$	13954 12479 10981 09459 07914	$\begin{array}{c} 12265 \\ 10792 \\ 09295 \\ 07774 \\ 06230 \end{array}$	10615 09142 07646 06127 04584	09000 07529 06034 04515 02973	07420 05950 04456 02938 01398	$\begin{array}{c} 05873\\ 04404\\ 02911\\ 01395\\ *99855\end{array}$	04358 02890 01399 *99883 *98345	1455. 1478. 1502. 1526. 1549.
45 46 47 48 49	$\begin{array}{c} 11636 \\ 10041 \\ 08425 \\ 06786 \\ 05125 \end{array}$	$\begin{array}{c} 09831 \\ 08238 \\ 06622 \\ 04985 \\ 03325 \end{array}$	$\begin{array}{c} 08068\\ 06476\\ 04862\\ 03225\\ 01567\end{array}$	06346 04755 03142 01507 *99849	04663 03074 01462 *99827 *98171	03018 01430 *99818 *98185 *96530	01409 *99821 *98211 *96579 *94925	*99834 *98248 *96639 *95008 *93355	*98293 *96707 *95100 *93470 *91818	*96783 *95199 *93592 *91964 *90313	$1571. \\ 1594. \\ 1616. \\ 1638. \\ 1660. \\$
107>	$\langle \frac{dn_{50}}{d\lambda} = 36.43$	35.56	34.73	33.94	33.17	32.43	31.73	31.05	30.40	29.77	
50 51 52 53 54	$1.33 \ \begin{array}{c} 03442 \\ 01738 \\ 00013 \\ 1.32 \ 98267 \\ 96500 \end{array}$	01644 *99941 *98217 96472 94706	*99887 *98185 *96462 94718 92953	*98170 *96470 *94748 93005 91242	*96493 *94794 *93073 91332 89569	*94854 *93155 *91436 89695 87934	*93250 *91553 *89834 88095 86335	*91681 *89985 *88267 86529 84770	*90145 *88450 *86734 84997 83239	*88641 *86947 *85232 83496 81739	1682. 1703. 1724. 1745. 1766.
55 56 57 58 59	94712 92904 91075 89226 87358	92919 91112 89284 87437 85570	91168 89362 87536 85690 83824	89458 87653 85828 83983 82118	87786 85983 84159 82315 80451	86152 84350 82527 80685 78822	84554 82753 80932 79090 77229	82990 81190 79370 77530 75670	81460 79661 77842 76003 74144	$79962 \\78164 \\76346 \\74508 \\72650$	1786. 1806. 1826. 1846. 1866.

TABLE 7.—General interpolation table for index of refraction of distilled water—Con

Tilton Taylor]

Refractivity of Distilled Water

A	~	n
4	5	ч
-	.0	U

TABLE 7.—Genera	l interpolation	n table for index	of refraction a	of distilled	water-Con.

°C -				wa	ve lenger	is in ange		1		1 1	
	6000	6050	6100	6150	6200	6250	6300	6350	6400	6450	6500
0 1 2 3 4	$\begin{array}{c} \textbf{1. 33} \textbf{36197} \\ \textbf{36180} \\ \textbf{36104} \\ \textbf{35972} \\ \textbf{35786} \end{array}$	34710 34693 34618 34487 34302	33252 33235 33161 33030 32845	31821 31805 31731 31601 31417	30 417 30401 30328 30198 30015	29038 29023 28950 28822 28638	27684 27670 27598 27469 27287	$\begin{array}{r} 26354\\ 26340\\ 26268\\ 26141\\ 25959 \end{array}$	$\begin{array}{r} 25046 \\ 25033 \\ 24962 \\ 24835 \\ 24654 \end{array}$	23 761 23749 23678 23551 23371	2249 2248 2241 2228 2210
5 6 7 8 9	35548 35258 34920 34533 34100	34064 33775 33437 33051 32618	32608 32320 31982 31597 31165	31180 30892 30556 30171 29740	29779 29492 29156 28772 28341	$\begin{array}{r} 28403 \\ 28116 \\ 27781 \\ 27398 \\ 26968 \end{array}$	$\begin{array}{r} 27052 \\ 26766 \\ 26431 \\ 26049 \\ 25620 \end{array}$	$\begin{array}{c} 25724 \\ 25439 \\ 25105 \\ 24723 \\ 24295 \end{array}$	24420 24136 23802 23421 22993	$\begin{array}{r} 23138\\ 22854\\ 22521\\ 22140\\ 21714 \end{array}$	2187 2159 2126 2088 2048
-107)	$\times \frac{dn_{10}}{d\lambda} = 29.92$	29.33	28.77	28.23	27.70	27.20	26.72	26.25	25.80	25.36	24.9
10 11 12 13 14	$\begin{array}{c} \textbf{1.33} & \textbf{33622} \\ & \textbf{33100} \\ & \textbf{32536} \\ & \textbf{31930} \\ & \textbf{31283} \end{array}$	$\begin{array}{r} 32141 \\ 31620 \\ 31056 \\ 30451 \\ 29805 \end{array}$	30689 30168 29605 29001 28356	$29264 \\ 28744 \\ 28182 \\ 27578 \\ 26934$	27866 27347 26786 26183 25539	26494 25975 25415 24812 24170	25146 24628 24068 23467 22825	$\begin{array}{r} 23822\\ 23305\\ 22746\\ 22145\\ 21504 \end{array}$	$\begin{array}{r} 22521 \\ 22005 \\ 21446 \\ 20846 \\ 20206 \end{array}$	21242 20727 20169 19570 18930	1998 1942 1892 1832 1762
15 16 17 18 19	$\begin{array}{c} 30598\\ 29874\\ 29112\\ 28314\\ 27480 \end{array}$	29120 28397 27636 26839 26006	$\begin{array}{r} 27672 \\ 26950 \\ 26190 \\ 25393 \\ 24561 \end{array}$	$\begin{array}{r} 26251 \\ 25529 \\ 24770 \\ 23975 \\ 23143 \end{array}$	24857 24136 23378 22583 21752	23488 22768 22011 21217 20387	$\begin{array}{r} 22144 \\ 21425 \\ 20668 \\ 19875 \\ 19046 \end{array}$	20824 20106 19350 18557 17729	$19527 \\18809 \\18054 \\17262 \\16435$	$\begin{array}{r} 18252 \\ 17535 \\ 16780 \\ 15990 \\ 15163 \end{array}$	169 162 155 147 139
20 21 22 23 24	$\begin{array}{r} 26612 \\ 25709 \\ 24772 \\ 23803 \\ 22802 \end{array}$	25138 24236 23301 22333 21333	23694 22793 21858 20891 19892	$\begin{array}{r} 22277\\ 21377\\ 20443\\ 19477\\ 18478\end{array}$	20887 19988 19055 18089 17092	$\begin{array}{r} 19522 \\ 18624 \\ 17692 \\ 16727 \\ 15731 \end{array}$	$18183 \\ 17285 \\ 16354 \\ 15390 \\ 14394$	$\begin{array}{r} 16866 \\ 15970 \\ 15039 \\ 14076 \\ 13082 \end{array}$	$\begin{array}{r} 15573 \\ 14677 \\ 13748 \\ 12786 \\ 11792 \end{array}$	$\begin{array}{r} 14302 \\ 13407 \\ 12478 \\ 11517 \\ 10524 \end{array}$	130 121 112 102 092
25 26 27 28 29	$\begin{array}{c} 21770 \\ 20707 \\ 19613 \\ 18490 \\ 17338 \end{array}$	$\begin{array}{c} 20301 \\ 19239 \\ 18146 \\ 17024 \\ 15873 \end{array}$	$\begin{array}{r} 18861 \\ 17800 \\ 16708 \\ 15587 \\ 14437 \end{array}$	17449 16388 15297 14177 13028	$\begin{array}{c} 16063\\ 15003\\ 13914\\ 12794\\ 11646 \end{array}$	$14703 \\ 13644 \\ 12555 \\ 11437 \\ 10289$	$\begin{array}{c} 13367\\ 12309\\ 11221\\ 10104\\ 08957 \end{array}$	12055 10998 09911 08795 07649	$\begin{array}{c} 10766\\ 09710\\ 08624\\ 07508\\ 06364 \end{array}$	09500 08444 07359 06244 05100	082 072 061 050 038
-107>	$\times \frac{dn_{30}}{d\lambda} = 29.50$	28.99	28.43	27.89	27.37	26.87	26.38	25.92	25.47	25.03	24.6
30 31 32 33 34	$\begin{array}{r} \textbf{1.33} \hspace{0.1cm} 16157 \\ \hspace{0.1cm} 14948 \\ \hspace{0.1cm} 13712 \\ \hspace{0.1cm} 12448 \\ \hspace{0.1cm} 11157 \end{array}$	14693 13485 12249 10987 09697	$13258 \\ 12051 \\ 10816 \\ 09554 \\ 08266$	$11850 \\ 10644 \\ 09410 \\ 08149 \\ 06862$	$\begin{array}{c} 10469\\ 09264\\ 08031\\ 06771\\ 05484 \end{array}$	09113 07909 06677 05418 04132	$\begin{array}{c} 07782 \\ 06579 \\ 05348 \\ 04090 \\ 02805 \end{array}$	06475 05272 04042 02786 01502	05190 03989 02760 01504 00221	03928 02728 01500 00244 *98963	026 014 002 *990 *977
35 36 37 38 39	09840 08498 07129 05736 04318	$\begin{array}{c} 08381 \\ 07039 \\ 05672 \\ 04280 \\ 02862 \end{array}$	$\begin{array}{c} 06951 \\ 05610 \\ 04244 \\ 02852 \\ 01436 \end{array}$	$\begin{array}{c} 05548 \\ 04208 \\ 02843 \\ 01452 \\ 00037 \end{array}$	04171 02832 01468 00079 *98664	02820 01483 00119 *98731 *97318	01494 00157 *98795 *97408 *95995	00192 *98856 *97494 *96108 *94697	*98912 *97577 *96217 *94831 *93421	*97654 *96321 *94961 *93576 *92167	*964 *950 *937 *923 *909
40 41 42 43 44	$\begin{array}{r} 02875\\01408\\1.32\ 99917\\98403\\96865\end{array}$	$\begin{array}{r} 01421 \\ *99955 \\ 98465 \\ 96952 \\ 95415 \end{array}$	*99995 *98530 97042 95529 93994	*98597 *97133 95646 94134 92600	*97226 *95763 94276 92766 91233	*95880 *94418 92932 91423 89891	*94559 *93098 91613 90105 88574	*93261 *91801 90318 88810 87280	*91986 *90527 89045 87539 86009	*90734 *89276 87794 86289 84761	*895 *880 865 850 835
45 46 47 48 49	95305 93722 92116 90488 88839	93856 92274 90669 89043 87394	92436 90855 89251 87626 85978	91043 89463 87860 86236 84590	89676 88098 86496 84873 83228	88336 86758 85158 83535 81891	87020 85443 83844 82222 80579	85727 84151 82553 80933 79291	84457 82882 81285 79666 78025	83210 81636 80040 78422 76782	819 804 788 771 755
-107>	$\times \frac{dn_{50}}{d\lambda}$ = 29.17	28. 58	28.02	27.48	26.96	26.46	25.98	25. 52	25.07	24.64	24.
50 51 52 53 54	$\begin{array}{c} 1.32 \\ 85475 \\ 83761 \\ 82026 \\ 80270 \end{array}$	85724 84032 82320 80586 78831	84309 82619 80907 79174 77421	82922 81232 79522 77790 76038	81561 79872 78163 76432 74681	80225 78538 76829 75100 73350	78914 77228 75520 73792 72043	77627 75942 74235 72508 70760	76362 74678 72973 71247 69500	75120 73437 71732 70007 68261	738 722 705 687 670
55 56 57 58 59	78494 76698 74881 73044 71187	77056 75261 73445 71609 69754	75647 73852 72038 70203 68348	74265 72471 70658 68824 66971	$72909 \\71117 \\69304 \\67472 \\65620$	$71579 \\ 69788 \\ 67976 \\ 66145 \\ 64294$	70273 68483 66673 64843 62993	$\begin{array}{c} 68991 \\ 67202 \\ 65393 \\ 63564 \\ 61715 \end{array}$	$\begin{array}{r} 67732 \\ 65944 \\ 64136 \\ 62308 \\ 60460 \end{array}$	66495 64708 62901 61074 59227	652 634 616 598 580
60	69311	67878	66474	65098	63748	62423	61123	59846	58592	57361	561

