COMPRESSIBILITY AND THERMAL EXPANSION OF PETROLEUM OILS IN THE RANGE 0° TO $300^{\circ} \mathrm{C} .{ }^{1}$

By R. S. Jessup

Abstract

Measurements of compressibility and thermal expansion are reported ou representative samples of petroleum oils from various sources over the pressure range 0 to $50 \mathrm{~kg} / \mathrm{cm}^{2}$ (gauge), and the temperature range 0° to $300^{\circ} \mathrm{C}$.

It was found from the results obtained on these samples that the compressibility and thermal expansion of two samples of the same specific gravity, but from different sources, differed more than 30 per cent at the higher temperatures, whereas oils of the same specific gravity and also the same viscosity had the same compressibility and thermal expansion within rather narrow limits. In other words, with a knowledge of the specific gravity and viscosity of the oils, it was possible to represent all the measured volumes within less than 0.5 per cent over the entire range of temperature and pressure covered by the measurements.

CONTENTS Page I. Introduction 985 II. Material 986 III. Apparatus and methods 986 1. Description of apparatus 986 2. Methods of observation 987 3. Temperature of emergent stem 989 4. Calibration of apparatus 990 5. Computation of data 994 IV. Results 995 1. Data obtained 995 2. Accuracy of data 1002 3. Quantities calculated from thermodynamic relations 1003 4. Correlation of data 1004 V. Comparison with previous work 1007 VI. Conclusion 1011 VII. Appendix-Tables of relative volumes of oils 1012

I. INTRODUCTION

The extensive use of cracking processes in the petroleum industry, and the increased use of petroleum oils asheat-transfer media in various industrial processes have created a need for data on the properties of these oils at relatively high temperatures and pressures. Data on two properties, namely, compressibility and thermal expansion, are required in order to yield information on the volume which a known quantity of oil measured at atmospheric pressure and ordinary temperature will occupy at higher temperatures and pressures. Existing data on these two properties of petroleum oils were deficient either in the pressure and temperature ranges covered or in the variety of oils studied.

[^0]The work described in this paper was undertaken for the purpose of supplying sufficiently comprehensive data in the range of pressure and temperature of greatest practical interest to make the data applicable in so far as possible to any petroleum oil regardless of its source or chemical composition. For this purpose data were obtained on samples of various oils from different sources.

The upper limit to which the measurements could be carried without serious loss of accuracy was $300^{\circ} \mathrm{C}$. Even at this temperature cracking was evidenced by an appreciable increase in volume with time. Ginne the change in volume of these oils with pressure is rela$\therefore \quad i$ and approximately linear at constant temperature over the ware range ordinarily encountered in practice, the measurements re not carried above a pressure of $50 \mathrm{~kg} / \mathrm{cm}^{2}\left(710 \mathrm{lbs} . / \mathrm{in} .^{2}\right)$ which was considered to be a safe limit for the glass apparatus employed.

II. MATERIAL

The samples of oil used in this investigation and the information as to their source were submitted by various oil companies through the courtesy of the American Petroleum Institute. They appear to be reasonably representative of those types of American petroleum oils, namely, gas oils and lubricating oils, which are or may be heated to high temperatures in practice. Crude oils were purposely not included among the oils here investigated because many such oils contain considerable amounts of dissolved gases, for example, methane. The effect upon compressibility and thermal expansion of known amounts of dissolved gases is being studied as a special extension of this investigation.

Three samples of gasoline and one sample of liquefied petroleum gas were inciuded, partly to yield additional or confirmatory information on these types of petroleum products, and partly because they were convenient materials for the initial measurements, having relatively large compressibility and thermal expansion at ordinary temperatures.

III. APPARATUS AND METHODS

1. DESCRIPTION OF APPARATUS

The apparatus used is shown schematically in Figure 1. The bulbs, A and B, are made of pyrex laboratory glass and were annealed at a temperature of about $520^{\circ} \mathrm{C}$. for three days. The volumes of the bulbs are approximately $24 \mathrm{~cm}^{3}$ and $5.7 \mathrm{~cm}^{3}$, respectively.

