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A REDETERMINATION OF THE CONSTANT OF
GRAVITATION

By Paul R. Heyl

ABSTRACT
A redetermination of the constant of gravitation has boon made using the

torsion balance in vacuo. The large masses were steel cylinders weighing about
66 kg, and the small masses spheres of gold, platinum, and optical glass
final result obtained is 6.670 X10"8 cm3 g" 1 sec."2

.

While the results obtained appeared to differ slightly with small balls of gold,
platinum, or glass, it was shown by a special experiment with the form of torsion
balance used by Eotvos that this is not to be attributed to difference in material.
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I. INTRODUCTION

1. THE NATURE OF THE CONSTANT OF GRAVITATION

The constant of gravitation is the multiplying factor G in the

formula

F=G^ (1)

giving the force F of gravitational attraction between two masses M
and m, with a distance d between their centers of attraction.

This constant of nature is one of the few that best deserve the

name. It is known to be independent of the nature of the attracting

materials to a precision of 6 parts in 10. 1 It is known to be inde-

pendent of the temperature to a precision of about 1 part in 10,000. 2

It appears also to be unaffected by the presence of different materials

in the space between the attracting bodies. 3

In theoretical importance the constant of gravitation ranks with
the velocity of light and Planck's constant of action. In Einstein's

theory of gravitation it appears in a formula for the curvature of

space due to the density of distribution of matter.4 It undoubtedly
has some intimate connection not yet understood with the ultimate
structure of the universe.

Practically this constant is of importance as it enables us to de-
termine the mean density of the sun and of the other planets of the
solar system.

In thus applying the constant of gravitation it should be pointed
out that we are making an assumption—that this constant is the
same between the earth and the sun as between two bodies on the
earth's surface. The arbitrary nature of this assumption becomes
clear when, following Einstein, we regard gravitation as due to space
curvature arising from the presence of matter. We are, in fact,
assuming space to be everywhere equally resistant to deformation.
We do know that the constant of gravitation is approximately the
same at several points on the earth's surface, and there is no. reason
to suspect the contrary; but we do not know that the same will hold
true for different radii, as between the earth and the moon, or even
between the center and the surface of the earth.
But if we are wrong in this assumption it is of little practical im-

portance. Our estimates of the masses of the heavenly bodies might
be in error, yet their mutual attractions and relative motions would
still be the same. However, in the case of a body moving in a very
tone elliptical orbit, such as a periodic comet, there might be a small
differential perturbation from this cause.
And we are not entirely without evidence that our estimate of the

mass oi the sun, at least, is not grossly erroneous. The Einstein
s nit of the lines m the solar spectrum depends on the solar mass.
\\ bile experimental evidence on this point is not of the highest pre-
cision, it is perhaps safe to say that our estimate of the mass of the
sun is not in error by as much as 20 per cent

iE^w>^X^^'^-^ 1922-

' '« Wn, Blteungsbertchta dor Preiiaa, Akad.'d. w'iss.; Feb. 8, 1917.
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2. SUMMARY OF EARLIER MEASUREMENTS
An excellent summary of experimental work on the constant of

gravitation may be found in Poynting's article "Gravitation" in the
Encyclopaedia Bntannica (11th ed.). To this is to he added a ref-
erence to the work of Cremieu (Comptes rendus, vol. in V]) 653
713; 1905, and vol. 149, p. 700; 1909)

J
'

'

The value accepted for this constant for the last 30 fears baa rested
upon the independent work of Boys and of Braun.8 These two
experimenters obtained results agreeing to 4 significant Bguree
6.658 X10-s cm3 g- 1 sec.- 2

, but because then individual values vaiieAm the third figure (by as much as 4 units in Braun's work and by
2 units in that of Boys) Poynting, in his discussion of the subject,
adopts the value 6.66 X10-8

, subject to an uncertainty of 1 umf in
the third figure.

3. WORK OF BOYS

Because of the importance of the work of Boys and of' Braun it

will be well to consider their experiments in more detail. Bo! h used
the torsion balance, which has been employed in one form or another
by half a dozen different experimenters since the days of Cavendi-h,
but each employed a different arrangement.

Boys, guided by theoretical considerations which show that a short
beam may, under certain conditions, give increased sensitivity,

constructed his apparatus so that the horizontal distance between
centers of the small masses was 1 inch and that between centers of

the large masses 6 inches. Since with centers of all masses at the
same level the proximity of a large mass to both small ones would
largely wipe out the increased sensitivity arising from the short

beam, Boys arranged the masses in pairs, one large and one small

mass in each pair, the two pairs being at different levels.

The large masses used by Boys weighed about 7.4 kg each and the

small masses each about 2.65 g.

Boys did not use a vacuum in his apparatus; in fact, he stated in

his published paper (p. 70) that he was sure the use of a high vacuum
was out of the question. He did, however, carry out one experiment

with a hydrogen-filled apparatus, but the results were not encourag-

ing. In fact, no experimenter previous to Braun had made any

attempt to work at reduced pressure, and all had experienced trouble

from convection currents. Boys was forced to go to great lengths

in the way of screens and heat insulation in the attempt to eliminate

this difficultv.

Of the two methods of using the torsion balance, direct deflection

and time of swing, Boys used the first only. In this method the

large masses are set in a position of maximum attraction on t In-

moving system, (a, a, fig. 1.) After determining the resting point

the moving system then takes up, the large masses are moved to a

similar position with opposite turning effect (b, 6), and the resting

point again noted. Half the angle between the two positions ol the

moving system measures the deflection produced hv the mutual

attraction of the masses.

Boys aimed at a precision of 1 part in 10,000, and so designed his

apparatus as to afford the accuracy theoretically necessary to attain

• C. V. Boys, Phil. Trans. Roy. Soc. A Pt. 1 p. 1; 1895. Carl Braun, Denkschriften der k. Aka.l. -i

Wiss. (Wien), math. u. naturwiss. Classe, 64, p, loi, USJ<.
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this end. -His final results, however, fell considerably short of this

precision. Omitting the experiment with the hydrogen-filled appara-

tus, he obtained the following nine results (omitting a fifth figure

given by Boys)

:

6.665 XIO"8 6.658 X 10~8

6.670 X10"8 6.653 XIO"8

6.671 XIO"8 6.658 X 1(T8

6.668 X10-8 6.670 XIO"8

6.655 XIO"8

The mean of these values, assumed of equal weight, is 6.663, with

an extreme variation of 0.018 and an average departure from the
mean of 0.006. Boys remarks,

Ob f*} CU
however, that conditions of dis-

v^ turbance varied greatly in the
different experiments, and he
selected the fifth, sixth, sev-

enth, and eighth of the above
series as being most likely to

give a true value. Moreover,
he seems to have assigned
nearly all the weight to the
sixth and eighth, adopting as
his final figure 6.658 X 10"8

.

a-— ^;^- <:!" o
4. WORK OF BRAUN

^ Braun used a torsion bal-

ance of larger dimensions than
that constructed by Boys, the
distance between centers of

the small masses being about
25 cm and that between
centers of the large masses
about 42 cm. The large

f"} a ("*) (> masses weighed about 9 kg
^-^ ^^ each and the small masses each
Figure 1.—Direct deflection method about 54 g. His apparatus

was arranged in the usual
way, with the centers of all four masses at the same level. For a
long beam there is little objection to this plan.
Braun was the first to perform this experiment at reduced pressure,

part of his results being obtained at 16 mm Hg and part at 4 mm Hg.
Braun used both the direct deflection and the time-of-swing

methods. In the latter method the time of swing is measured with
the large masses in two positions which may be called "near" and
far. (Fig. 2.) A little study of this figure will show that in the

near position the attraction of the large masses upon the moving sys-
tem is such as to accelerate the swing, while in the far position it
retards it With the masses and dimensions used by Braun the
difference between the two times of swing was about 46 seconds.

Hrnun stated his results in terms of the mean density of the earth
ratner than of the constant of gravitation. He published results
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of 46 separate experiments, 26 by the time-of-swing method and 20
-by the method of direct deflection, the individual results being
weighted from 1 to 4. The individual results vary by as much as 4

units of the third significant figure.

5. ORGANIZATION OF THE PRESENT WORK

So well done was the work of Boys and Braun that the difficulty

of improving upon it was clearly recognized. Such a task requires

the resources of an institution rather

than of an individual. Practically /"s ^ S~*\

-every division in theBureau of Stand- \
s J O""" vj {^)

,
ards has contributed tangibly or in-

tangibly to the successful completion NEAR
of this experiment. The work would
probably not have been undertaken
had it not been for the encourage-

ment of the director, Dr. George K.
* Burgess, whose interest in the sub-

ject dates back to his student days,

and for the like encouragement of

Dr. L. J. Briggs, chief of the division

of mechanics and sound, whose in-

terest in gravity measurements at

sea is well known. ^ms
^

The completion of the undertak- Q ^
ing in a reasonable time has been v-'

made possible by the cooperation of

E. R. Frisby, who has done about

90 per cent of the very laborious com-

putations and, in addition, worked

out the formulas for the time of swing. Q O
Drs. H. L. Dryden, of the Bureau

of Standards, and E. W. Woolard, of

\ George Washington University, have
1 rendered valuable services in check-

ing the mathematical work at differ- —

.

ent stages. I)
The apparatus was constructed ^-^

almost entirely in the Bureau of PAR
Standards instrument shops by J. F. r n r\

Draper The task required nearly Figure 2 —Time of swing met/

e

a

dirnt

f

ilS^, hettrsiestions offered by Mr. Draper in

the course of the work.

II. PLAN OF METHOD

A studv of the work of Boys and Braun led to the conclusion thai

litttetat to be hoped for in the way of h^JJES^
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done, for in Braun's experiments this objection does not hold, yet

his result by the direct-deflection method confirms that of Boys.

With the time-of-swing method the case is different. Braun says

in his published paper that the possibilities of this method much
exceed those of the other, and expresses his regret that he was unable

to make full use of them. It was therefore decided to use this

method only in the repetition of the experiment.

Of the two arrangements of the torsion balance Braun's form seemed
preferable to that of Boys for two reasons—it is easier to obtain

precision in the important measurement of the horizontal distance

between centers of the small masses when this distance is large; and

it was planned to increase greatly the size of the large masses, which
would have made a very considerable difference of level necessary.

The general dimensions of Braun's apparatus, apart from the size

of the large masses, seemed ample for obtaining a precision of per-

haps 1 part in 10,000. The apparatus was, therefore, designed after

the general pattern of that used by Braun, with a considerable increase

in the large masses.

Three series of measurements were made, using small masses of

gold, platinum, and optical glass.

Photographic recording of the time of swing was considered, and
a special form of moving film camera was constructed for this pur-
pose; but it was found that with the distance to be traveled by the
beam of light (about 7 m) and the passage through 8 pieces of glass

with 2 reflections, it was difficult to obtain an image bright enough
to be photographed in motion and at the same time sharp enough
to be acciirate. It was easily possible to obtain a sharp image suffi-

ciently bright for visual observation, and it was therefore decided to
make the observations visually, and to record them by a chronograph.