				Wav	e lengths	s in angst	roms				$-10^7 \times \frac{d\pi}{dt}$
t°C	6500	6550	6600	6650	6700	6750	6800	6850	6900	6950	$\begin{array}{c} -10^7 \times \frac{d\pi}{dt} \\ (\lambda = 7000 \\ A) \end{array}$
0 1 2 3 4		21254 21242 21173 21047 20868	20030 20019 19950 19826 19647	$\frac{18825}{18815}\\18747\\18623\\18444$	$17639 \\ 17629 \\ 17562 \\ 17562 \\ 17438 \\ 17261$	$16471 \\ 16462 \\ 16395 \\ 16272 \\ 16095$	$15319 \\ 15311 \\ 15244 \\ 15122 \\ 14946$	14185 14177 14111 13990 13814	$13066 \\ 13059 \\ 12994 \\ 12873 \\ 12698$	11963 11956 11892 11771 11597	[-23.635.292.0146.9200.0
5 6 7 8 9	$\begin{array}{c} 21877 \\ 21594 \\ 21261 \\ 20882 \\ 20456 \end{array}$	$\begin{array}{r} 20636\\ 20354\\ 20022\\ 19643\\ 19218\end{array}$	$19416 \\19134 \\18803 \\18424 \\18000$	$18214 \\ 17933 \\ 17603 \\ 17225 \\ 16801$	$\begin{array}{r} 17031 \\ 16750 \\ 16421 \\ 16044 \\ 15621 \end{array}$	$\begin{array}{r} 15866 \\ 15586 \\ 15257 \\ 14881 \\ 14458 \end{array}$	$\begin{array}{r} 14718 \\ 14438 \\ 14110 \\ 13735 \\ 13313 \end{array}$	$\begin{array}{r} 13586 \\ 13308 \\ 12980 \\ 12605 \\ 12184 \end{array}$	$\begin{array}{r} 12471 \\ 12193 \\ 11866 \\ 11492 \\ 11071 \end{array}$	$\begin{array}{c} 11370 \\ 11094 \\ 10767 \\ 10394 \\ 09974 \end{array}$	$\begin{array}{c} 251.4\\ 301.1\\ 349.3\\ 396.2\\ 441.7\end{array}$
-107)	$\times \frac{dn_{10}}{d\lambda} = 24.94$	24.54	24.15	23.78	23.42	23.06	22.73	22.40	22.09	21.78	
$ \begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \end{array} $	$ 19470 \\ 18913 \\ 18314 \\ 17676 $	$\begin{array}{r} 18748 \\ 18234 \\ 17677 \\ 17080 \\ 16442 \end{array}$	$\begin{array}{c} 17530 \\ 17017 \\ 16461 \\ 15864 \\ 15227 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	13991 13480 12926 12332 11697	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11718 11209 10657 10063 09430	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	09510 09002 08451 07859 07228	485.7 528.7 570.5 611.2 650.8
15 16 17 18 19	16998 16282 15528 14738 13913	$15764 \\ 15049 \\ 14296 \\ 13507 \\ 12682 \\ 11000 \\ 1000$	$14551 \\13836 \\13084 \\12296 \\11472$	$13357 \\ 12643 \\ 11892 \\ 11104 \\ 10281 \\ 00000000000000000000000000000000000$	12181 11468 10717 09931 09108	$\begin{array}{c} 11023 \\ 10310 \\ 09561 \\ 08775 \\ 07954 \end{array}$	09882 09170 08422 07637 06816	08758 08047 07299 06515 05695	07649 06940 06192 05409 04590	06557 05848 05101 04318 03500	689.4 727.1 763.9 799.8 834.9
20 21 22 23 24	13052 12158 11230 10270 09278	11823 10930 10003 09043 08052	$\begin{array}{c} 10614\\ 09721\\ 08795\\ 07836\\ 06846\\ \end{array}$	09423 08531 07606 06649 05659	08251 07360 06436 05479 04490	07097 06207 05284 04328 03340	05960 05071 04148 03193 02206	04840 03952 03030 02076 01089	03736 02848 01927 00974 *99988	02647 01760 00840 *99888 *98903	869. 2 902. 8 935. 7 967. 9 999. 4
25 26 27 28 29	08254 07200 06116 05002 03859	07029 05976 04892 03779 02637	$\begin{array}{c} 05824 \\ 04772 \\ 03689 \\ 02577 \\ 01436 \end{array}$	04638 03586 02505 01393 00253	03470 02420 01339 00228 *99089	02320 01271 00191 *99081 *97943	01188 00139 *99060 *97951 *96814	00072 *99024 *97945 *96838 *95701	*98972 *97924 *96847 *95740 *94604	*97887 *96841 *95764 *94658 *93523	$\begin{array}{c} 1030.\ 4\\ 1060.\ 7\\ 1090.\ 4\\ 1119.\ 6\\ 1148.\ 4\end{array}$
-107;	$\times \frac{dn_{30}}{d\lambda} = 24.62$	24.21	23.82	23.45	23.09	22.74	22.40	22.07	21.76	21.46	
30 31 32 33 34	$ \begin{smallmatrix} 1.33 & 02687 \\ & 01488 \\ & 00260 \\ 1.32 & 99006 \\ & 97725 \end{smallmatrix} $	01467 00268 *99042 97788 96508	00266 *99068 *97843 96591 95312	*99084 *97888 *96663 95412 94134	*97921 *96725 *95502 94251 '92974	*96776 *95581 *94358 93109 91832	*95648 *94453 *93232 91983 90708	*94536 *93343 *92122 90874 89600	*93440 *92248 *91028 89781 88508	*92360 *91169 *89950 88704 87431	$1176.5 \\ 1204.2 \\ 1231.5 \\ 1258.4 \\ 1284.7$
35 36 37 38 39	96418 95085 93727 92343 90935	95202 93870 92513 91130 89723	94006 92675 91319 89937 88531	92829 91499 90144 88763 87358	91671 90342 88987 87607 86203	90530 89202 87848 86469 85066	89406 88079 86726 85349 83946	88299 86973 85621 84244 82843	87208 85883 84532 83156 81756	86133 84808 83458 82083 80684	$1310. 7 \\ 1336. 3 \\ 1361. 5 \\ 1386. 4 \\ 1410. 9$
40 41 42 43 44	89502 88045 86565 85061 83533	88291 86835 85356 83853 82326	87100 85645 84166 82664 81139	85928 84474 82996 81495 79971	84774 83321 81844 80344 78821	83638 82186 80710 79211 77689	82519 81068 79594 78096 76574	81417 79967 78493 76996 75476	80331 78882 77409 75913 74394	79260 77812 76340 74845 73327	$\begin{array}{c} 1435.\ 0\\ 1459.\ 0\\ 1482.\ 5\\ 1505.\ 8\\ 1528.\ 7\end{array}$
45 46 47 48 49	81983 80410 78815 77198 75559	80777 79206 77612 75995 74357	79591 78020 76427 74812 73175	78424 76854 75262 73648 72012	77275 75706 74116 72502 70868	76144 74576 72986 71374 69741	75030 73464 71875 70264 68631	73933 72367 70779 69169 67538	$\begin{array}{c} 72852 \\ 71287 \\ 69700 \\ 68091 \\ 66460 \end{array}$	71786 70222 68636 67028 65398	$\begin{array}{c} 1551.3\\ 1573.8\\ 1596.0\\ 1617.9\\ 1639.5 \end{array}$
-107)	$\times \frac{dn_{50}}{d\lambda} = 24.22$	23.82	23.43	23.06	22.70	22.35	22.01	21.68	21.37	21.07	
50 51 52 53 54 55		72698 71017 69315 67592 65848 64083	71517 69837 68136 66414 64671 62908	70355 68676 66976 65255 63513 61751	69211 67533 65834 64114 62374 60612	68085 66408 64710 62992 61252 59492	66976 65301 63604 61886 60147 58388	65884 64210 62514 60797 59059 57301	64808 63134 61440 59724 57987 56230	63747 62075 60381 58666 56931 55175	$\begin{array}{c} 1660.\ 9\\ 1682.\ 2\\ 1703.\ 2\\ 1724.\ 0\\ 1744.\ 5\\ 1764.\ 9\end{array}$
56 57 58 59 60	63493 61687 59861 58016 56150	62299 60494 58669 56824 54960	61124 59320 57496 55653 53790	59968 58166 56343 54500 52638	58831 57029 55208 53366 51505	57711 55911 54090 52250 50390	56609 54810 52990 51151 49292	55523 53725 51906 50068 48210	54453 52656 50839 49002 47145	53399 51603 49786 47950 46095	1785. 2 1805. 1 1825. 0 1844. 7 1864. 2