The connecting capillary tubing has an internal diameter of about 1 mm . The brass unions, b and d, are soldered to the glass by a method described by McKelvy and Taylor, ${ }^{2}$ and by Meyers. ${ }^{3}$ The bulb, B, is connected to the steel valve, V_{2}, by means of the steel union, f, and the steel tube, t, the joints being made with de Khotinsky cement. Copper-constantan thermocouple junctions are cemented to the glass capillary tubing at c_{1}, c_{2}, c_{3}, etc. At points where there are sometimes large temperature gradients along the tubing, the effect of heat conduction along the thermocouple leads is minimized by winding the wires several times around the tube on each side of those junctions. A millimeter scale engraved on a glass mirror is
mounted behind the capillary U tube, gl. The entire apparatus is mounted on a steel frame which is supported on a special clamp stand in such a way that it can be raised or lowered, or moved about on the table. The union, d, is connected through the valve, V_{3}, and flexible copper tubing to a pressure gauge, and through valve, V_{4}, to a cylinder of carbon dioxide. The valve, V_{5} can be opened to the atmosphere.

Other apparatus used which need not be described in detail include a vacuum pump capable of reducing the pressure to about 0.3 mm

Figure 1.-Schematic drawing of apparatus
of mercury ; two thermoregulated baths; a closed end mercury manomter for roughly indicating the pressure; a high precision piston pressure gauge of the dead-weight type for accurate pressure measurements; a portable potentiometer for measuring the emf of thermocouples; a Wheatstone bridge, galvanometer, and platinum resistance thermometer for temperature measurements.

2. METHODS OF OBSERVATIOIN

The method of observation used in the measurements on the first four samples which were not carried above $70^{\circ} \mathrm{C}$., was as follows: With valves, V_{2}, V_{3}, V_{4}, and V_{5} (fig. 1) closed the apparatus was evac-
uated through V_{1}. Mercury was then admitted through V_{2} until the bulbs, B and A, were entirely filled, and the capillary above the bulb, A, was filled within a few centimeters of the soldered joint, b. Then with the bulbs, A and B, immersed in ice baths, the oil sample was admitted through V_{1} until the bulb, A, and capillary were filled with the sample to a desired point, g, on the U tube. The U tube from g to h, and the bulb, B, were left filled with mercury. The valve, V_{1}, was then closed, and with V_{5} open to the atmosphere the positions of the menisci, g and h, were read on the scale. The valve, V_{5}, was then closed and the pressure increased to $50 \mathrm{~kg} / \mathrm{cm}^{2}$, in convenient steps (usually $10 \mathrm{~kg} / \mathrm{cm}^{2}$), by admitting carbon dioxide through V_{4}. The pressure at each step was measured by means of the piston gaure, and the positions of the menisci, g and h, were read on the scale. The pressure was then reduced to atmospheric in similar steps, the observations of pressure and positions of the menisci being repeated. It was found necessary to allow about 10 minutes after each change in pressure for the reestablishment of thermal equilibrium.
These observations give sufficient data for computing the volume of the sample at $0^{\circ} \mathrm{C}$. and various pressures, if the following quantities are known: (1) The volumes at atmospheric pressure of. A, B, and of that part of the sample in the valve, V_{1}, and in the capillary tubing; (2) the volume per unit length of the right arm of the capillary U tube; (3) the compressibility and amount of the mercury in B and in the U tube; (4) the compressibility and amount of the oil in the valve, V_{1}, and in the capillary tubing; and (5) the change in volume of the apparatus with pressure.

After the measurements at $0^{\circ} \mathrm{C}$. were completed, the bulb, A, was removed from the ice bath and placed in a stirred liquid bath at some higher temperature. The increase in volume of the sample in A was accommodated by removing some of the mercury from B. The weight of the removed mercury, and the change in position of the meniscus, h, give sufficient data for computing the expansion of the sample between $0^{\circ} \mathrm{C}$. and the temperature of the bath, provided the change in volume of the bulb, A, and the expansion of the liquid in the valve, V_{1}, and in the capillary tubing are known. The compressibility measurements at the higher temperature were made in the same way as at $0^{\circ} \mathrm{C}$. The above procedure could be repeated at as many temperatures as desired.