III. DESCRIPTION OF APPARATUS
1. OBSERVATION ROOM

As an observation room there was available the constant-temper-
ature vault of the bureau, divided into two rooms, one large and one
small. This vault is located below the East Building at a depth of
about 12 m below ground. In addition to furnishing uniform
temperature this depth eliminated any trouble that might other-
wise have arisen from moving masses near by.
The torsion pendulum was set up in the small room, the floor

space of which was about 2 X 2.7 m and the height about 4 m. The
observing apparatus was placed in the large room, the intervening
brick wall being pierced by a window about 30 cm square. A pier
was built in each room, in the small room at its center, and in the
large room close to the far wall, the distance between centers of piers
being about 3.5 m. At this distance calculation shows that the
cllcct ol the observer's mass upon the moving system is less than
one ten-thousandth that of the two large masses. It was deemed
advisable, however, that the observer remain in the same place dur-
ing the whole period of observations, rising from his chair when
necessary to attend to the chronograph at his side, but not moving
horizontally from his location.



Tleyl] Constant of Gravitation L249

The observation room proved ideal for the purpose. No vibration
was observable, and it was possible to work bv dav with results
equally as good, as those obtained by nierbt. Practically nil the
wrork was therefore done by day.

2. THE LARGE MASSES

When it is a question of dealing with large masses in an experiment
.of this kind the nature of the material becomes important, Caven-
dish (and later Baily) used spheres of lead weighing nearly L60 kg.
Such large masses of lead or lead alloy can hardly be trusted to main-
tain their shape accurately over long periods of time. In addition,
there is always the possibility of holes in the casting. To avoid this
latter difficulty several experimenters (Braun among the number)
.have used hollow spheres filled with mercury.

For the present work it seemed most practicable to employ steel,
because of ease of accurate shaping and permanence of form. Tool
steel of about 0.90 per cent carbon was selected as being most uni-
form in structure and least liable to segregation. To avoid blow-
iholes and pipes a large ingot of 30 cm diameter was forged down
to 20 cm and annealed for machining. This work was done at the
.Washington Navy Yard.

Nearly all previous experimenters have used masses of spherical
form because of the simplicity of the calculations involved. The
practical difficulties incident to the accurate machining of a sphere
of the weight planned (over 60 kg), especially in cutting off and
rounding the ends, as well as the difficulty of determining accurately

the center of the sphere when mounted in place, appeared so great

that it was decided to adopt a cylindrical form, thus shifting the

burden to the broad shoulders of the mathematician.
After machining the cylinders to size, their dimensions and masses

were determined, respectively, by Mr. Miller and Mr. Peffer, of the

weights and measures division. These results, in grams and centi-

meters at 20° C, are given in Table 1.

Table 1.

—

Dimensions and masses of cylinders

Cylinder mark

-

Diameter (extreme variation)
f 19.4514

\ 19. 4552
19. 4534

/ 28. 4974

\ 28. 5012
28.5007

66, 302. 6

19. 4727
19. 47.58

19. 4743

28. 4804
28.4852
26. 4827

66, 401. G

When in place in the apparatus the cylinders are surrounded by air,

/and the attraction of a cylinder at any point will be that due to the

mass of the cylinder in vacuum minus the mass of the displaced air

j
We may consider a cylinder of this slightly reduced mass superposed

iupon a continuous and uniform distribution of air. The air being

i infinite and continuous exerts no resultant attraction at any point

/within it, and the total resultant attraction is therefore that due to
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the superposed cylinder. Thus the effective values of the mass and

density of the cylinder will be found by correcting for displaced air at

the temperature, pressure, and humidity existing at the time of the

experiment.
. . ..

Calculation shows that for a variation in relative humidity from

57 to 86 and for the usual pressure variation the mass of air displaced

by a cylinder is constant to the first decimal place, namely, 9.9 g; and

this is also the precision to which'the masses of the cylinders are known.
Applying this correction to the values given in Table 1 we obtain the

effective values given in Table 2

:

Table 2.

—

Effective masses and densities of cylinders

Cylinder mark

-

66, 292. 7

7. 82583
66, 394. 7

7. 82608

Uniformity of density is an important consideration. There can
hardly be any question of appreciable pipes or blowholes after the
preliminary reduction by forging, but we must consider the possibility

that by this forging the outer layers of the cylinder may have been
made slightly denser than the center. Segregation also might cause a
change in density of like distribution. As a check upon this, samples
were taken from the bosses cut off from an end of each cylinder in the
final stages of machining, and the density of these samples determined.
Each sample had a diameter of about one-fifth that of the cylinder,
and may thus be taken as representing approximately the density of
the cylinder near its axis. Table 3 shows the comparison of these
densities with the calculated values for the whole cylinders.

Table 3.

—

Variation in density of cylinders (in vacuum)

Cylinder mark

-

Density near axis. 7. 8255
7. 8270

7. 8250
7. 8273Calculated mean density

In no case is there a difference in density greater than about 1 part
in 4,000. An approximate calculation shows that the error intro-
duced in the value of the attraction by the assumption (for instance)
of a uniform density of 7.8273 instead of one varying uniformly from
7.8250 at the center to 7.8285 at the outer surface (with a mean of
7.8273) amounts to less than 1 part in 50,000, negligible for present
purposes.

3. SUPPORTING SYSTEM
The large masses were supported so as to be free to turn in azimuth

about a vertical axis midway between them. The general arrange-
ment is shown in Figure 3
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Figure 3.—General arrangement of apparatui
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Two 15 cm I beams wore set into the brick walls of the room with a
space of about 20 cm between them. Across these beams w as fastened
by screw clamps a steel plate 2.5 cm thick and L5 cm wide. This
crosspiece was pierced at the center by a hole 3.7 cm in diameter
through which passed by a snug fit the vortical axis of the supporting
system.

This vertical axis was capped at the upper end by a disk resting
upon a ring of steel balls rolling in a channel cut in the crosspii
Fastened to the upper surface of the desk was a graduated circL
cm in diameter provided with a vernier reading to 0.1°.

The vertical axis carried at its lower end an arrangement of dove-
tailed blocks allowing two sliding adjustments at right angles, for the
purpose of centering the cylinders with respect to the point of Bupport
of the pendulum.

Fastened to the lowest of these sliding blocks was the crossbeam
B (fig. 3), from the ends of which hung the cylinders .1, A. Bach
cylinder was supported by three steel rods, 0.5 cm in diameter, screwed
into the cylinder by tapped holes, each hole threaded all the way
down to a flat bottom against which the flat end of the rod fitted.

Each rod was provided with a lock nut where it entered the cylinder
and, near its upper end, with a turnbuckle by which the cylinder

could be leveled. The vertical adjustment of the cylinder as a whole
could be secured by raising or lowering a disk from which the three

rods hung. Each disk was supported by a bolt and nut passing

through a slot in the crossbeam B, thus permitting separate horizontal

adjustments of the cylinders.

4. THE SMALL MASSES

Small masses, spherical in shape, were used of three different

materials, gold, platinum, and optical glass. In each case the mass

was about 50 g.

This use of different materials was not prompted by any suspicion

that a specific difference in attraction might be found. Rather was

it the result of circumstances. The use of gold balls was suggested by

the employment of this metal by Boys and by the fact that Braun

used gilded balls of brass. There was no objection to this in the case

of the work of Boys, who did not employ a vacuum, and Braun men-

tions no trouble with his gilded balls; but in the present work it was

found on opening the container, after a period of several months

reouired for the observations, that the gold balls had absorbed quite

appreciable quantities of mercury, probably derived m vapor form

from the manometer connected to the container
.

A second set of measurements was made with platinum halls, co»\->a

I

thinly with lacquer by dipping. No appreciable change ot weight

| was observed in this case.

A third set was made with balls of optical glass, the idea being that

holes in the interior could be detected visually.

The metallic balls were constructed from ingots which (in the case

I of gold) had been fused in a vacuum furnace to avoid eas bubbles.

The platinum ingots were fused in the oxvhvdrogeii ffame in foe

usual manner. The ingots were first rc,.i-lily h».inm-n,l into shane

, between hemispherical steel dies, as described by Boys, and t. nails

18296°—30 5
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shaped to size by a scraping process suggested by J. F. Draper, of the

bureau's instrument shops.
# ,,,/',-,.

In a piece of thin sheet steel was cut a circular hole ol the diameter

desired for the finished sphere. The ball, after having been hammered

to a diameter but little in excess of the final size, was laid in this hole

and turned this way and that between the thumb and finger until it

had scraped its way through the hole. In the case of the platinum

balls this operation was conducted under water. The resulting balls

were so nearly spherical that micrometer measurements (to about

2.5 ju) could detect no variation in diameter.

In each metallic ball there was drilled a hole 1 mm in diameter and

3 mm deep, which was threaded. A piece of copper wire 6 mm long,

threaded for half its length, was screwed into the hole. The proj ecting

portion of the wire was shaped into a hook.

The glass balls were drilled with holes 1 mm in diameter and 4 mm
deep, the lower part of the whole being enlarged to a diameter of 2

mm by a dental burr. In
this hole was inserted a dou-
bled piece of copper wire,

loop downward. The space
between wire and glass was
packed with small scraps of

tin foil after the manner of

filling a tooth, using a blunted
needle and fight taps from a
small hammer. The tinfoil

packing was stopped about
half a millimeter from the
top of the hole and the rest

of the space filled with wax.
The protruding ends of the
wire were joined by a trace

of solder and bent into a hook.
In each case the mass of

a ball was determined before
drilling it. At the conclu-
sion of a set of measurements
the ball was cut from the

Figure 4.

—

The moving system

suspending filament close to the hook, and reweighed with hook, knot
of filament, and trace of wax used to keep the knot from slipping.
The slight excess of mass over that of the solid ball was regarded for
purposes of calculation as a massive point added at the north pole of
the ball.

5. THE MOVING SYSTEM

The moving system, or torsion pendulum, consisted of the two
I niMsscs, a light separating rod and the necessary supporting

filaments. (Fig. 4.) In the design of this system the object was to
thro* as much as possible of the moment of inertia into the balls so
that the system should approximate a simple pendulum. Actually
over 99 per cent of the moment of inertia was thus concentrated.