TABLE 7.—General interpolation table for index of refraction of distilled water—Con.

Refractivity of Distilled Water

	TABLE	7General	interpolation table	for index of	refraction o	f distilled water-Con
--	-------	----------	---------------------	--------------	--------------	-----------------------

	P. Depthicks			Wa	ve lengtl	ns in angs	stroms				
l°C	7000	7050	7100 (Extra- polated)	7150 (Extra- polated)	7200 (Extra- polated)	7250 (Extra- polated)	7300	7350	7400	7450	7500
0 1 2 3 4	$1.33\ 10874\\10868\\10804\\10685\\10511$	09800 09795 09732 09613 09440	$\begin{array}{r} 08741 \\ 08735 \\ 08673 \\ 08555 \\ 08383 \end{array}$	07694 07689 07628 07510 07338	$\begin{array}{c} 06660\\ 06656\\ 06595\\ 06478\\ 06308 \end{array}$	$\begin{array}{r} 05639\\ 05636\\ 05576\\ 05460\\ 05289\end{array}$					
5 6 7 8 9	$\begin{array}{c} 10286 \\ 10009 \\ 09684 \\ 09311 \\ 08892 \end{array}$	$\begin{array}{c} 09215\\ 08939\\ 08614\\ 08242\\ 07824 \end{array}$	08158 07883 07559 07188 06770	$\begin{array}{c} 07115\\ 06840\\ 06517\\ 06147\\ 05730\\ \end{array}$	$\begin{array}{c c} 06084 \\ 05811 \\ 05488 \\ 05118 \\ 04702 \end{array}$	$\begin{array}{c} 05067 \\ 04794 \\ 04472 \\ 04102 \\ 03687 \end{array}$					
-107	$\times \frac{dn_{10}}{d\lambda} = 21.48$	21. 20	20.93	20.66	20. 41	20.16					
$\begin{array}{c c c} 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{array}$	$\begin{array}{c} \textbf{1.33} & \textbf{08428} \\ & \textbf{07921} \\ & \textbf{07371} \\ & \textbf{06780} \\ & \textbf{06149} \end{array}$	07361 06854 06305 05715 05085	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	05268 04763 04215 03627 02998	04241 03737 03190 02602 01974	03227 02724 02178 01591 00963					
$ \begin{array}{c} 15 \\ 16 \\ 17 \\ 18 \\ 19 \end{array} $	$\begin{array}{c} 05479 \\ 04770 \\ 04025 \\ 03243 \\ 02426 \end{array}$	$\begin{array}{c} 04415\\ 03708\\ 02963\\ 02182\\ 01365\end{array}$	03366 02659 01915 01135 00319	02330 01624 00881 00101 *99286	01307 00602 *99860 *99081 *98266	00297 *99592 *98851 *98073 *97260					
20 21 22 23 24	$01573 \\ 00687 \\ 1.32 \\ 99768 \\ 98816 \\ 97832$	00514 *99629 98710 97759 96776	*99469 *98584 97667 96716 95734	*98437 *97553 96636 95687 94706	*97418 *96535 95619 94670 93690	*96411 *95529 94614 93666 92687	*95417	*94434	*93463	*92503	*91553
25 26 27 28 29	$\begin{array}{c} 96818\\ 95772\\ 94696\\ 93591\\ 92457\end{array}$	95762 94718 93643 92539 91405	94721 93677 92603 91500 90368	93693 92650 91577 90475 89343	92678 91636 90564 89462 88332	91676 90635 89564 88463 87333					
-107	$\times \frac{dn_{30}}{d\lambda} = 21.16$	20.87	20.60	20.34	20.09	19.84					
30 31 32 33 34	$\begin{array}{c} \textbf{1.32} \hspace{0.1cm} 91295 \\ \hspace{0.1cm} 90104 \\ \hspace{0.1cm} 88886 \\ \hspace{0.1cm} 87641 \\ \hspace{0.1cm} 86370 \end{array}$	90244 89054 87837 86593 85323	89207 88018 86802 85559 84289	88184 86996 85781 84538 83270	87173 85986 84772 83530 82263	86175 84989 83776 82535 81268	in and				
35 36 37 38 39	$\begin{array}{r} 85072 \\ 83748 \\ 82400 \\ 81026 \\ 79627 \end{array}$	84026 82703 81355 79982 78584	82994 81672 80325 78953 77556	81975 80654 79308 77937 76541	80968 79649 78304 76933 75538	79975 78656 77312 75942 74549					
40 41 42 43 44	78204 76757 75286 73792 72275	77162 75716 74247 72753 71237	76135 74690 73221 71729 70213	75121 73677 72209 70717 69203	74119 72676 71209 69719 68206	$73130 \\ 71688 \\ 70222 \\ 68733 \\ 67221$					
45 46 47 48 49	70735 69172 67587 65980 64352	69698 68137 66553 64947 63319	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} 67666 \\ 66106 \\ 64525 \\ 62921 \\ 61295 \end{array}$	$\begin{array}{c} 66670 \\ 65111 \\ 63530 \\ 61928 \\ 60303 \end{array}$	$\begin{array}{c} 65686 \\ 64128 \\ 62549 \\ 60947 \\ 59323 \end{array}$					shir
-107	$\times \frac{dn_{50}}{d\lambda} = 20.77$	20. 49	20. 22	19.95	19. 70	19.45					
50 51 52 53 54	$\begin{array}{r} \textbf{1.32} & \textbf{62701} \\ & \textbf{61030} \\ & \textbf{59337} \\ & \textbf{57623} \\ & \textbf{55889} \end{array}$	61670 59999 58308 56595 54862	$\begin{array}{c c} 60652 \\ 58983 \\ 57292 \\ 55581 \\ 53849 \end{array}$	$59648 \\ 57980 \\ 56290 \\ 54580 \\ 52849$	58657 56990 55301 53592 51862	$\begin{array}{c} 57678\\ 56012\\ 54325\\ 52616\\ 50887\end{array}$					
55 56 57 58 59	54134 52359 50564 48749 46914	53108 51334 49540 47726 45892	52096 50323 48530 46717 44885	51097 49325 47533 45722 43890	$50111 \\ 48340 \\ 46550 \\ 44739 \\ 42909$	49138 47368 45579 43769 41940					
60	45060	44039	43032	42039	41059	40091		0.0			