For the measurements on samples 5 to 14, which were carried to 300° C., it was found desirable to modify the procedure outlined above as follows: The bulb, A, was only partially filled with the sample at $0^{\circ} \mathrm{C}$. leaving sufficient mercury in A to take care of the expansion of the sample when heated to $300^{\circ} \mathrm{C}$. The volume of the sample in A was determined by weighing the displaced mercury. The observations of compressibility and thermal expansion were made in the same way as before. This method has the following advantages: (1) The volume corrections for changes in temperature of the mercury in capillary tubing outside of the bath are smaller because mercury expands less than oil; and (2) the entire sample, with the exception of the small amount in the valve, V_{1}, and in the short length of capillary tube between V_{1} and M, is at a uniform temperature. This method simplifies considerably the computation of the results, although it introduces two minor disadvantages: (1) A separate
measurement must be made of the volume of each sample at $0^{\circ} \mathrm{C}$., and (2) the height of the mercury column between h and the oil-mercury meniscus in A can not be observed directly. The latter is not serious, however, as the position of the oil-mercury meniscus can be computed with sufficient accuracy from the known amount of mercury in A.

3. TEMPERATURE OF EMERGENT STEM

One of the largest corrections to the expansion data is for the expansion of the oil and mercury in those parts of the capillary tubing which

Figure 2.-Temperature distribution along emergent stem
extend out of the bath. In order to determine the shape of the temperature distribution curve along this emergent stem the following experiment was performed: A thermocouple junction was cemented to a long pyrex capillary tube, practically identical with the tubing shown in Figure 1. With the bath maintained at the constant temperature of $200^{\circ} \mathrm{C}$., this tube was placed with one end in the bath and one end extending into the room. Measurements of the emf of the thermocouple were made when the junction was at various distances from the surface of the liquid. The tube was allowed to remain in each position until the reading of the thermocouple had become steady. In Figure 2 the observed temperatures are plotted against distance from the liquid surface of the bath. Curve (a) was obtained when the
bath was covered with a sheet of asbestos about 0.5 cm thick, leaving an air space 8.6 cm deep between the cover and the surface of the bath liquid. Curve (b) was obtained when insulating material 6 cm in thickness was attached to the lower side of the asbestos cover, leaving an air space of only 2.6 cm . Temperature equilibrium was attained more quickly in case (a), but the shape of the temperaturedistribution curve is such that a number of thermocouples would be required to determine it. On the other hand, curve (b) is much simpler and for the purpose of calculating the stem correction, can be still further simplified by replacing that part of it which represents conditions up to 9 cm from the liquid surface, by the dotted lines $A B$ and $B C$. The maximum difference between the experimental curve and the dotted lines is about $5^{\circ} \mathrm{C}$., while the integrated temperature difference is practically zero. Since an error of $5^{\circ} \mathrm{C}$. over the entire length of the curve would cause an error of only about 0.004 per cent in the total volume of the sample, the approximation appeared sufficiently accurate. The greater ease of determining the tempera-ture-distribution curve with the thicker bath cover was thought to outweigh the advantage of more rapid attainment of equilibrium with the thinner cover, and consequently the thicker cover was used.

In the measurements of compressibility and thermal expansion, the line $B C$ was obtained by means of two thermocouples (c_{3} and c_{4}, fig. 1) attached to one of the two stems projecting out of the bath. The points at which these thermocouples are attached are indicated by the two arrows in Figure 2. The line $A B$ was obtained from the observed temperature of the bath and the temperature at B. It is assumed that the temperature distribution between the liquid surface and the top of the cover is the same along both of the stems which project out of the bath. This assumption is supported by the fact that the two couples (c_{1} and c_{5}, fig. 1) just above the top of the bath cover indicated practically identical temperatures.