1
I'Hioii/.ontal separating rod was of aluminum, 0.24 cm in diameter,

-it .,<) cm Long, and weighted in vacuum 2.4401 2;. Close to each end
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was drilled a small hole through which passed the ends of a cotter winconstituting a truss These ends, after passing through the rod, werebent into hooks The cooper truss wire was 0.36 mm in diameter
22.1 cm long and weighed in vacuum 0.2385 g.The balls were hung from a niece of tungsten Lamp filament, 025mm m diameter, tied to their hooks, and laid across the hooks at the

x?
ds
V

°

f
n
the

,

C0PPer trilss ^re. In tying the filament to the hookfl of
the balls the filament was wrapped four or five times around the
hook and the end twisted around the main portion of the filament
I his.twist-was held from slipping by a trace of wax. In cutting off
the balls for the final weighing the twisted portion of the filament
was included.
The supporting filament for the moving system as a whole was also

of tungsten, 0.025 mm in diameter, commercial lamp filament annealed
in hydrogen at the factory. Tungsten is preferable to silica in that if

may be confidently relied on for a long program of observations.
Filaments of silica, as Boys found, occasionally break for no apparent
reason, often with loss of previous observations. Moreover, tungsten
may be tied firmly to the object which it supports.
Our experience indicates that tungsten is quite reliable, returning

well to its resting point after large deflections. One such filament
was in use three years, during which the apparatus experienced I

slight earthquake.
The supporting filament was about 1 m long, provided with copper

wire hooks at its ends. By the lower hook the copper truss wire
hung at its apex and was fastened by a trace of wax. The upper
hook was fastened to a movable torsion head contained in the chimnej
of the bell jar. This device (patterned after one used by Braun)
consisted of a train of wiieel work, to the slow motion end of which
the upper hook of the supporting filament was attached. By turning
the other end of the train a very small twist could be given to the fila-

ment to correct, if necessary, for drift of the resting point. In order
to operate this device from outside without breaking the vacuum a

bar magnet was attached to the upper end of the train. P>y the use

of a large horseshoe magnet outside the chimney the requisite t\

could be given.

The train of wheel work was geared to a ratio of 3,000: 1, so thai

one complete turn of the upper end produced a twist of one-tenth i

degree in the filament.

The moving system was provided with a silvered glass mirror, about

2 cm in diameter, 1 mm thick, weighing about 0.0 g, ground and polisl

optically flat. This mirror was attached at its upper edge by a li

wax to a brass rod 1 mm in diameter. At its upper end this bn

rod was provided with a small wire loop by which it was hung from the

lower hook of the main suspension filament. The brass rod, v. here ij

passed the horizontal aluminum rod, was bent into a detour to avoid

contact. (Fig. 4.)

The total mass of the swinging system was about L02g. Liiel i

ing strength of the suspending filament u as about If

To start the moving system gravitational attraction was empl

Two bottles, each holding about 2 kg of mercurj

to the container in positions of maximum attraction tor the penduli

When the latter had been twisted to it - extenl (which n quj

about 15 minutes) the bottles were placed so as to reverse the attl
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tion. By repeatedly reversing the positions of the mercury bottles

in time with the swing of the pendulum the latter could be given any

amplitude desired. In two hours time an amplitude of about 4°

could be obtained, which (at the reduced pressure employed) was

sufficient to keep the pendulum swinging for 20 hours.

6. THE CONTAINER

The container was of metal resting on a plate-glass base. The
general shape is shown in Figure 3. The tall chimney was of brass,

open at the upper end, which was closed by a piece of plate glass.

This permitted observation of the magnet connected with the wheel

work. The wide lower portion of the container and the lid fitting it

were, in the series of measurements with the gold balls, of brass wrapped

with thin sheets of silicon steel for magnetic shielding. This arrange-

ment proved cumbersome, and in the measurements^ with platinum

and glass balls this part of the container was made of apiece of wrought-

iron tubing with a lid of the same material. A circular piece of iron

was laid inside the container upon the plate-glass base, thus completing

the magnetic shielding.

This precuation was necessary because of the steel cylinders, which
when moved from the near to the far position altered the earth's

magnetic field in the vicinity of the pendulum. Since all materials

are either paramagnetic or diamagnetic to an appreciable degree,

and since the gravitational attraction of a cylinder upon the nearest

ball was only about 0.001 dyne, it is quite possible that the effect of

the change in magnetic field upon the time of swing of the moving
system might be comparable with that of gravitational attraction.

This suspicion was experimentally confirmed in the case of the brass
container used with the gold balls. Before applying the silicon steel

wrapping a bar electromagnet was mounted outside the container with
one pole in the maximum attraction position with respect to one of the
balls. On energizing the magnet the ball was repelled with an acceler-
ation approximately equal to that produced by one of the mercury bot-
tles. By raising the magnet to the level of the aluminum rod an
attraction was produced. The magnetic susceptibility of gold is

— 0.15 and that of aluminum + 0.65 .

By wrapping the lower part of the container with several layers of
thin silicon steel sheet these disturbances were completely prevented.
In the later form of the apparatus, used with platinum and glass balls,
the wrought-iron wall of the container was similarly protective.
To test the shielding more closely, measurements of time of swing

were made with the outside magnet alternately magnetized and demag-
Del Lzed. The magnetic field at the outer surface of the container with
the electromagnet excited was about twelve times as strong as the
earths horizontal field, as determined by the rate of vibration of a
sin mII compass needle. The strength of field close to one of the large
steel cylinders was about three times that of the earth's field, or one-
fourth thai used for testing the shielding, and the presence or absence
of the testing field produced no effect upon the time of swing as great
as

1
part hi 10,000. Any effect to be expected by moving the cylinders

must therefore be less than 1 part in 40,000.
A pressure of about 2 mm of mercury was maintained in the con-

tainer, the joints of which were sealed by soft universal wax. A mer-
cury barometric seal was used instead of a stopcock.
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It may be of interest to record here the effect of pressure upon thedamping exhibited by the moving system. Table* gives the dumping
factor (ratio of successive amplitudes in the same direction) at \ anous
pressures.

Table 4.

Damping
factor

Pressure,
mm mer-

cury

0.70 150
.84 50
.85 20
.85 10

.85 7

.85 5

.86 3

.87 1.5

Windows were provided at strategical points in the container for
the purpose of obtaining such measurements as the level of the
centers of the balls and the position of the filament supporting the
moving system.
When it was desired to raise the chimney and lid of the container a

yoke was clamped about the upper end of the chimney. From the
ends of this yoke two threaded rods passed up through holes in the
beam B (fig. 3) and were supported above by nuts. By turning
these nuts the upper portion of the container and the whole moving
system could be raised or lowered slowly and steadily enough to avoid
breaking the suspension.
The temperature of the container was read by means of a ther-

mometer fastened closely in parallel contact with the chimney, the

bulb touching the metal. On its outer side the bulb was shielded by
a layer of cotton, the whole being bound to the chimney by strips of

adhesive tape. The temperature inside the container was assumed
to be that of the metal case as shown by the thermometer.

7. THE OPTICAL SYSTEM

The basis of reference for observing the time of swing was a scale

of millimeters in the form of a pho-

tographic negative on glass, bright

lines on a dark background. (Fig.

5.) Parallel to the scale and close

to it was a broad bright band against

which could be seen the vertical cross

wire of the observing telescope.

The scale was mounted in a metal

box and illuminated from behind by
several small electric lamps, and was
set on a pier in the observing room, 3.5 m from the torsion apparatus.

The fight from the scale passed to a reflecting prism below the l:1m<s

base of the container, which reflected it vertically upward, passing

through the iron floor of the container by a hole. The light then

encountered a second prism which reflected it horizontally to the

mirror attached to the moving system. The reflected beam retraced

Figure 5.

—

Scale and cross wire
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approximately its entering path and was finally received by a tele-

scope on the observing pier, 3.5 m distant from the center of the mov-
ing system. A motion of one minute of arc of the moving system

produced a shift of about 2 mm of the scale in the field of the

jpl psoooe
8. MEASUREMENT OF TIME

The working standard of time was a Biefler clock set up in a

constant-temperature vault in another building of the bureau, and
rated daily against the Naval Observatory signals. Its usual daily

rate was but a few hundredths of a second. Second signals from
this clock are electrically transmitted to all parts of the bureau
laboratories.

The transits of the pendulum were recorded on a 2-pen chronograph.

One pen recorded the clock signals and the other the transits of the

scale divisions as observed by the operator.

In making the observations it was customary to adjust the resting

point of the pendulum by means of the torsion head to somewhere
between the twelfth and thirteenth centimeter marks on the scale,

and to record the transit of every millimeter from the eleventh to the

fourteenth centimeter. The calculation of the time of swing will be
described in a later section.

9. MEASUREMENTS OF LENGTH

The length measurements fall into two classes—those in which
approximate values are sufficient and those requiring higher precision.
As an example of the first class may be mentioned the vertical differ-

ence of level between centers of balls and cylinders. In the second
class are found the distance between centers of balls and the distance
between cylinders.

Measurements of the first class were made to 0.1 mm, mostly with
a kathetometer. Measurements of the second class were made with
an optical compass similar to that used by Boys; it consisted essen-
tially of two micrometer microscopes mounted approximately parallel
to each other on a rigid bar. The distance between microscopes could
be adjusted as desired.
A supporting framework of iron was clamped to the pier carrying

the torsion pendulum, and by leveling the optical compass upon this
framework the microscopes could be directed to view any two points
whose horizontal distance apart might be desired. When the setting
of the microscopes had been made the optical compass was placed in
another stand so as to view a scale below it.

This scale was made from a steel bar 2.5 dm square in cross section,
provided with several platinum-faced plugs, upon which fine gradua-

|

ions were traced. Sufficient plugs were provided to give the various
lengths required. The scale was calibrated in terms of the standard
meter by Doctor Judson, of the weights and measures division of the
bureau.

Steel was used as a basis for the scale rather than invar, as the
experience pi the bureau has been that invar, while low in expansion,
snows much hysteresis, and is on the whole less satisfactory for such
a purpose than steel. The coefficient of steel may be higher, but it
! more ,.,l,lv bo be counted upon than that of invar.
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IV. MATHEMATICAL THEORY
1. THE ATTRACTION OF A FINITE CYLINDER AT ANY EXTERNAL

The use in the Cavendish experiment of attracting bodies of otherthan a spherical shape has been rare. Boys in one of Kperime!

<&Jb

Figure 6.

—

Attraction of finite cylinder at outside point

used cylinders of gold one-fourth inch long and the same in diameter.
He states that calculation showed that the attract ion of such ,m cylinder
at a point at the center of one of the large balls was Less than that

which would have been exerted had the cylinder been a sphere of equal
mass by 3 parts in 10,000. Small masses of cylindrical and also of

chain form were used by P. E. Shaw 6 in his work on a supposed
temperature coefficient of gravitation, but as his work was concerned
with relative rather than absolute values it was not nee

calculate the actual force. Cremieu used large cylindrical mi

but does not mention the computations.

6 P. E. Shaw, Phil. Trans. Roy. Soc, A, 216, 191G.
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Calculations for nonspherical masses are not simple; in fact, the

labor involved in making a nonspherical calculation to anything but
a rough approximation has rather been looked upon as prohibitive.

For practical reasons earlier mentioned it was desirable to use large

masses of cylindrical form. It was an agreeable surpriseto find that

in the case of the dimensions used it was possible to obtain a formula
in zonal harmonics which converged fairly rapidly. Working to 1

part in 100,000 there were necessary only seven terms in the near
position and six in the far position.

A formula for the attraction of a finite cylinder at any external

point has never, as far as we know, been published. It may therefore

be a convenience to future workers if the development of this formula
is given somewhat in detail. The best method of procedure is to

integrate the expression for the attraction of a circular disk. (Fig. 6.)