In table 7 the values of the derivatives at specified coordinates have been computed principally from the mean first differences of adjacent listings, but third differences have not been neglected where they affect the derivatives appreciably. For the checking of many of the temperature derivatives and for computing all of those at and near 0° C, the equation

$$\left(\frac{dn}{dt}\right)_{\lambda} = \frac{(n_{20} - n_t)_{\lambda} - 10^{-7} \{3\overline{B}_{\lambda}(\Delta t)^2 + 2\overline{A}_{\lambda}\Delta t + \overline{C}_{\lambda}\}}{t + \overline{D}}$$
(5)

was derived from eq 2.

As a check on the consistency of the various index computations. all data in tables 5, 6, and 7 were redifferenced after tabulation. Efforts have been made to secure computational correctness within $\pm 1 \times 10^{-7}$, chiefly for differential purposes among tabulated values, but also in order that interpolations within a few units of the seventh decimal place can be made. Therefore, these tables provide an adequate basis for further studies of the refractivity of water by interferometric methods,²⁸ and they greatly facilitate such procedures by obviating the necessity of first using inconveniently thin films.

2. TEMPERATURE OF MAXIMUM INDEX

It will be noticed in table 7 that the value of the temperature coefficient, $(dn/dt)_{\lambda}$, is usually negative, increases continuously as the temperature is reduced, and for the longer wave lengths passes through zero and becomes positive at some temperature between $+1^{\circ}$ C and 0° C. Such positive values are enclosed in brackets. Where $(dn/dt)_{\lambda}$ becomes zero, the value of n_{λ} is a maximum. The corresponding temperature increases with the wave length, lying above 0° C if λ exceeds a value somewhere around 4600 Å. This last is in conflict with the observations reported by Damien, Ketteler, Pulfrich, and more recently by Gregg-Wilson and Wright, all of whom found that the maximum index for the sodium lines lay below 0° C.²⁹ On the contrary, one may deduce from Conroy's data a slightly positive value for the temperature of maximum index for the sodium lines; and L. Lorenz, who alone of all previous observers determined $t_{\rm max}$ for more than one wave length, found that the maximum lay slightly above 0° C for sodium light and at a decidedly higher temperature for lithium light.

In figure 12 most of these data are compared. Points upon the author's curve for the relative index were obtained by setting the right-hand member of eq 5 equal to zero and solving for t for each of several wave lengths. The corresponding curve for the absolute index, n, was also computed,³⁰ because it is believed that the Lorenz data are probably referred to a vacuum.

Damien's work, which seems carefully done, indicates a temperature of maximum index considerably lower than any included in

See remarks and references in BS J. Research 2, 916 (1929) RP64.
 For references, see table 1 in section I-2.

³⁰ The right-hand member of the equation $\left(\frac{dn}{dt}\right)_{\lambda} = \mu \left(\frac{dn}{dt}\right)_{\lambda} + n_{\lambda} \left(\frac{d\mu}{dt}\right)$ was equated to zero after combination with eq 5. Approximate maximal values of n_{λ} and the well-known values of μ and of $\left(\frac{d\mu}{dt}\right)$ for air were used. For each of several wave lengths the resulting equations were solved for t.

These widely varying results, as well as the great diverfigure 12. gence among values of dn/dt (see fig. 6) that are found by various investigators for temperatures at and near 0° C, suggest that the conditions of measurement are not comparable for the several observers.³¹ If time itself is not an important factor in the attainment of equilibrium at and below 0° C, perhaps the condition that does obtain is dependent, not only directly but in some indirect and important manner, on some slowly changing condition such, for example, as the amount of dissolved glass or metal. Certainly, in these ex-periments there was, at 0° C, a slight progressive trend toward a lower rather than a higher index as the time of holding in the prism was extended (see section VI, 3 and 4). The magnitude of this change was small but perhaps as large as 1×10^{-6} within the first 2 or 3 hours of elapsed time.

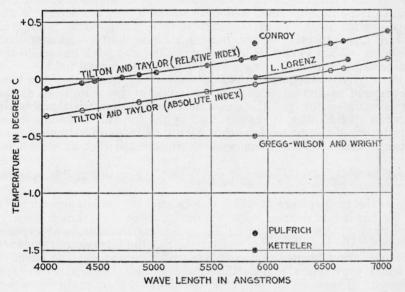


FIGURE 12.—Temperature of maximum index of distilled water as a function of wave length.

In considering the temperature of maximum index as a function of wave length, it is useful to recall the concept that refractive index for the visible region of the spectrum consists primarily of an effect that is independent of wave length and corresponds in some cases to the square root of the dielectric constant, plus the dispersive effects of absorption bands in the infrared and in the ultraviolet regions.

Tilton Taylor

³¹ In some instances it is, of course, possible that values of dn/dt at 0° C are seriously affected by the type of function that is selected and by the care used in curve fitting, especially when no observations are made on undercooled water. For example, consider eq 11, 12, and 13 on page 208, J. Research NBS 18 (1937), all adjusted by least squares for the *D*-lines indices of the isothermally adjusted system (see section IV-2-a, this paper). The 4-constant eq 11, being very similar to a reduced form of the general interpolation for-mula (see eq 3, this paper), yields for t_{max} a value of +0.15 in fair agreement with +0.19° C as plotted in figure 12, this paper. On the other hand, from eq 12, a 4-constant power series in t, one derives the especially discordant value -0.18; and from eq 13, a 6-constant power series, the poor value -0.02° C. It seems, however, that a power series may be satisfactory for this computation if sufficient terms are used, because a 7-term power series, adjusted to fit exactly the approved computed data of this paper 10, 03, 04, 05, 03, and 60° C yielded a value of t_{max} =+0.17 in excellent agreement with the +0.19° C of figure 12. Goodness of fit is imperative even for data on water at temperatures below 0° C. Pulfrich's data, for example, yield values of -0.32 (C for t_{max} according as one uses the power series given in the Lan-dolt-Börnstein Tabellen (vol. 2, p. 957, 5th ed.) or the similar but much better fitting formula given on page 87 in Dufet's Recueil de Doneés Numeriques Optiques, Paris, 1900.

Although temperature changes in density affect index through both the constant term and the dispersive or absorption terms, the total of such increments in index arising from the former are, for fairly transparent substances, so much the more important that it is often convenient and useful to consider temperature changes in index as essentially (1) a density effect, approximately constant for all wave lengths, and (2) absorption band effects that are in some cases very different in magnitude at opposite ends of the visible region. Absorption in the infrared decreases index in the visible region more for red than for blue light. Absorption in the ultraviolet increases index more for blue than for red light. Consequently, both these absorption effects produce normal dispersion in the visible region and their relative importance can be estimated by considering partial dispersions in widely different wave-length regions and noting the trends of the partial dispersions with changes in temperature. For water the net combined result of the density effect and both of the absorption effects is not only greater index but greater dispersion as temperature is lowered toward t_{max} . In other words, indices for blue light are greater than those for red light and the derivative of the index with respect to the temperature is numerically greater for blue than for red light.

For a given wave length the existence of t_{\max} , like that of the temperature of maximum density, is explained by assuming that as the temperature is lowered the consequent contraction, with increase in index of all the water, is accompanied by the formation of some structurally less dense water having a decreased index of refraction; the rates of these thermal changes being so adjusted that at some tem-

perature a balance is effected and $\frac{dn}{dt}=0$. For the visible spectral

region the temperature at which this balance occurs is approximately 0° C, that is four degrees below the temperature of maximum density. Presumably, this temperature difference is attributable to absorption effects on the index. A progressive shift of the ultraviolet resonance to longer wave lengths, for example, would supplement the effect of thermal contraction and further increase index as temperature is lowered. Therefore, as compared with density, more rapid formation of the structurally open water, and consequently a lower temperature, is required to effect a balance for the index changes. Since the absorption bands have an appreciably different effect on index for different portions of the visible spectrum it is evident that the temperature of maximum index should, in general, be a function of wave length. For water it may be concluded from figure 10 in section IV-2-a that, effectively, both the ultraviolet and the infrared bands move toward the visible region as the temperature is lowered below 20° C. Consequently, the indices for red light would increase less rapidly than those for blue light and it is not surprising that t_{max} is found somewhat higher for red light.

3. SPECIFIC REFRACTION

The Lorenz-Lorentz specific refraction,

$$P = \frac{n^2 - 1}{n^2 + 2} \cdot \frac{1}{d},$$

was computed for several temperatures and a few wave lengths, both for absolute and for relative indices, those for the latter being listed in table 8 for ready reference.

TABLE 8.—Specific refraction of distilled water

 $\vec{P} = \frac{n^2 - 1}{n^2 + 2} \cdot \frac{1}{d}$ in milliliters per gram

t°C	$\begin{array}{c c} \lambda = 6563 \\ A \end{array}$	$\lambda = 5893$ A	$\lambda = 4861$ A	$\lambda = 4358$ A
0	0.205214	0. 206254	0. 208585	0. 210317
5	. 205155	. 206193	. 208520	. 210250
10	. 205103	. 206138	. 208463	. 210191
15	. 205058	. 206092	. 208414	. 210142
20	. 205020	. 206053	. 208372	. 210099
25	. 204989	. 206020	. 208336	. 210063
30	. 204963	. 205991	. 208307	. 210034
35	. 204942	. 205969	. 208282	. 210010
40	. 204925	. 205951	. 208264	. 209991
45	. 204913	. 205937	. 208249	. 209976
50	. 204904	. 205928	. 208239	. 209967
55	. 204900	. 205922	. 208233	. 209960
60	. 204898	. 205919	. 208229	. 209957

Values of the density, d, used in these computations were taken, between 0 and 42° C, from Chappuis' data as revised in table 2 of a former paper,³² and between 42 and 60° C, from Thiesen's ³³ values as modified, by not exceeding 13 parts in 1,000,000 toward values extrapolated from the Chappuis data.

The temperature variation of the specific refraction for the sodium lines, P_{p} , is shown in figure 13. The progressive approach of P_{p} to a constant value as the temperature is increased is usually interpreted as an evidence of a progressive simplification in the structure of water. The wave-length variation, P_{20} , is shown in figure 14, to which has been added (crosses) the value of P_{20} , corresponding approximately to $\lambda = \infty$, as estimated from each of three dispersion formulas, 13, 14, and 17, that have been given in an earlier paper.³⁴ The value of n^2 for $\lambda = \infty$ is simply assumed as that of the constant term in those formulas. Of these three values for n^2_{∞} that (a^2_{13}) from formula 13 would presumably give the best value if the dispersion can be satisfactorily represented by two Sellmeier terms. However, figure 14 indicates a much lower value, one at least as low as those given by the other two formulas which correspond to expanded forms of the Ketteler-Helmholtz equation. This accords with the known existence of many absorption bands in the infrared and confirms the view that the simple expansion is not limited to the effect of a single band, but gives an approximation to the effect arising from many bands.

Other commonly used expressions for specific refraction, such as

 $\frac{n-1}{d}$ and $\frac{n^2-1}{d}$, are similar in some respects to the Lorenz-Lorentz

form but for water are subject to larger percentage variations over

³² J. Research NBS 18, 213 (1937) RP971.
 ³³ Wiss. Abhandl. physik. tech. Reichsanstalt 4, 30 (1904).
 ³⁴ See formulas 13, 17, and 14 in RP934, J. Research NBS 17 (1936). Equations 5 of that paper show how formulas 17 and 14 may be viewed as approximations suitable for the case in which many absorption bands exist in the infrared region.

48258-38-4

Tilton] Taylor

given temperature intervals. Eykman's ³⁵ form $\frac{n^2-1}{n+0.4} \cdot \frac{1}{d}$, which he considered superior for many organic liquids, is for water actually less constant than that of Lorenz-Lorentz.

Since the Lorenz P is sometimes ³⁶ written as $\frac{n^2-1}{n^2+x} \cdot \frac{1}{d}$, where x is expected to have slightly different values for various substances, the possibility of improving the constancy by arbitrarily using some value of x other than 2 was cursorily investigated. Such an arbitrary pro-

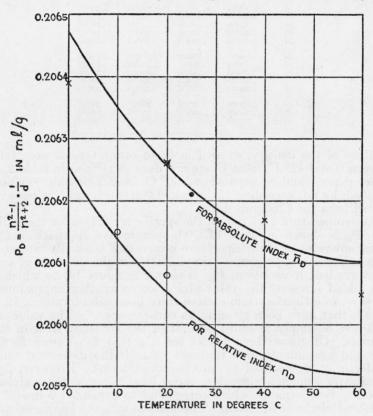


FIGURE 13.—Specific refraction of distilled water for various temperatures.

The curves represent the present work; circles, crosses, and dots show values listed, respectively, by L. Lorenz, by E. Flatow (one correction), and by Baxter, Burgess, and Daudt.

cedure yields different results when attention is confined to different temperature intervals. For example, from 0 to 40° C a value of approximately 0.6 is found, while for the range 0 to 60°, 1.1 is a more

J. F. Eykman. Rec. trav. chim. 14, 193 (1895).
 In the H. A. Lorentz notation (The Theory of Electrons, p. 137-139, 2d ed., Teubner, Leipzig, 1916), 1 -1, where a is a constant little different from one-third and s is for each medium a constant difficult

 $[\]overline{a+s}$ a+sto determine but one that was expected to be approximately zero for isotropic bodies in general, such as glass, liquids, and gases. Experimentally, however, values of x differing very appreciably from the value 2 have been found. See, for example, E. Ketteler, Ann. Physik [Wied] **30**, 288 (1887) and **33**, 358 (1888), who computed values of x for numerous liquids and lists some values larger than 4.

Refractivity of Distilled Water

suitable value. For the range 0 to 100° C, however, it appears that the customarily used value, x=2, is approximately an optimum.

4. PARTIAL DISPERSIONS

Precise data on the dispersion of water at various temperatures are desirable for use in calibrating precision refractometers. Dis-

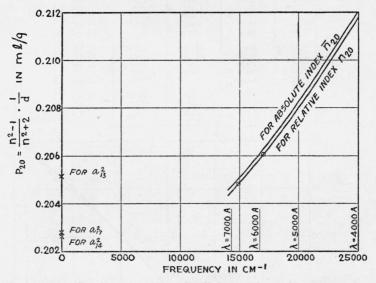


FIGURE 14.—Specific refraction of distilled water for various frequencies.

The curves represent the present work; circles show values listed by L. Lorenz. Crosses indicate values of P_{20} for approximate estimates of n_{∞} that are furnished by values of the constant a^2 in various forms of the Ketteler-Helmholz dispersion formulas (see text).

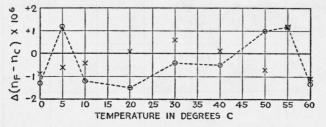


FIGURE 15.—Comparison between observed and computed values of partial dispersion $(n_F - n_C)$ for distilled water.

The line $\Delta(n_F - n_C) = 0$ represents data computed by the general interpolation formula (see eq 3). Circles and dotted line show observed values. Crosses indicate isothermally adjusted data. Here n_F and n_C are values of the index for the F and C lines of hydrogen, respectively.

persion data yielded by these experiments are given in table 9, and figure 15 is drawn to show how closely these partial dispersions (obtained by differencing table 5, or in other words, computed by use of the general interpolation formula, see eq 3) agree with the observed data.

Tilton Taylor]

TABLE 9.—Partial dispersions of distilled water

t°C	$10^{7}(n_{D}-n_{C})$	$10^{7}(n_{F}-n_{D})$	$10^7(n_F-n_C)$	$\nu = \frac{n_D - 1}{n_F - n_C}$
0	18554	41636	60190	55. 482
5	18516	41583	60098	55.556
10	18471	41516	59986	55.628
15	18420	41437	59857	55.697
20	18366	41349	59714	55.763
25	18307	41252	59559	55.827
30	18246	41148	59394	55, 888
35	18182	41038	59219	55.946
40	18115	40922	59036	56.001
45	18046	40800	58846	56.053
50	17976	40674	58650	56.102
55	17903	40543	58447	56.148
60	17830	40409	58238	56.191

[For wave-length designations see table 3]

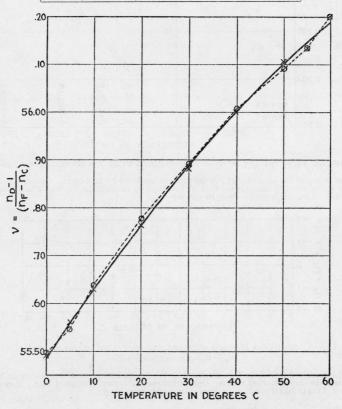


FIGURE 16.—Abbe's v-value, or constringence, of distilled water as a function of temperature.