Byerly 7 gives a formula in zonal harmonics for the potential V
of a circular disk of thickness dx, density p and radius a at any external
point whose coordinates are r, 0, the formula being valid if r>a.
Formula (2) gives this value of V to eleven terms.

V=2ttpaGdx ^2 r

-i(f)
3

p2 (coS 0)

+40)
5

i
3<(cos0)

-iii©
7p

' (COB9)

7 /<zY+
256(,rj

P^cosS)

21 f«Y T> , a

~102iW Plo(cose

+
2048V7;

Pi2 (cos(>)

429 /a\ 16 „ .

" 32768 (j)
P"(°ose)

, 715 /o\ 17 _ .+
65536W Pl6fcos0)

2431 /a\ 19

D , „._
262144W P>»(C0S V

288^; P.o(cob0)+

; My. rly, Fourier's Series, p. 155, art. 80.
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Following the notation of Figure 6 in which z is measured positively
downward from 0, and expressing all variables in (2) in terms of 0,

n 6

a a . n
———Sill
r c

x = c cot

, cdd
dx= ——-07,

sin2

and integrating for 6 from B x to 6 2 we obtain:

o?0F= - 2irPacG sin

Kc)Tsind,Pa (c°s0)^

i0Yfsin3 0.P 4 (cos 0)d$

(fj fsin5 0.P 6 (cos 0)dO
5

128

+ 2F66)Tsin79 -Ps(cosey9

-iM4G)7sin99 -p '° (cos^
^Y

3

fsin 11 0.P 12 (cos 0)d0+
33

2048

715

65536

2431

262144

4199

524288

(^Y' fsin 15 0.P 16 (cos 6)dd

(«Y fsin
17 0.P i8 (cos0)r/0

^YTsin 19 0.P 2O (cos 9)d6

(3)

(4)
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Byerly (p. 151) gives expansions of Pm (x) up to m = 8. Additional

values follow:

1

Pi 2W- 1024

Pu(x]

Pn(x)

2048

32768

Pn(x) = w-z65536

P2o(x)
= 1

262144

(46189z10- 109395a:8+ 90090a:6

- 30030a:4+ 3465a;2 -63)

(676039a:12- 1939938a:10 + 2078505a:8

-1021020a:6 + 225225a:4 -18018a:2 X231)

(5014575a:14- 16900975a:12 + 22309287a:10

- 14549535a:8 + 4849845a:6 - 765765a:4

+ 45045a:2 -429)

(300540195x16- 1163381400a:14

+ 1825305300a:12- 1487285800.x10

+ 669278610a:8- 162954792a:6

+ 193.99380a:4- 875160a:2 +6435)

(2268783825a:18- 9917826435a:16

+ 18032411700a:14- 17644617900.x12

4- 10039179150a:10- 3346393050a:8

+ 624660036a:6 - 58198140a:4

+ 2078505a:2- 12155)

(34461632205a:20- 167890003050a:18

+ 347123925225a:16 -396713057400a:14

+ 273491577450a:12- 116454478140a:10

+ 30117537450a:8 -4461857400a:6

+ 334639305.x4- 9699690a;2 + 46189)

Making the necessary substitutions in formula (4) we obtain:

(5)

V=-2irPacG
de

sin 9

la fj
2 c J si]

lew I

sin ^3 cos2 d~ ^ dd

1 28W I
sin" ^35 C°s4 e~ 30 cos2 e * 3^

E§w J
sin8 ^ (231 cos6 6>

~ 315 cos4 *
o

2048

4-105 cos2 e-5)de

(6)
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V=-2vPacG 32768

21

2(12144

(~J
I sitffl •

1201

4 6930 cos4 6 L260co
+ 35)d0

(~/j |
sin9 0(+(il.sOcos ,o

109395 cos8 6

H 90090 cos6 a 30030 cos4

+ 3465 cos- 0-63)<*0

+
33

209715r>(c)

13

f
sinU ^G76039 (>os1 *' *

1939938 cos 10

+ 2078505 cos8

-1021020 cos6

4- 225225 cos4

-lSO18cos2 + 231)</0

i|^g) ,6

Jsin^(5014575cos^
67108864

+
715

2147483648

2431

17179869184

-16900975 cos 12

4- 22309287 cos 10

- 14549535 cos8

+ 4849845 cos6

-765765 cos4

+ 45045 cos2 0-429)J0

(-Y' fsin 15 (300540195 cos 1 '''

6

-1163381400 cosu

+ 1825305300 cos 12

- 1487285800 cos10

+ 669278610 cos8

- 162954792 cos''

+ 19399380 cos 4

-875160 cos2

+ 6435)r/0

(-Y fsin 17 (2208783825 <

-9917826435 cos16

+ 18032411700 c

-17644617000 c

+ 10039179150 c

-334639305n ca
+ 62466' s1

-58198140 cos4

+ 2078505 cos-

-12155)c/0

1261

(fi)
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4199 fa\
21 C

+
137438953472 \cj J

sin 19 0(34461632205

cos20

- 167890003050
cos18

+ 347123925225
cos 16

e

-396713057400
cos 14

+ 273491577450
cos12

-116454478140
cos 10

+ 30017537450 cos8

-4461857400 cos6

+ 334639305 cos4

-9699690 cos2

+ 46189)^0

Integrating and applying the limits X and 2

V=-2irpacG(
+

+

2 f [_

log tan
2
2_log tan

2J

16\c)
C0S $2 sin2 ^2

~ cos h sin^i

l28\c) 5 COs3 $2 sin4 ^2
~ 3 cos

^2 sin^
:

+ similar terms of opposite sign in 6 X

2048W [
2048

+ 5 cos 2 sin6
2 + etc

-ycos3
2 sin6

2

]

+
32768768 \c) I

429 cos? &2 sin8 ** ~~ 693 cos5 e* sin8(9

3os3
2 sin8 02-35 cos 2 sin8

2 + etc.l

262144

-5148 cos7
2 sin 10

2+

2431 cos9
2 sinlo

2

18018
cos5

2 sin lo

+

924 cos3
2 sin10

2 + 63 cos 2 sin10
2 + etc

33 m ]
29393 cos11

2 sin12
0,2097152

230945—
3
— cos9

2 sin 12
2 + 7293O cos7

2 sin12

30030 cos5
2 sin 12

2 + 5OO5 cos3
do sin12

-231 cos 2 sin 12
2 + etc.l

[Vol. 6
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-eTMiCDT1857

-579462 cos 11
d 2 *'m

u
0, I 692J a14

0|

977 1^40- cos7
2 sin

14
9, 4- 109395 cos' 0, sin" 9,

-12870 cos3
2 sin 14

to+429 cos : bid

+ etc.l

+
2147

7

48

5

3648(9T
9G94845 ^ * *»

-35102025 cos 13
2 sin 16

2

+ 50702925 cos 11

2 sin 16
2

-37182145 cos9
2 sin 16

2

+ 13718133 cos7
2 sin 16

2

- 2909907 cos5
2 sin

16
2 + 255255 cos3

2 sin
16

:

-6435 cos 2 sin16
2 + etc.

-mSlsi©"!64822395 cosn "2 sin ' 8
e

-267146840 cos 16
2 sin18

2

+ 452426100 cos 13
2 sin 18

2

-405623400 cos 11
2 sin 18

2

1859107250 9
. . M a+ cos9
2 sin18

2

-59491432 cos7
2 sin18

2

+ QO53044 cos5
2 sin 18

2

_lM|560 cos3 92Sin .»
(,2

+ 12155 cos 2 sin 18
2 + etc.J

L263

_li?9--^YT883631595+ 137438953472 \cj [_

-4083810885 cos 17
2 smj° 2

a-7QQA9Ai 14£ r,os
l5

0o sin20 0o

cos 19
2 sin

20 0o

+ 7934261148 cos 15
2 sin20

-QA1 MQ.IUfift r.os
13

0o sin20
-8415125460 cos 13

2 sin20
6

+ 5293385370 cos 11
2 sin

20
2

-2007835830 cos9
2 sin20

2

+ 446185740 cos7
2 sin20 2

267711444
cog5 ^ sin20 ,2

5

+ 2909907 cos3
2 sin

20
2

-46189 cos 2 sin
20

2 + etc.J

(7)
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We must now express all quantities in terms of c and of the con-

s of the cylinder.

. e
tan -x=

n-cos ey
Ll + cos ^J

cos 2
= —

sin 0<

k
(c

2 + h2
)

x (always negative)

r^T (always positive)

Z
1

cos 0i = , 2_i 7 2u (always positive)

sin di = , 2 , j 2 \ J. (always positive)

Substituting these values in formula (7)

:

— cos 2 1 + cos 0i"] H

c
2 + L2 = r2

2

V=-2irPaG l
al°z[\+ cos 2 1 — cos ;]

_a , r (c
2+ l2

2)^+l2 (g±jffl\+hl
4

10g
L(c

2+w i -^ *
{c

2+u2y*-iiA

=
fU°g (^2 + W-log (r2 -/ 2)

+ log (n + ZO-log (n-wl

,T21Z2
5 70l 2\5l 2a

l77r~^rJ
+77

-I-

+

2048

+ similar terms in l x and r x

hA
]

429/ 2
7

,
693/ 2

6 315/2
J

32768 ' 2

+
35Z 2 .

"1

77~ etc
J

21 r243lV_ 5148Z27
,
18018Z 2

5 924Z
262144° L ^2

19 ~r~2
Tr
~ +

5r2
16

""
~2

-I

63Z,
H-etc

]

(8)

(9)
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33
l;!
r 2939;T

2097152° L r?

,30030V 50061 "I

+__429 .iaf:i^725Za
ia 57946%"

07108864 L~ r?

892835*7 2771340JV

109395V_12870y
ra

19
r 2

' 7

7? +etc
J

+
715

2147483648
]7 r 9694845/ 2

15

a
L ^

3510202:)/,"

r 2
*>

50702925l 2
n 37 i

r 2
27

1454953f)/ 2
7

,
2909907//'

ra
23 ^, 21

^2

255255Z2
3 6435/ 2

2

1Q
ra
& ,..,.]

+
2431 19 f~64822395Z 2

17 267140V
7QQf\01QA

a -.35 -8817179869184 | r 2
;

ra
-

452426100Z2
13

+

405623400/a
11

r 2
29

1859107250/ 2
9

9T887

59491432*a
7

ra
*

9063044*7 1847660*7

L2155/2 v "I

+"7? ctc
J

(9)
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+
4199

1374389534722
a2{

+

+

+

+

883631595£ 2
19

r 2
39

4083810885Z 2
17

T 37

7934261 148Z 2
16

r 2
35

8415125460£2
13

r 2
33

5293385370Z 2
U

r 31
' 2

2007835830/ 2
9

r 2
29

446185740Z/

r2
27

26771 1444Z2
5

5r 2
25

2909907Z 2
3

.
46189

+
^2

etc
]

(9)

Differentiate with respect to c, noting the following relations:

r 2 =(c2 + Z2
2

)*l

dr 2 _ c

dc r 2

and similarly:

dr x _ c

dc ri

(10)

We obtain the following formula for the component of the force
of attraction in the direction of c, that is, perpendicular to the axis
of the cylinder:

F dV
2 fi

*»
. k .SaTh .in

ra (ra
2-W +

r1 (r1
2-Z1

2
)

+
8 U6

ri
5
J

5ar7Z2
3 3L . "I

~
641 ~^T9 — rr + smular terms in /i and r x

]^ "^ri3"
—

t-tt + t-q +
35a6 [~33£2

6 30Z2
3

. 5Z

1024 r,
13

_^3a^f"715^_ 1001^ 3854s 35Z2 ^ , "I

16384L r 2
17 ' ~r7^~ +^F? t^ 1

J

-I-

231a^r4199Z2
9 7956/2

7
,
4914Z2

g 1092/.