The continuous line represents data computed by the general interpolation formula (see eq 3). Circles and dotted line show observed values. Crosses indicate isothermally adjusted data.

In figure 16 the observed and computed values of $\nu = \frac{n_{\nu} - 1}{n_{r} - n_{c}}$ are compared. This reciprocal measure of dispersion, or constringence

as it has been called, increases with the temperature at the rate of 0.015 per degree centigrade for temperatures near 0° C, and at the rate 0.009 for temperatures near 60° C.

VI. SUPPLEMENTARY DISCUSSION

The data given in this paper depend directly on 2,538 individual determinations of double minimum deviation and 747 individual measurements of refracting angle. These involve a total of 6.570 telescope pointings and 13,140 micrometer settings and readings of the circle. The other observed data were temperature of water and of air, pressure of air, and relative humidity of air.

1. INTERNAL EVIDENCE OF PRECISION AND ACCURACY

It is estimated that the probable errors of the direct observations, as averaged for any one of the 133 points on the index surface, do not exceed the values that are listed in table 10 together with their corresponding averaged equivalent effects on the index. Of these listed observed quantities, only the first three ³⁷ need be seriously considered in estimating the combined effect of all of them on the probable error of the index for any pair of temperature and wave-length coordinates. The root-mean-square effect of all of them is an estimated probable error of $\pm 6.6 \times 10^{-7}$ in the index. This is the probable error that would be expected in the mean index corresponding to a single point on the index surface in the absence of residual errors of a systematic but not entirely constant nature.

TABLE 10.—Estimated precision of directly observed data for a point on the index surface

Observed quantity	Estimated proba- ble error of mean	$\begin{array}{c} (\text{Averaged}) \\ \text{equivalent} \\ \Delta n \times 10^7 \end{array}$
Refracting angle Double minimum deviation Temperature of water Temperature of air Pressure of air Relative humidity of air	±0. 20" ±. 20" ±. 001° C ±. 05° C ±. 05 mm of Hg ±5 percent	$ \begin{array}{c} 4.1 \\ 5.1 \\ 0.9 \\ .1 \\ .2 \\ .3 \end{array} $

Another estimate of the probable error in index at a single point on the index surface can be made from the actual residuals between the observed and computed indices, as plotted in figure 11. Using the formula P. E. = $\pm 0.6745 \sqrt{\Sigma r^2/C}$, where $\Sigma r^2 = 337.1 \times 10^{-12}$ and C =120 in this case, this estimate of the probable error is $\pm 11.3 \times 10^{-7}$ in the mean index corresponding to any pair of temperature-wave-length coordinates. Obviously, if the estimates in table 10 are reliable and if the 133 residuals of these experiments constitute a representative set, the difference between these estimates of the probable error is an indication that errors other than those listed in table 9 are almost equally important.

Tilton Taylor

³⁷ Even temperature errors are seen to be of comparatively little importance and, for a substance having such a low dispersion as water, any existing uncertainties in wave length are negligible. These conditions, fortunately, permitted least-squares adjustments on the index, while considering temperatures and wave lengths as a reserved. lengths as exact.

The results of analyses of the residuals, and of their distribution with respect to temperature and wave length, are recorded in figures 17 and 18, respectively. These exhibits confirm the existence of slight systematic errors but indicate, also, that their residual magnitudes cannot materially exceed the accidental errors which have already been established as approximately $\pm 7 \times 10^{-7}$. In figure 18, the apparent superiority of the isothermally adjusted system over the general 13-constant surface, especially at the ends of the spectral interval, is a matter of doubtful merit and is probably a result of the large number of constants (36) involved in the isothermally adjusted system.

In examining the residuals with respect to time, it is not possible to eliminate satisfactorily the systematic effects of temperature by averaging; because, at best, the index was measured at only a very few temperatures during any moderate length of time. However, eight more or less distinct groups of experiments have been recognized, and certain data on the time variation in index measurements are listed in table 11. Here, again, the presence of systematic error is evident, especially in groups 6, 7, and 8 for the temperatures 50, 5, and 55° C, respectively. For the temperature 50° C, work was done not only in group 6 with plus residuals but also in group 2 where minus residuals predominate. Similarly, observations at 5° were made in the unlike groups 7 and 4. Also, it may be added, group 2 includes average negative residuals for 60° C observations, while in group 3 the residuals for the same temperature are predominately positive. Consequently, it appears that there are residual systematic errors, possibly $\pm 1 \times 10^{-6}$, that are not functions of the temperatures used for the observations.

One possible source of some of this error is a slowly variable torsion of the spectrometer cone. Certainly, variable friction is noticed at different room temperatures, and some readjustments of the weight distribution on the bearing surfaces are required and made at different seasons of the year. Small progressive (secular) changes with time during frequent use of such an instrument do not seem impossible.

Group	Number of water	Observational time interval	Observational temperatures	Observed points on	Num resid	ber of luals	Averaged
number	samples		(centigrade)	index surface	+	-	$10^6 \times (n_o - n_e)$
1	16	May 11 to June 5, 1931	20, 30, 25, 35	16	10	6	$ +0.2 \\ 7 \\ +.9 \\ 9 $
2	18	July 13 to Aug. 12, 1931	40, 45, 50, 55, 60	25	7	18	
3	15	Sept. 30 to Oct. 27, 1931	40, 60, 20	22	15	7	
4	16	Feb. 23 to Mar. 16, 1932	15, 10, 5, 0	25	6	19	
5	11	Mar. 2 to Mar. 18, 1933	30, 10	18	8	10	-2
6	6	June 13 to July 10, 1933	50	9	8	1	+1.6
7	5	Jan. 30 to Feb. 6, 1934	5	9	8	1	+1.0
8	6	May 28 to June 18, 1934	55	9	0	9	-1.6

TABLE 11.—Refractive-index residuals averaged for certain chronological groupings

When table 11 is considered in connection with figure 17, it is then evident that the negative residuals at 55° C, most of them in the decidedly negative group 8 and the others in the moderately negative group 2, are not necessarily so significant as appears from figure 17 alone. Indeed, as far as internal evidence is a criterion,³⁸ it is con-

³⁸ See, however, discussions in subsections 3 and 4 of section VI.

Refractivity of Distilled Water

Tilton Taylor]

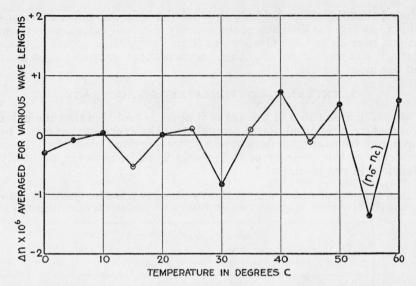


FIGURE 17.—Temperature distribution of refractive-index residuals, $\Delta n = (n_o - n_c)$.

Circles show averages for 4 wave lengths; circular dots represent averages for 13 wave lengths. This exhibit indicates that (with possible exception of data at 30 and 55° C) the temperature function used in the computations is suitable for the purpose and that the approved observations are satisfactorily free from systematic temperature errors and their effects. A similar comparison of observed and isothermally adjusted indices would be almost identical with lines directly connecting the circular dots in this figure.

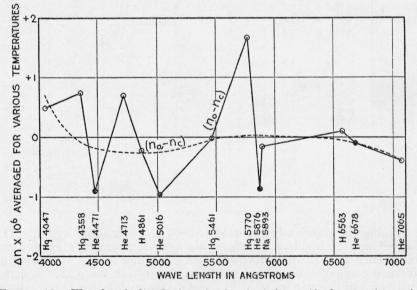


FIGURE 18.—Wave-length distribution of refractive-index residuals, $\Delta n = (n_o - n_c)$.

Circles show averages for 9 temperatures; circular dots represent averages for 13 temperatures. This exhibit indicates that systematic errors in using these spectral lines are small and, with possible exception of Hg 5770 A, probably insignificant in sixth-decimal-place refractometry. A similar comparison of observed, n_{e} , and isothermally adjusted, n_{e} , indices closely resembles the full broken line, but there is a slightly systematic difference that is quantitatively shown by comparing the dotted curve for $(n_{e}-n_{e})$ with the line $\Delta n=0$.

cluded that the computed indices as tabulated in this paper are probably more reliable than any of the actually observed values, even those at and near 30 and 55° C where, at times during the analysis of these data, it has seemed possible that very small peculiarities might exist on the index surface.

2. EXTERNAL CONFIRMATION OF ACCURACY

From figures 1 to 5 of this paper it appears probable that the index values herein reported are, in general, near the averages that might be prepared from all the data reported by previous observers. Such evidence of the accuracy of the present work is, however, decidedly deficient in precision.

TABLE 12.—Comparison of Mlle. O. Jasse's indices of refraction of distilled water with those computed by the general interpolation formula (see eq 3) of this paper

t°C		Values of (n	J−n _{NBS})×10 ⁶		
	$\lambda = 4358$ A	$\lambda {=}5461~{\rm A}$	$\lambda = 5770$ A	$\lambda = 5791 \ \mathrm{A}$	Average
$\begin{array}{c} 0.00\\ .03\\ 3.85\\ 5.71\\ 5.76\\ 6.55\\ 6.63\\ 7.88\\ 8.09\\ 8.52\\ 8.85\\ 9.15\\ 9.44\\ 9.65\\ 14.06\\ 15.00\\ 15.24\\ 15.96 \end{array}$	$\begin{array}{c} + & 4 \\ + & 1 \\ + & 1 \\ - & 2 \\ - & 1 \\ - & 3 \\ - & 3 \\ + & 2 \\ - & 4 \\ - & 1 \\ - & 5 \\ - & 1 \\ - & 5 \\ - & 1 \\ - & 5 \\ - & 1 \\ + & 6 \\ + & 14 \end{array}$	+3 +11 +11 -11 +15 -5 -33 -4 -5 -16 -5 -88 -21 +41 +11 +11 +11 +11 +11 +11 +11 +11 +1	$\begin{array}{c} & & & \\ & & +3 \\ & +2 \\ & & -1 \\ & & 0 \\ \\ & & & \\ & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & $	$+1 \\ 0 \\ -1 \\ 0 \\1 \\ 0 \\7 \\ -4 \\ -9 \\4 \\ -9 \\1 \\ +4 \\ +4$	$\begin{array}{c} +3\\ +3\\ +2\\ 0\\ +2\\ -3\\ +4\\ -6\\ 2\\ -7\\ -6\\ 1\\ -1\\ 5\\ 6\end{array}$
$\begin{array}{c} \textbf{21.44} \\ \textbf{22.19} \\ \textbf{23.20} \\ \textbf{23.31} \\ \textbf{24.42} \\ \textbf{24.42} \\ \textbf{24.87} \\ \textbf{27.67} \\ \textbf{28.66} \\ \textbf{28.65} \\ \textbf{29.25} \\ \textbf{39.51} \\ \textbf{41.34} \\ \textbf{47.45} \\ \textbf{52.04} \end{array}$	$\begin{array}{r} +22\\ +9\\ +11\\ +8\\ +11\\ +5\\ +11\\ +31\\ +10\\ +25\\ +9\\ -91\\ -96\\ -110\\ -117\end{array}$	$\begin{array}{r} +19\\ +10\\ +11\\ +7\\ +7\\ +2\\ +8\\ +14\\ +8\\ +12\\ +13\\ -122\\ -122\\ -138\\ -143\end{array}$	$\begin{array}{r} +21\\ +12\\ +11\\ +8\\ +10\\ +5\\ +7\\ +11\\ +8\\ +8\\ +9\\ -137\\ -133\\ -150\\ -146\end{array}$	$\begin{array}{r} +23\\ +9\\ +9\\ +9\\ +9\\ +9\\ +10\\ +10\\ +10\\ +11\\ +13\\ -125\\ -122\\ -140\\ -140\\ \end{array}$	$\begin{array}{r} +21 \\ +10 \\ +10 \\ +7 \\ +9 \\ +9 \\ +19 \\ +9 \\ +16 \\ +11 \\ -120 \\ -118 \\ -134 \\ -136 \end{array}$

Among the previously reported indices of water those by Mlle. O. Jasse³⁹ appear highly precise and show at temperatures from 0 to 16° C such remarkable agreement with the tables in this paper that a detailed comparison has been made and is given in table 12. Apparently eq 3 of this paper fits Mlle. Jasse's data within this temperature range about as well as if the constants had been determined from her data. This confirmatory evidence of the attainment of accuracy is, of course, not completely satisfactory because of disagreements at higher temperatures. Mlle. Jasse's method permits index determina-

39 Compt. rend. 198, 163 (1934).

tions without previously assumed approximate data, provided sufficiently thin films of liquid are initially used and the temperature is varied in suitably small increments. It seems possible, however, that time might have been saved by using to some extent the method of coincidences, the fractional orders of interference being observed and the whole orders being determined by Diophantine processes based on assumptions as to the approximate values of the refractive index and dispersion. However, it is suggested that under such circumstances the large errors and uncertainties in previously existing data might lead, almost necessarily in some cases, to erroneous conclusions regarding the total orders of interference involved in a given experiment. If these methods were used in part, then possibly a reexamination of MIle. Jasse's data would show some changes and perhaps an even better internal agreement among her data for the various wave lengths.

3. EFFECT OF DISSOLVED GASES

During preliminary experiments in index determinations on water it was found that somewhat higher indices of stored distilled water were obtained after heating and degassing. The amount of this increase was not accurately measured but in some cases the increase at room temperatures exceeded 5×10^{-6} . On the other hand, from published data⁴⁰ it appears that the density of air-free water does not exceed that of air-saturated water by more than 3×10^{-6} even at 5 to 8° C. This density difference decreases at higher temperatures and is approximately negligible at 30° C. If the relation (n-1)/d=C be assumed, then $\Delta n = \Delta d/3$ and consequently the effect of dissolved air should not exceed 1×10^{-6} in index even at 5 or 10° C.

Consequently, it was assumed that the experimentally indicated differences were caused by the presence of other gases in the stored distilled water, and it was further assumed that during the definitive measurements it would be immaterial whether or not the samples of freshly distilled water were in air equilibrium. Nevertheless, in order to prevent possible accumulation of carbon dioxide or the solution of other gases, only restricted contact with the air was allowed, as mentioned in section III-1.

In some cases, noticeably so for determinations at 0° C, there appeared to be a slight systematic lowering of refractive index during the time (2 to 5 hours) that elapsed between the first and last index determinations on a given sample. At first it seemed possible that these samples were being progressively saturated with air or other gases, during the course of the index measurements, but the evidence on this point is not at all convincing because at 5°C the rate and extent of observed lowering were noticeably smaller than those at 0° C.

Considering all days on which index determinations were made, observer *B* had predominated in taking the prior sets and *A* in the subsequent sets of data taken on each day. Consequently, assuming a constant personal difference in the making of minimum deviation settings, it was possible, by simple simultaneous equations, to solve for this personal difference in index, $(n_B - n_A)$, and also for an average value of the time difference, $(n_{\text{prior}} - n_{\text{subseq}})$. For this purpose the data were considered in two groups, one for temperatures 0 to 20° C,

40 P. Chappuis, Travaux et Mémoires du Bureau International des Poids et Mesures 14, D63 (1910).

473

Tilton Taylor

inclusive, and the other from 25 to 60° C. The results are $+9 \times 10^{-7}$ for the personal difference, $+6 \times 10^{-7}$ for the time difference at lower temperatures, and -5×10^{-7} for the time difference at higher temperatures. Moreover, a few data were taken by observer A alone at 5° and at 40° C and thus independent estimates of +1 and -6×10^{-7} were obtained for the time differences, $(n_{prior} - n_{subseq.})$, at these respective temperatures. This confirmation of the time differences is as good as should be expected considering the possibility of very slight changes in the effective prism angle from hour to hour, or rather the differences between the actually existing angle and the linearly inter-polated values that (see section III-3) were obtained from the initial and final angle measurements on a given day.

Possibly, then, during these measurements the index of water progressively decreased slightly while the water was held at temperatures below room temperature and increased slightly while it was held above room temperature. The increase at higher temperatures is, of course, in accord with expectations regarding possible dissolved glass or metal, but in both cases the changes are in the seventh decimal place and opposite in sign to expectations that might be based on temperature-error effects as temperature equilibrium is slowly approached.