131072L r2
21

r 2
19 +~T^ r~^

(ID
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637 2 "] 429a" r52003l "

7? + etc
J~iois;>7,;L

124355V , 106590V 39270V 5775V
r 2

2

231/c

r,81

+ etc
"1 6435a 14

["334305Va

J 33554432L

.% 1062347/ 2
9

554268V
27

•" " ok •> 1

+
1385677 2

6 14586V
.

42*t , f
19
— +— ir +etc.

^2 ]

12155a18 ri7678835V* 59879925^"

1073741S24L

80528175V 1

r 29
"a

54679625V , 19684665V
>r.

ra
'

3594591Z2
5

, 2852S572
3 64357,

23 +

r%'

+ etc
]

+

r2
- r2

" r2

46189a18 ril9409675Z2
17

8589934592L
37

738168900k
13 619109400/2

n 293543250/,
I .. 33 _ 31

+

782782007,

r2
27

121557 2

r2
21

r 2
° l ly

109589487 2
6 6806S072

3

+ etc.
]

88179a20 ri6410301057 2
19

68719476736L r2
41

71952858457 2
17

. 13223768580V5

r2
'

'2

1322376858072
13

,
781404507072

n

r>
+

+

2772725670V 5736673S07 2
7 6374!'

7-
2
31

318704172
3

/••

461897, "I_-
23—fetc.j

1207

(11)

As an illustration of the rapidity with which th< con-

verges, take the following simple case of the attraction of a cylinder

upon a point at the middle of its lateral surface:

a = c = 7 1
= 7 2

= 10

ra
= r! = 10V2

18296°—30 6
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Omitting the factor icpcG, the successive terms and their sums are

shown in Table 5.

Table 5.

—

Convergency of series

Term Value of term Sum of series

1

2

3

4
5

6

8
9
10
11

+1. 4142136
+. 1325825
-. 0069053
-. 0052869
+. 0005735
+. 0005233

-. 0000708
-. 0000698
+.0000105
+. 0000108
-. 0000017

1. 4142136
1. 5467961
1. 5398908
1. 5346039
1. 5351774
1. 5357007

1. 5356299
1. 5355601
1. 5355706
1. 5355814
1. 5355797

For points farther distant from the axis of the cylinder the con-

vergence is more rapid.

Equation (11) may seem formidable, but it is comparatively simple

in practical application. Inspection of the formula shows that, as

often happens in series, the first term is apparently anomalous, but
that beginning with the second term certain laws are discoverable.

Disregarding for the moment the numerical factors, it will be seen
that within the parentheses we have a series of literal terms contain-
ing l 2 and r2 followed by an exactly similar series containing Z x and r x .

Moreover, as we pass down the terms of the whole equation, we find

(still disregarding the numerical factors) that there are certain moduli
or multiplying factors by which any term can be converted into the
next following. An example will make this clear. Take the second,
third, and fourth terms of (11), bringing in the factor a2 from the
general factor irpa

2cG:

+
a%

+
a%

aV a%
r 2

»
+

r/>

+
a8

/ 2
5 a%3

,

a%
r 2
n

r2
n +

r 2
9 '

rf
+
/V

aHf a%* a%

(12)

It will bo noticed first that the term heading every column is posi-
tive, and that the signs alternate as we go down the column. More-

aH 2 a2
l

2

over, tlu> ((>rms in each column have a common ratio, —f or —

f

r2 T\
as toe case may be. This ratio may be called the vertical modulus.

Lhere k also a common ratio running diagonally downward and
tn ltl( ' n - llt

' f* or
f

.,, which we may call the diagonal modulus.

And there will \>v consequently a similar horizontal modulus, % or

/
(

•
nence, gwen the second literal term, each succeeding literal
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term may be constructed by means of the rerticd and diagonal
moduli and checked by the horizontal modulus; and
his is concerned only with a, r, and / (constants of the cylinder
of the position of the balls), those moduli may be calculated once
for all the beginning of the computation.

In addition to these moduli we have the QumericaJ coefficients,
unity in the first term, three-eighths in the second, on, In

the third and later terms we have more than one coefficient. Table
5 gives these coefficients for the first seven terms bo a Bufficienl num-
ber of decimal places to secure an accuracy of l part in LOO.000 in

the value of the attraction when <z=10 cm, l\+l% 28 cm, ana c 13

cm, which correspond closely to the actual working conditions.

Table 6 .— Working coefficients

Term Coefficients

1

2

3
4

5

6

7

+0. 375000
-. 546875

+1. 12793
-2. 7493

+7.400
-21.28

+0. 234375
-1.02539
+3. 8491
-14.022
+50.88

+0. 17090
-1.4804
+8. 6604
-43.609

+0. 134.58

-1.9245
+ 16.066

+0.1110
-_'. 363 +0.'

The steps in the computation of the force of attraction of a finite

cylinder at any external point may now be summarized as follows:

1. From a, r 1} r2 , h, h, and c, calculate the vertical, diagonal, and

horizontal moduli.

2. Calculate the first literal term of (11).

3. Calculate the second literal term of (11).

4. By means of the moduli calculate the succeeding literal terms

(exclusive of the numerical factors).

5. Complete the calculation by applying to the literal terms the

proper numerical factors from Table 6.

2. FORMULA FOR TIME OF SWING

We have to deal with a torsion pendulum swinging in a nonuniform

but symmetrical gravitational field, the axis of symmetry, m the

near position of the masses, coinciding with the axis oi the moving

system, and in the far position being at right angles to this axis.

Were the field uniform and parallel the formula lor the tame oi ro

would be

(13)'- 2w
*\It+-2(FR)

in which / is the moment of inertia of the moving Bjretam mi
t+2(FR) the restoring moment per unit angular displacemen .

tM* latter exnression r is the part contributed by the modulus ..l

torsion of^themament and X(FR) the par. arudng b» the ,-,,,-

"iSft be thought that the effect of the,
nonumfoimty .of the

gravitTtional1 field would disappear in the reduction of the time ol
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swing to zero amplitude. As a matter of fact, such a procedure gives

a value of the constant of gravitation about 60 per cent too great.

As will shortly be shown we must substitute for R in (13) the quan-
tity R(l + R/c) in the

near position, where
R/c is approximately

10/13, and in the far

position a much more
complicated factor is

necessary. We, there-

fore, have instead of 2
(FR) in (13) a quantity
2(FK), where K is a
more or less complicated
function of R, and the
working formula for the

time of swing becomes:

Vr+.2(J^K)
(14)

This equation, togeth-

er with the factors K
for the near and the far

position, may be de-
rived as follows. We as-

sume the cylinder axes
parallel and vertical.

Figures 7 and 8 show
sections perpendicular to the axis of the
cylinder. In these figures let

Figure 7.

—

Close
ball plan, near
position

B = axis of cylinder.

= center of rotation of ball.

A = neutral position of ball when
0=0.

D = displaced position of ball.

c = distance between centers of
ball and cylinder in neutral
position of b&W = AB.

For the near position and for the ball
close to the cylinder (fig. 7):

BD=[(OA+AB)*+OIP

- 2 (OA + AB)OD cos 0]*

= [(R + c)
2 + R*-2(R + c)R cos e\'

[2.8/ B\ ~u
1 + ~y ( 1 + - ) ( 1 - cos 0)

I

Figure 8.—Distant ball plan
v c/ J position
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1

Expanding by the binomial theorem:

BD=c[l+|(l+f)(i-ooefl

4f(1+!)Vcoea)'+ ]

DC=BD-BC=BD-c

-.[f(i+fj(i— «-J?(i gra ]

When is small
2

fl
4

1- COS 0=-; (l-cos0) 2 -~

Neglecting small terms involving the fourth and higher powers of 0:

i = Lift = Z>C= C[if(
1 +

f)^]

Let F denote the force of attraction upon the ball at A. and Ft
that upon the ball when at D. The force F will be a function of the
distance BD between centers of cylinder and ball, though not exactly
proportional to 1/BD2

, since the cylinder is not baiycentric. This
variable distance BD will differ slightly from the small quantity

DC=L by the constant c; hence d{BD)=dL.
Expand Fe as a function of BD by Taylor's theorem:

dF UcPF
dL

+
2 dUFe-F + L jt+~K TT2+

in which
= F [1 + VL+V*L2 +

Tr 1 dF A T7 1 <FF
V=F dL

&ndVl = 2F al?

JTT<

Since F decreases with increase of BD
} j^ is negative; and since the

rate of decrease of F diminishes with increase of BD (the F curve being

concave upward)^ is positive. The usual values for these quantities

were about -0.07 for V and +0.0015 for TV We shall find it

convenient to write:

Force at D = F9
= F [l-VL+V l

V+— -]

considering both V and Vx as positive. For the case of the close ball

which we are considering L is also positive.

As the ball passes from A to D its differential increase in pot

energy will be:

FedL =F [dL - VLdL + V.DdL + -...

]
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For the small angle 6 and the small change in BD contemplated V
and V\ will vary but little. Integrating the last equation we obtain:

Potential energy =f[l-^VL2+ IviU~\

Applying (15):

Potential energy = ^o[|f(l +f)j^
2]+

-|Fofi(i+fy (i6)

For the distant ball (fig. 8) proceeding similarly:

Expanding and neglecting small terms:

2»:-£i-f(i-|)(i~cos<>)]

DC=BD-e

2>Iift-ZX7~{lf(i-f),]

Force at D = ft =^o[1 _ yXc^Z + T^Z'dZ]

in which F and F, are considered positive and, for the distant ball, L
is oegative.

d (potential energy) = FedL =F [dL- VLdL + VxL2dL\

Potential energy =fIl-~VU+~V1u\

= -|f„B(l-fy (17)

Since (10) and (17) are identical except for sign of R, we may regardB aa positive for the close ball and negative for the distant ball, and
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with this understanding write for the potential taergy oi eynm
ball system in the near position:

M- 9" (is)

A typical case of the values which (18) may give may be cited from
the platinum ball set. Denoting the two cylinders by E and U\ the
ball close to cylinder E by ^L and the ball close to cylinder 11 by /<',

we have:
EA= +22817900*
EB=-194\7G92

WA=-l9562Gd2

U7?=+23314l£02

The far position is illustrated in Figures 9 and 10, in which the

letters have the same meaning as in Figures 7 and 8. By the close ball

Figure 9.

—

Close ball plan, far

position

FIGURE 10.

—

Distant ball plan, far
position

in this case is meant that ball which is swinging from A to D to* Bid

the cylinder at B. Proceeding as in the Dear position, but keeping

terms including 6\ we find for the potential energy ot the system

including both cylinders and both balls:

Potential energy = - 2 F R( 1 - -g J J0
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Each sum consists of four terms, of signs determined as follows.

is always assumed positive, the two cylinders are designated as

N and S (having now been turned 90° from the near position),

the ball close to the N cylinder is called A and the ball close to the

S cylinder B, the term close being used in the sense defined above.

The signs of the different terms within the summation are given in

Table?.
7 , x

Table 7.

—

Signs of terms in formula (19)

Term Coeffi-

cient of 9
Coeffi-

cient of 2

Coeffi-

cient of 3

NA
NB^

+

+

+
+
+
+

+

+
SA
SB

In formula (19) the most important term is that in 2
.

case may be cited from the platinum ball set.

6. 78(75-87199. 42 Gd2 + 64. 63 Gd3

A typical

(20)

The term in 3
is negligible, jointly because of the small value of

and the small numerical coefficient, but the presence of the term in

requires attention. Formula (20) represents the potential energy
of the moving system, and this should be independent of the sign of 0.

It will be remembered that the moving system was centered in azi-

muth in the near position, and that this setting was of necessity
approximate. In passing to the far position the cylinders were
rotated through 90°. Had the original azimuth centering been accu-
rate the far position would be one of equilibrium, and the potential
energy when displaced would be independent of the sign of 0. The
presence of a term in shows that the far position is not exactly one of
equilibrium. We may determine this error as follows.

In a position of equilibrium the potential energy should be a maxi-
mum. Differentiating (20) with respect to 0, equating to zero and
solving for we find

:

= 0.00003888 radian = 8.02"

This correction is so small that we might feel justified in dropping
the term in at once; but to confirm this impression we substitute in
(20) for the corrected value 0+0.00003888, and we find that the
coefficient of now becomes zero as it should, while the coefficient
of

1
is 87199.40, very near the value in (20). In consequence we

have to consider in the far position as well as in the near only the
term id

2
.

The formula for the time of swing (14) may now be derived.
any displacement from the equilibrium point:

For

(21)

Kmctic energy of pendulum + potential energy due to fila-
ment

I potential energy of attraction = constant.
Let / = moment of inertia of pendulum.

t = modulus of torsion of filament (moment required to give
the beam an angular displacement of one radian)
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and (21) becomes:

i/dey i i

2\Jt) +
2
T d~ +

2
2 Craj ^-constant

Tabled
fai

" P°Siti0n We find the YaIueS ° f K by IV,Vn>I,(,(l to (J9) and

Differentiating and reducing:

^+ ^
J
d = (22)

an equation of the usual form for harmonic motion with a period:

In the foregoing derivation it has been assumed that the cylinder
axes are vertical. A more general calculation of a similar nature
for inclined axes shows that if the inclination of either axis is less than
15' the error introduced by considering the axis vertical is less than 1

part in 100,000. The actual inclination in any experiment was much
less than this, hence the formulas for vertical axes have been used
throughout the computations.
Formula (14) applied to the near and far positions gives us two

equations for the two unknown quantities r and Q
t which latter

quantity appears in F. (Seeformula (11).) Eliminating r from these
two equations we obtain a formula for G.

V. METHOD OF OBSERVING

1. CENTERING ADJUSTMENTS

In the foregoing discussion it is assumed that the center of rotation
of the moving system is at the middle point of a straight line joining
the axes of the cylinders. The fulfilling of this condition requu
three centering adjustments, azimuth, longitudinal and transvei
as indicated in Figure 11. These adjustments are best made in the

near position of the cylinders.

The azimuth adjustment was made by observing the time of Bwing
at various angular settings of the cylinders. If the moving system
is centered transversely, the curve of time of swine againsl azimuth
will have a single minimum. If the transverse adjustment is suffi-

ciently off two minima will be present.

A typical azimuth centering curve is shown in Figure 12. Such
curves were usually characterized by a rather broad and Hat mini-

mum; a well-marked double minimum was rare. The minimum
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point is best determined by means of pairs of points on the steep

slopes, and could usually be fixed to one or two tenths of a, degree.

So flat is the minimum that
quite

o CU
o

o o

o o
Figure 11.

—

Centering adjustments

a, Azimuth; 6, longitudinal; c; transverse.

such an accuracy is

sufficient.

Having made a first ad-
justment for azimuth, the
next step was to adjust
transversely. This adjust-
ment might have beenmade
by direct observation of the
filament, but it was more
convenient to work by time
of swing. The desired point
is marked here, as in az-

imuth, by a minimum or,

in case the azimuth cen-
tering is out, by a double
minimum.
The longitudinal setting

was made by observing
the filament through win-
dows in the chimney. The
curve for time of swing in

this case would be charac-
terized by a maximum.
Such a curve was actually

obtained as a check, but the maximum was so very flat that it was
impossible to locate the desired point in this way within several
millimeters.

After a first adjustment of nsd
all three kinds, the azimuth
and transverse settings were
repeated, sometimes twice.
The longitudinal adjustment,
having a very flat maximum,
required little precision.

Theoretically, no further
adj ustmentwould be required
in the far position. The new
azimuth could be set by the
scale and vernier to 0.1°, a
precision equal to that obtain-
able by centering. As to the
other adjustments, a little

consideration will show that
the maximum or minimum ls<*°

•

/67<>

must ho much flatter than in Figure 12.—Azimuth centering curve
the near position, and that
these adjustments consequently require less precision in the far than
in the near position.

In practice the transverse and longitudinal adjustments were made
by moving the sliding dovetailed blocks which held up the beam B.

o
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(Fig. 3 ) Such shifts of course necessitated further shift* for 00aturn ol the transverse and longitudinal adjustments after burnimr thecylinders into the far position. To provide for this the dovetailed
blocks carried millimeter scales by moans of wind, it was possible
to recover the center promptly.

2. LENGTH MEASUREMENTS
(a) HORIZONTAL

The horizontal measurements necessary were: (l) Distance be-
tween centers of balls, and (2) distance between axes of cylinders
From these may be calculated the distances from centers of halls

to axes of the two cylinders, the quantity c entering into the formula
for the force of attraction. In practice the second of these measure-
ments was replaced by the distance between the nearest elei
the surfaces of the cylinders. This, in conjunction with the radii of
the cylinders, gave the desired quantity.
The distance between centers of balls had to be measured with

the lid of the container lifted. This measurement was therefore
made twice, before the container was closed and again, some months
later, at the conclusion of the campaign, when the container was
reopened. In measuring this distance the microscopes of the optica]
compass were sighted on the tungsten filaments by which the halls

were suspended, and at a point as far above the balls as possible
(about 3 cm). Settings were made on both sides of the filament
(diameter 0.025 mm) and the mean value assumed to represent the
point of suspension, vertically above the center of gravity of the ball.

The distance between cylinders was the most troublesome and
time consuming of all the length measurements. The first thing was
to set the cylinders with their axes approximately vertical. To pre-

vent swaying of the cjdinders a small block of aluminum weighing
about 1 g was placed between container and cylinders at the bottom
of the latter and fastened in place by a little wax. Similar blocks

were attached to the container at points 90° from the first blocks,

to be used in the far position of the cylinders. In changing the

position of the cylinders the blocks were left in place, and conse-

quently played no part in the computation.

The cylinders thus fixed at the bottom were adjusted by the turn-

buckles guided by a small plumb bob with a fine thread. Cal< illa-

tion showed that a variation of 15' from the vertical was allowable

with a precision of l'part in 100,000, and the actual error q as ah
much less than this.

Direct sighting of the microscopes tangentially upon ft

of the cylinders being impracticable, the following device was found

to give satisfactory results.

In a piece of straight brass rod about 1.5 mm in diameter there

was inserted the point of a fine steel needle. (Fig. 13. rod

was let down into the space between the container and one

cylinders, and supported by a screw passing through a ow
of brass which, in its turn, was supported by a block of wood fast<

temporarily with wax to the lid of the container. A similar arrai

ment was provided for the other cylinder. Brass rods ..1 two differ

lengths were provided in order that the distance between the cylind

might be measured near the upper and lower ends,



1278 Bureau of Standards Journal of Research [Vol 5

In order to record and reproduce the position of the brass rod each

wooden block was provided on the top with a short piece of paper

scale across which lay the piece of metal supporting the brass rod.

It was not difficult to adjust the needle perpendicular to the line

of sight with sufficient accuracy. The magnifying power of the

microscope was such that any serious departure in this respect showed
itself at once by an impairment of focus at the ends of the needle, and
the apparent change of length being a cosine function the adjustment
was one which did not require the highest precision.

The needle was first hung a little distance from the cylinder so that

its point was visible, and a sighting mark sought on the needle some
little distance back of the point. If there was no slight irregularity

available on the
needle one was
made by a slight

touch of a file.

The distance from
this sighting mark
to the point of the
needle (in terms of

turns of the mi-
crometer) was re-

corded for each
needle immedi-
ately before use.

The needle
points were now
placed in contact
with the cylinders

at a determined
]evel and settings

made upon the
sighting marks.
The distance re-

quired is evidently
the minimum dis-

tance that can be
found by setting the two needles in various positions. The following
systematic procedure was adopted.
With the needle point on the left in one fixed position the one on

the right was moved step by step along the paper scale until a mini-mum reading was obtained. It was not difficult to obtain a sym-
metrical set of readings in this way. An example is given in Table 8.

Table 8.

—

Determination of minimum distance

Figure -Sighting mark for determining distance
between cylinders

Left needle Right
needle Distance

18.3
18.3
18.3
18.3
18.3

15.5
15.6
15.7
15.8
15.9

cm
27. 8527
27. 8484
27.8476
27. 8485
27. 8530
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Such a series of measurements could usually ho repeated with anaccuracy better than 0.001 cm.
Having located a minimum on one side in this way the needle was

set at this place and a minimum sou-lit with the other aeedle Lfterhaving found this, a second setting for mini.,mm was again made on
each side, resulting usually m a very small correction
As a check of this method the diameter of one of the cylinders was

measured at several places. The moan agreed with thai obtained by
the weights and measures division of the bureau to 5 p.

(b) VERTICAL

The vertical measurements necessary were those involved in the
relative positions of centers of balls and' tops of e\ linders, the inclina-
tion of the aluminum rod to the horizontal and the altitude of the
triangular truss. (Fig. 4.) These measurements were made with a
kathetometer to a precision of about 0.1 mm. For the relative level
of balls and cylinder tops measurements wore taken through the
windows in the container at the conclusion of each determination of
time of swing. For the other two measurements, observations were
made with the lid of the container lifted.

3. TIME MEASUREMENTS

In making measurements of the time of swing the general plan used
by Braun was followed.