4. STRUCTURE OF WATER

In order to explain the maximum density of water at 4° C, the minimum molecular heat near 35°, minimum compressibility near 40°, and certain other known facts regarding the properties and behavior of water, it has often been assumed that liquid water consists of a mixture of polymers, say of tri-, di-, and monohydrols, coexisting in reversible equilibrium.⁴¹ Study of X-ray patterns and of Raman spectra has pointed however, to the abandonment of such simple ideas as to the nature of association in water (and in many other liquids). The hydrols hypothesis was superseded by the molecular group conception or cybotactic condition according to which temperature greatly influences distances, orientations, molecular forces, and other factors affecting the size and internal regularity of relatively large groups having ill-defined boundaries. More recently, liquid water has been qualitatively pictured in terms of coordination theory as a "broken-down ice structure" with coordination persisting in definite degree dependent chiefly on temperature.42

During these measurements on the refractive index of water the authors have been mindful of the possibility of detecting slight peculiarities in index that might be directly attributed to relatively sudden changes in the degree of association or in other characteristics of the water molecules. In this connection, it may be mentioned that the apparent minima in values of l^2 , as shown in figure 10, and the corresponding negative residuals in index, figure 17, occur at temperatures 30 and 55° C, which are near those at which Wills and Boeker⁴³

 ⁴¹ See, for example, W. D. Bancroft and L. P. Gould, J. Phys. Chem. 38, 197-211 (1934); J. Duclaux, J. chim. phys. 10, 73-109 (1912).
 ⁴² See, for example, G. W. Stewart, Phys. Rev. [2] 37, 9-16 (1931); J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1, 515-548 (1933); Michel Magat, Ann. phys. 6, 156 (1936); Paul C. Cross, John Burnham, and Philip A. Leighton, J. Am. Chem. Soc. 59, 1134 (1937).
 ⁴³ A. P. Wills and G. F. Boeker. Phys. Rev. [2] 46, 908 (1934). Elementary considerations indicate that, for diamagnetic substances, the index should decrease slightly if specific susceptibility increases in absolute value without a compensating decrease in density. In this connection, however, Samuel Seely, Columbia University, in a private communication to the authors, reports good general agreement with the results by Wills and Boeker, but much more regular data with no humps. He finds a marked change in slope at or near 45° C. See Phys. Rev. [2] 52, 662 (1937).

found humps on their curve of the specific magnetic susceptibility of water. Also, the shape of the curve for k in figure 10 may, perhaps, correspond with the sudden disappearance of the Raman band, $\Delta \nu = 500$ to 700 cm⁻¹ when t rises above 37°, as reported by Magat;⁴⁴ or it may correspond with the change in temperature rate at which certain absorption maxima in the near infrared are shifted toward shorter wave lengths, as found by Ganz⁴⁵ near 40° C.

It has been generally assumed that equilibrium between the temperature and the degree of association, or coordination, is very quickly established, and a confirmatory report was issued by La Mer and Miller ⁴⁶ who, by an interference method with a precision of $\pm 3 \times 10^{-6}$ investigated the index of water (at 20° C only) as a function of time. Nevertheless, the authors must state that at times during their experiments it has seemed that complete equilibrium is difficult to obtain. The average trend toward lower index as time elapsed during measurements at 0° C, as mentioned in the preceding section, was scarcely large enough to seem decisive but on several occasions water was allowed to remain in the prism overnight or longer and the subsequent measurements yielded abnormal values of index that are not easily explained. Temperature uncertainty in its direct effect on index is a negligible factor at low temperatures where these abnormalities were especially noticed. There are, however, other factors that may require time for equilibrium. Dissolved metal or glass would increase the index but in a number of instances the measured index decreased after one or two days. Dissolved air or gases might decrease the index slightly, but these samples of 9 ml were in contact with only 1 ml of air. In fact, the magnitudes and algebraic signs of these changes with time are such that they are not at present satisfactorily explained.

A concise record of these auxiliary experiments and of the systematic nature of the abnormal changes in index is given in figure 19 where they are plotted against the temperature at which the measurements were made. All of these indices, determined after considerable lapse in time, were compared with indices as computed by the general formula (see eq 3) of this paper, and the differences $(n_o - n_c)$, were averaged for several wave lengths and then plotted for comparison with each other and with the strictly normal condition $(n_o - n_c) = 0$. Curve A appears to be characteristic of water that has remained in the prism for about 28 hours. Curves C and D are similar but represent data taken after from 1 to 3 days and the indices may be slightly high because of possible contamination with beeswax, which in these auxiliary experiments was used in cementing the prism windows. Curve B, however, should be altogether different because it represents data on water distilled in vacuo and sealed in the special vacuum-type prism III in contact with water vapor only. From published data it appears that a value of -14×10^{-6} is to be expected for $(n_e - n_c)$ in this case, but curve B is found below curve A by something less than one-half that amount. This may mean that the windows or the Duco cement yielded and allowed partial atmospheric pressure on the water; or possibly the Duco proved considerably more soluble than the

Tilton] Taylor]

 ⁴⁴ M. Magat. J. phys. et radium [7] 6, 179 (1935). See, however, G. Bolla. Nuovo cimento 12, 243 (1935), who reports that certain bands at 510 and 780 cm⁻¹ are present at 42° C.
 ⁴⁵ Ernest Ganz. Ann. Physik [5] 26, 331-348 (1936).
 ⁴⁶ Victor K. La Mer and M. L. Miller. Phys. Rev. [2] 43, 207 (1933).

beeswax that was used when the data of curves C and D were taken. In its slope, however, curve B closely parallels curves A, C, and D.

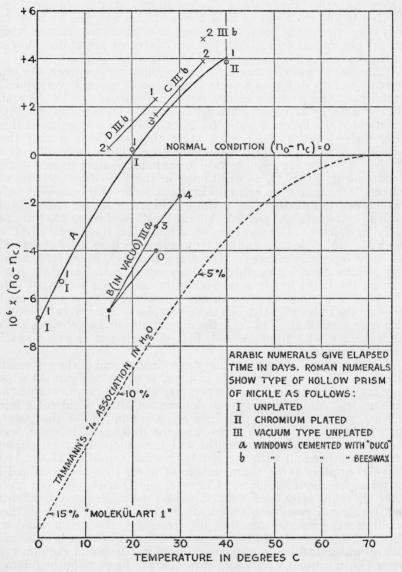


FIGURE 19.—Abnormal index of refraction of distilled water after prolonged contact with glass and nickel.

All points represent averages for several wave lengths, and observed indices, n_o , are compared with indices, n_c , computed by the general interpolation formula (see eq 3). Circles (curve A) indicate measurements with regular approved sampling and procedures but after the samples had remained 1 day in the prism. Dots (curve B) indicate values for a sample of water distilled and measured in vacuo but perhaps contaminated with Duco cement. Crosses (curves C and D) indicate measurements at atmospheric pressure on a second and a third sample, after distillation in vacuo, but perhaps there is slight contamination with beeswax.

In considering figure 19 the important matter is this slope of the curves with respect to the normal condition. It should be noted that the progressive changes that occurred from 0th to 1st day on curve B, from 2d to 3d day on curve C, and from 1st to 2d day on curve D are decreases and therefore can not be directly ascribed to progressive contamination as such. Moreover, curve A crosses the axis near 20° C at which temperature La Mer and Miller made their tests and likewise found no change in index as a function of time.

As a possible partial explanation of these data it is suggested that refractivity is increased by the solution of glass and metal, and also simultaneously decreased by some structural change that is proportional in amount to the existing degree of thermally variable association, coordination, or "ice molecule" content.⁴⁷ From figure 19 it is possible to estimate that at 70° C, above which rate of change in the ice-molecule content is probably small, the direct effect of solution would be approximately $+7 \times 10^{-6}$ in index after 28 hours, but that the effect of solution does not increase proportionately during a second or third interval of like duration. The accompanying decrease in index is, apparently, of the order of 1×10^{-6} for each percent of icemolecule content as estimated by Tammann.

These suggestions based on the auxiliary experiments with long enduring contact between water and prism are, also, probably applicable to the results found by the direct analysis of definitive data in the preceding section (VI-3), and thus it may be inferred that contamination was not entirely absent in the definitive refractive-index measurements made with normal procedures. It is, however, untenable to assume that any sizable index changes similar to those illustrated in figure 19 could have occurred in the normal procedure, because the said direct analysis of definitive data shows that the average differences between prior and subsequent sets of observations taken on a given day are entirely matters of the seventh decimal place of index.

Interest in all of these auxiliary results is, therefore, almost entirely academic. The interesting difficulty is to account for the lower indices at low temperatures. A slight decrease in coordination proportional to the initially existing degree of coordination might conceivably be occasioned by progressive solution and possible ionization. Such a change in coordination, however, is supposed to permit closer packing of the water molecules and hence the algebraic signs conflict with such a conception. Fortunately, there is one clearly established and satisfactory aspect of all indications of systematic error in these experiments. It is the apparent smallness of the resultant effects on the approved indices of refraction of water as tabulated in this paper. There is no indication of accidental or systematic error in excess of ± 1 or 2×10^{-6} .

The authors acknowledge indebtedness to numerous members of the Bureau's Staff for valued suggestions, advice, and assistance throughout this work.

WASHINGTON, January 18, 1938.

Tilton] Taylor]

⁴⁷ See, for example, G. Tammann, Z. anorg. allgem. Chem. **158**, 4 (1926). Possibly, however, Tammann's percentages should be considered simply as changes in association rather than as estimates of the total extent thereof.