On the day before a series of time observations was intended the
resting point of the moving system was adjusted so as to lie a.- near as
possible to the 12.5 cm mark. On the observing da}' the initial

resting point was noted and the pendulum started swinging | )V means
of the mercury bottles. Since the swings always passed oil" the Bcale,

the successive amplitudes were watched and controlled by observing
the speed with which the centimeter containing the resting point
passed the cross wire of the telescope. The amplitudes of any two
successive swings are proportional to the central speeds preceding (or

following) the peak of the swing.

The multiplying factor in this case was determined by observations
made on swings small enough to allow direct measurements of the

amplitude. The results are given in Table 9. In this table the cen-

tral speed is the speed at which the image of the scale passed the cr

wire of the observing telescope, and the amplitude is (hat of the

deflection of the image of the scale.

Table 9.

—

Relation between amplitude and central %\

Scale reading
in centimeters

Resting
point

Central
speed

Amplitude
Amplitude

4.68

cm/min.

1.11

cm

6.32
'

16.93 11.00
1.02 5.93 5.8

5.44 11.04
.97 5. 00 5.8

16.22 11.01
.92 5.21

6.15

15.51

11.01
.86 4.86

.Mi .in
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It was found possible to bring up the central speed to about 9

cm/min. in about two hours by repeated changing of the positions of

the mercury bottles. This speed corresponds to an amplitude of

about 51 cm. Since the radius of the reflected ray was about 350

cm this amplitude corresponded to an angular deflection of about
4°. The actual amplitudes employed in the measurements ranged

from something near this figure at starting to perhaps 1%° at the end

of a day's observing.

Having obtained the desired initial amplitude the mercury bottles

were removed, the temperature and pressure within the container

noted, and the apparatus room darkened. The observer then took

his seat at the telescope in the observing room and observed 24 suc-

cessive transits, recording on the chronograph the time of transit of

each millimeter mark from 11.0 to 14.0 cm. This required six hours

in the near position and seven in the far position, during which time
the observer remained in the same place.

By the time the observations were finished the central speed had
diminished to about one-third of its initial value. If the final speed
was slow, it was difficult to time the transits accurately; if, on the

other hand, the initial speed was too high a large reduction to zero

amplitude had to be made in the subsequent computation. Such a
reduction involves an extrapolation which it is desirable to keep as

small as possible. These two modes of procedure, high and low initial

speeds, were both used, the initial speeds with the glass ball set being
about 10 per cent higher than those with the platinum balls.

The form of the amplitude-time curve for the pendulum was not
strictly that of the form y = Ae=M sin ct

t
and because the pendulum

moved in a nonuniform gravitational field and because of the damp-
ing factor, was not exactly isochronous. This difference amounted
at most to about 1 part in 3,000. Strictly speaking, the method of
reduction employed by Braun and in the present work is not ap-
plicable to a nonisochronous curve of this description, but the depart-
ure from isochronism was so small and the damping factor so nearly
unity that it was found that results sufficiently accurate could be
obtained in the manner about to be described.
The first step was the determination of the damping factor. By

inspection of the chronograph records the middle point of a swing
could be approximately located as the point where the intervals
between consecutive transits were equal. At this point of the scale
the ratio of the central speeds for any two successive swings in the
same direction gave the damping factor. This proved to be about
0.9, and was very nearly constant throughout any given day's run.
Lne absolute value of this factor varied from day to day with varia-
tions of pressure in the container, being in fact a far more sensitive
indicator of change of pressure than the manometer. The con-
st. inrv of the damping factor for any given run showed that the suc-

ive amplitudes of the curve followed a geometrical progression.
rhe second step was a more accurate location of the middle point

01 the swings. This can be done with considerable precision by the
Procedure indicated in Table 10. In this table the column headed

i contains the difference of the numbers in columns 2.5 and 1.5.
Where the Qumbers id Column II change sign is the middle point,
ana irom this column lour values of the middle point are obtainable,
interpolating between scale readings 12.2 and 12.3; 12.1 and 12.4;
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12 and 12.5; 11.9 and 12.6. These four values sn set down below
Column II, and their mean, L2.265, is taken as repn the
middle point durme swings 1 and 2, Similarly, swim 2 and 3 field
the almost identical value 12.269.
Any large departure from isoohronism would brine about a «

siderable difference in the two middle points just calculated. Middle
points later in the series, where the departure from isochronisin
less, would show less and less difference.

It was customary to calculate the middle point only at the beginning
and end of a run, as indicated in Table 10. It will be seen thai in

this case there has been a drift of the middle point amounting to 0. 13

cm during the day's observations. Where the drift was as small as
this it was customary to interpolate linearly between the initial and
final values to obtain the middle points throughout the inn; but it*

there was any suspicion of irregularity or sudden change this calcula-

tion was repeated all through the series.

Table 10.

—

Calculation of middle point

Scale
1.5 2.5 3.5 21.5 22.5 23.5

(2-1) (3-2) (4-3) (22-21) (23-22) (24-23)

11.9 17 25.7 17 15.7 17 26.5 17 40.0 16 59. 6 17 42. 7

12.0 24.5 17.0 25.0 35.8 17 02. 2 m. 2

.1 23.1 18.4 23.5 32.0 34.0

.2 21.8 19.8 21.9 28.4 12. 5 29.2

.3 20.3 21.4 20.4 24.4 16.7 21. s

.4 19.0 22.8 18.8 20.2 20.7 20.9

.5 17.6 24.2 17.4 16.2 2".. 16. E

.6 163 25.6 15.9 12.4 29.0 12.3

.7 14.9 27.0 14.3 08.7 32 9

.8 13.6 28.4 12.9 04.8 36.9 08. y

12.9 12.3 29.7 11.4 00.7 41.1 16 59. 1

H III
Scale

XXII XX III

(2.5-1.5) (3 .5-2.5) (22.5-21.5) (23.5-22.5)

-10.0 +10.8 11.9 -40.4 +43.1

—7.5 +8.0 12.0 -31.6 +34.0

—4.7 +5.1 .1 -23.6 +2.'.. 6

-2.0 +2.1 .2 -15.9 +18.7

+1.1 -1.0 .3 -7.7 +8.1

+3.8 -4.0 .4 +0.5 +0.2

+6.6 -6.8 .5 +8.8

+9.3 -9.7 .6 +16.6

f 12.

1

-12.7 .7 +24.2

+-14.8 —15.5 .8 +32. 1 -83.0

4-17.4 -18.3 12. y +40.4 - 12. i)

]L2.265

.266

12.268
.288

.266 .270
'.263 .269 . 396

.401

.408

L2.265 12.269
12. 396 12. 402

Mean 12. 27
12. |fl

The third step was the application of sinusoidal com* &>

curve of the fomi V =^-w sin d, to which the actual curve cloZllC 14), the period can be found by the interval b. I «
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found by the difference between the values of t for a x and a3 . In this

way values of the period may be obtained for every recorded transit

of a mark on the scale, whether at the middle point or not, and a mean
value of considerable precision obtained.

From 24 transits we may thus obtain 22 values of the period, corre-

sponding to steadily decreasing amplitudes of the curve. Of these

periods, 11 are obtained from transits occuring on up slopes of the

curve and 11 on down slopes. Theoretically, in a sinusoid these two
slopes differ slightly in form, and, consequently, the periods derived

from the two slopes will differ slightly. For this reason the 22 periods

were reduced to 11 by taking means of consecutive pairs of up and
down values of the period.

After correction of these 11 values for damping they were reduced to

zero amplitude. For this purpose an equation was used which in-

involved the second power of the amplitude. From the 11 values of

the period normal equations were set up, and solved for the reduced
time of swing.

Figure 14.

—

Sinusoidal correction

The time of swing in the near position was usually about 1,754
seconds and in the far position about 2,081 seconds, and each could
be measured with a precision of about 0.1 second. The difference,
327 seconds, formed the critical quantity of the whole measurement,
and may be presumed accurate to about 1 part in 3,300. It was
gratifying to find that the average departure from the mean in each
of the two best sets of observations (with the platinum and the glass
balls) proved to be of this magnitude.

VI. COMPUTATIONS
No useful purpose would be served in reproducing here the com-

putations involved m obtaining the results, as these details would
*><• <»f interest only to some one planning to repeat the work. The
complete computations, covering about 1,000 folio sheets, and the
original notebooks are preserved at the library of the Bureau of
Standards. J

It may. however, be of general interest to see the relative importance
of the attraction due to the different moving parts of the apparatus.
I U>le 1

1
summarizes these attractions for a typical case in the near
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position, and Table 12 docs the same for the far portion. Tl„>
figures quoted are for one of the experiment* with platinum balls.The numbers given represent the contributions of the diffeimoving parts to the quantity 2 (FK) in formula (14 >. The force duo
to the balls is, of course, the preponderating factor, being about
percent of the whole. The next largest figure is that due to the alumi-num rod, less than 1 per cent of the total.

Table 11.—Partial values o/I {FK) in the near portion

Attraction of both cylindera on moving porta named

Parts Attraction

Balls . 419. 2150
2, :iu;

140
10G
60
2G

422,2060

lOtiO

Aluminum rod
Copper truss
Copper in bar
Copper hooks
Tungsten in moving system
Mirror

Attraction of other fixed parts on balls

Supporting rods 870
SO

60

50

Lower nuts
Turnbuckles
Disks
Upper nuts
TJpflm

Total 422, 3120

Table 12.

—

Partial values of Z (FK) in the far position

Attraction of both cylinders on moving parts named

Parts Attraction

Balls --- -174,3990
-1.60SG
-14G0

-6G
-4G
-40
-20

109O

-600

Tungsten in moving system

Attraction of other fixed parts on balls

-440

-40

-40

Disks

-176,2290

18296°—30 7
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VII. RESULTS

1. GOLD BALLS

It has already been stated in the description of the small masses

that trouble was encountered by reason of the gold balls absorbing

mercury vapor during the seven months' period occupied by the

observations. The total increase in mass of the balls is shown in

Table 13.
Table 13.—Mass of gold balls in vacuo

Date Ball A BallB

Nov 15 1924 . r ... - - -- - -- --- -- -- 48. 9688
49. 1067

48. 9847
49. 1164

.1379 .1317

The actual observations for time of swing were all grouped rather

closely together during the last half of this period. The balls were
weighed initially on November 15, 1924, and placed in position in

the apparatus, which was then closed and exhausted of air. The
centering operations required some time and other delays ensued.
As a consequence, the first actual measurement of time of swing was
made on March 12, 1925. Seven swings were made in all, alter-

nately in the near and the far positions, the final swing occurring on
June 8, 1925. The apparatus was opened and the balls reweighed
on June 15, 1925.

The average time that elapsed between swings was two weeks.
If we assume the absorption of mercury to have proceeded regularly
during the whole seven months, the increase in two weeks would be
about 0.01 g. for each ball, or about one-twentieth of 1 per cent.
If we assume also that the mercury penetrated the gold balls with
spherical symmetry (which from the final appearance of the balls
seems reasonable) we may interpolate for the mass of the balls at
any period of observation without introducing an error of more than
perhaps 1 part in 10,000.

Calculation shows that an error of this magnitude in the mass of
the balls will give rise to an error of about 4 parts in 10,000 in the
value of G. It was, therefore, thought worth while to compute the
results for the gold ball set on the basis of the assumptions that
have been mentioned. The results are shown in Table 14.

Table 14.—Constant of gravitation derived from experiments with gold balls

6.683X10-8
6. 681X10-8
6.676X10-8
6.678X10-8
6.679X10-8
6.672X10-8

Mean - 6.678X10-8

Average departure from mean.. . .003

2. PLATINUM BALLS
To avoid the difficulty of mercury absorption a second set of

measurementB was made with platinum balls coated thinly with
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lacquer. The balls were weighed initially on October 10 1926 and

and hook; the final weight included such portion of the tungstenfilament as was wrapped around the hook, together with hewax that held it in place. The final weigh was used in the ,,
putations. The results obtained are shown in Table 15.

Table 15.

—

Masses in vacuo of platinum balk

Date

Oct, 10, 1925.
Nov. 7, 1926.

Hull A Hull 11

Five values of the constant of gravitation were obtained from this
set-up, shown in Table 16.

Table 16.—Constant of gravitation derived from experiments with platinum balls

Mean...

Average departure from mean.

6.661XKH
<;.ct;ixio- s

6. 667X10-*
6.667X10-*
0.064X10-8

. 6.004X10-8

. .002

3. GLASS BALLS

A third set of experiments was made with balls of optical glass, of
density 3.6. These balls, like those of metal, had am.

|

proxi-

mately 50 g, and, consequently, a diameter of about 3 cm. Tne balls
were made with a finely ground finish and were truly spherical to
0.001 cm.
The masses of the balls are given in Table 17.

Table 17.

—

Masses of glass balls in vacuo

Ban a Ball B

The glass removed in making the hole was in each case about

The final weight, with hook, adhering filament, and wax, was used

in the computations.
Five results were obtained with the glass halls, shown in Table I

s".

Table 18.—Constant of gravitation derived from experiment* villi glass balls

ID --

Average departure from mean

- < 10-*

;
'10-»
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It is interesting to compare these mean results and their measures

of precision. This is done in Table 19.

Table 19.

—

Comparison of results

Material
Extreme
values

Mean
value

Average
departure
from mean

Gold - --
f 6. 683

I 6. 672

/ 6. 667

\ 6. 661

/ 6. 678

\ 6. 671

} 6. 678

} 6. 664

} 6. 674

0.003

.002

.002

4. MEAN VALUE

It will be seen that the spread of the gold ball results is about
twice as great as those with either platinum or glass, and that there

is an overlapping of the spreads with gold and glass. It is evident
that the gold ball results are much less reliable than either of the
other sets.

The results with platinum and glass may be rated as of equal
excellence, the average departure being the same and the spreads
small and approximately equal. Discarding the gold results and
giving equal weights to platinum and glass we obtain

6.669 X10"8

with an average departure from the mean of 0.005. It seems advis-
able to us, however, to retain the gold results at one-third the weight
of either platinum or glass. This gives as a final result

6.670 X10"8

with an average departure from the mean of 0.005.

5. DISCUSSION OF RESULTS

The first thing that attracts attention in the results given in Table
19 is the apparent difference with the nature of the material. The
mean values of the platinum and glass sets, for instance, differ by
an amount five times as great as the average departure of either set.
Moreover, there is no overlap in their spreads.

Bowever, an explanation of this variation on the basis of difference
oj material is not admissible. As already stated (footnote (1))
Knlvos, by his very ingenious torsion balance method, has demon-
strated the constancy of the gravitation constant for a number of
mat (Minis (including platinum) to a precision of 6 parts in 109

. He
did not however test optical glass. While there is no doubt that
tne result obtained by Eotvos is universally valid, it seemed best to
repeat his torsion balance experiment with the balls of platinum and
glass. his work was carried out by Dr. G. S. Cook, of the Bureau
01 standards, and is described in Section VIII. The high precision
o the negative results obtained rules out any attempt to explain the
n mat inn () | ITSU i ts on a basis of difference of material. Some other
explanation is necessary.
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To account for the observed differences it is nece
factor which vanes in the several aeries of experiments and do(
eliminate in the near and far positions. Perhaps the first explanation
that suggests itself is that of incomplete magnetic sMeldine The
evidence on this point (III, 6) appears conclush e, but is st renei hened
by the following considerations.
Gold is diamagnetic and platinum paramagnetic. Anj

magnetic effect would, therefore, weaken the attraction on the gold
balls and strengthen it on platinum; but the values of actually
obtained are less for platinum than for gold.

It was recognized that the gravitational field in the room was Dot
uniform, due partly to the upright stand carrying the pump attach-
ments, and partly to the walls of the room*. Two of these were
backed with earth and two were merely partitions.
Such a field, however, being stationary, should produce no effect

that would not be ehminated in the near and far positions.
It was recognized also that the resting position of the moving

system was slightly different with respect to the field of the room in
the several series of experiments, but it is not apparent that this
would produce any effect that would not be eliminated.

Probably the solution of this difficulty can best be attained by
working with an apparatus sufficiently sensitive to give the next,

decimal place. Should the variation found fail to appear in its

present place, but be shifted farther on, the difficulty, while not
explained, would obviously be ascribable to some experimental error.

Such an apparatus has been constructed, in which the difference

of the two times of swing is about 100 minutes. This apparatus
awaits the construction of the next new building at the Bureau of

Standards, when opportunity may offer to provide a basement room
large enough to contain it comfortably.

VIII. THE SPECIFIC ATTRACTION OF PLATINUM AND
GLASS 8

The experimental values of the constant of gravitation as given in

the preceding section vary for small masses of different materials by

an amount greater than the averag edeparture of the single values for

any particular material. It seems reasonable to attribute this to

experimental error of some nature, but it is possible to interpret it as

a departure from Newton's law of the proportionality of mass and

weight.
The Cavendish apparatus is not suited for the detection ol

small departures from this law, since the forces involved are so small,

but it is possible to test this point in other ways to a very nigfl degree

of precision. Such experiments have invariably shown, to the degr< e

of precision of which the apparatus was capable that the ratio ol

mass to weight is independent of the material Pendulum expen-

ments conducted by Newton • established tin, to I part m 1,000,

and similar experiments by Bessel
10 of a more refined clia r.-h, cax-

^This section and the experimental work it describes are due to Dr. G. S. Cook, of the Hureau of Stand.

» Principia, Book III, Prop. 6, Theorem 6.

10 Pogg. Annalen, 25, p. 401; 1832.
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ried the precision to one part in 60,000. It is worthy of note that

Bessel included among the substances tested by him meteoric iron and
meteoric stone.

The most precise experiments are those of Eotvos, 11 who by an

ingenious application of the torsion balance succeeded in pushing the

precision to 6 parts in 109
. The substances examined by him were

water, copper, platinum, magnalium, copper sulphate (solid and
solution), asbestos and talc. As he did not test glass, it was thought

worth while to repeat the Eotvos experiment with one of the glass

balls actually employed in the determination of the constant of gravita-

tion balanced against a ball of platinum.

In the Eotvos experiment two masses of different materials are

suspended from the ends of the beam of a torsion balance. These
masses may be thought of as acted upon by the gravitational attrac-

tion of the earth (a force which may not be proportional to the masses
of the two bodies), and by a centrifugal force due to the rotation of

the earth, which will be proportional to the masses. If then the

gravitational force is not proportional to the masses the resultant

forces on the two bodies will be in different directions, and in conse-

quence a torque must be supplied by the suspending filament in order
to hold the beam in equilibrium in an east and west position. This
torque must be reversed if the beam (together with the torsion head)
is turned through 180°.

In practice, the whole apparatus, including observing telescope
and scale, was rotated. In this way the effect sought would show
itself as a change in the equilibrium position.

H. A. Wilson 12 has given the theory of this experiment in a some-
what simpler form than that employed by Eotvos. The apparatus
used in the present work was in dimensions and arrangement similar
to that described by Wilson.
The torsion balance consisted of a light aluminum beam about 5

cm long carrying a glass ball at one end and a platinum ball at the
other. The beam was supported at its center by a tungsten filament
0.025 mm in diameter and about 43 cm long. The beam was inclosed
in a case of cast iron with walls 1 cm thick to avoid magnetic dis-
turbances, and the case was exhausted of air to a pressure of about 2
mm of mercury.
To the case was attached a reading telescope and scale such as are

used with wall galvanometers. The whole apparatus was placed on
a level plate and pivoted so that it might be readily turned about its
vortical axis. Deflections were read through a window in the case
by means of the telescope and scale. Table 20 shows the readings
obtained.

u Annalen der Physik, 68, 1, pp. 11-G6; 1922. U Phys. Rev., 20, pp. 75-77; July, 1922.
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Table 20.—Resting points in centimeters observed with BdM

Platinum ball east Platinum ball

1. 10

1.38

L-88

1.32

1.27

1. 26

1.24

Mean. 1.819

1. in

L17

1.34

i.:;i

L26

1. 335

Difference, 0.006 cm clock w Ise

Scale distance from mirror on beam,

The formula given by Wilson is as follows:

9 £-« 2<ft*

T2
si i

(23)

in which
g = acceleration of gravitation.

2A = change in azimuth angle when beam is turned 180°.

2d = distance between centers of balls suspended from beam.
t = period of the earth's rotation.

= latitude of place of the experiment.

T= period of vibration of the torsion balance.

r = radious of earth.

At Washington = 38° 54', and the following values were observed :

Taking # = 980, we get;

T=315 sec.

2d = 4.9 cm

^—/- = 2AX6Xl(r 4

In the experiment, 2A = 6X 10
-3 consequently

9-9'
= 3.6X10-

(24)

While this result, from its minuteness, is of do importance m the

present instance, it may be stated for the sake oi completj

the difference, regarded as real, is in the direction whi

correspond to the different values of ^obtained for glass

Its only value in the present work is to prove tl

apparently found with glass and platinum is not to D<

a basis of difference of material.

The value of 2A obtained from Table 20 is just about

able limit, being read from a scale of niillimeters. I
change
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in resting point shown in Table 20 is the typical behavior of a sus-

pension immediately after a load has been placed upon it. It is

quite marked here because of the fact that several hours always

elapsed between successive readings. This lapse of time was neces-

sary because of the small damping.

IX. SUMMARY AND GENERAL CONCLUSIONS

The value adopted for the constant of gravitation as a result of

experiments with small masses of gold, platinum, and glass, weighted,

respectively, as 1, 3, and 3, is, in c. g.^s. units

1 o™ -2
6,670 X10~8 cm3 g" 1

sec.

with a precision, as measured by the average departure from the
mean, of 0.005.

This result agrees well with that obtained by Boys and Braun,
namely 6.66 ±0.01.
The different results obtained with the various materials used for

the small masses are yet to be explained, but evidence is given that
this difference is not to be ascribed to the nature of the material.

Washington, April 10, 1930.