4. CALIBRATION OF APPARATUS

The volume of the right arm of the capillary U tube, $g h$, (fig. 1) from the zero of the scale up to various other points on the scale was determined as follows: The apparatus was filled with mercury with the exception of the valve, V_{1}, and a short length of the capillary below it, which were filled with water. The bulbs, A and B, were immersed in ice baths, and the position of h was noted on the scale. A small amount of mercury was removed through valve, V_{2}, caught in a small beaker and weighed, and the new position of the meniscus noted. This process was repeated until the meniscus had reached the zero of the scale. The temperature of the mercury was assumed to be that of a mercurial thermometer hung beside the U tube. A correction for the change in pressure due to change in the height of h was applied to the readings. Figure 3 shows the deviations of the observed volumes from the straight line:

$$
\begin{equation*}
V_{R}=V_{15}+0.01533(R-15) \tag{1}
\end{equation*}
$$

where R is the height of the meniscus above the zero of the scale in centimeters. The bore of the capillary was found to be irregular below $R=15$ and above $R=60$, and consequently only the section between these points was used.

When the apparatus was in use the bulb A was always immersed to a point, M, located 15.0 cm below the bottom of the glass-metal joint b (fig. 1). The volume between M and N was determined at 0° C. as follows: The apparatus was filled with mercury to the point M. The capillary above this point and the valve, V_{1}, were filled with water. The bulbs, A and B, were immersed in ice baths and the position of the meniscus h noted on the scale. Mercury was then removed through the valve, V_{2}, and water admitted through V_{1} until the mercury-water meniscus reached the point, N, and the position of h was again noted. The mass of the mercury removed and the change in the position of h give the necessary data for determining the volume of A between the points M and N. The density of mercury at $0^{\circ} \mathrm{C}$. was assumed to be 13.5951 g per cm^{3}. Two determinations of the volume of A gave results agreeing within 0.01 per cent of the mean value, $23.9836 \mathrm{~cm}^{3}$.

Figure 3.-Calibration curve of capillary
The volume of the connecting capillary tubing was determined in a continuation of the above-described experiment by admitting water through V_{1} and observing the change in position of the two menisci. The volume between two positions of the water-mercury meniscus adjacent to the bulb A is measured by the corresponding change in position of the meniscus h. The volume of the capillary above M was determined in the same way. The internal volume of the valve, V_{1}, below the needle was calculated from its dimensions. The values found for these volumes were as follows:

$$
\begin{aligned}
& \text { Volume of glass capillary above } M \text {----------------------- } 0.1271
\end{aligned}
$$

$$
\begin{aligned}
& \text { Volume of capillary from } N \text { to } O \text { (zero of scale) } \\
& 8206
\end{aligned}
$$

The volume of B between the T-joint above and the metal connection, f, was determined from the weight of mercury required to fill it at $0^{\circ} \mathrm{C}$. and found to be $5.66 \mathrm{~cm}^{3}$. The volume of the metal connecting tubing, t, between B and V_{2} was not measured since it is so small that changes in room temperature do not cause any appreciable change in the volume of the mercury contained therein.

The change in volume of the bulbs with pressure was measured as follows: The apparatus was filled with mercury with the exception ff the valve V_{1} and about 1 cm of the capillary below it, which were filled with water. The bulbs A and B were immersed in ice baths,
and the procedure described above for the measurement of compressibility was followed. The compressibility of mercury at $0^{\circ} \mathrm{C}$. was taken as 3.8×10^{-6} per $\mathrm{kg} / \mathrm{cm}^{2}$, which is numerically equal to the slope of Bridgman's ${ }^{4}$ volume-pressure curve at $25 \mathrm{~kg} / \mathrm{cm}^{2}$. The value found for the change in volume of the apparatus with pressure was $0.000484 \mathrm{~cm}^{3}$ per $\mathrm{kg} / \mathrm{cm}^{2}$.

Values for the change in Young's modulus with temperature for various glasses are given in International Critical Tables. No figures are given for pyrex, but those given for other glasses, including fused quartz, indicate that the change is negligible over the range 0° to $300^{\circ} \mathrm{C}$. The change in volume of the bulb B with pressure was determined by filling it with mercury to some point in the vertical capillary above it, admitting carbon dioxide to the remainder of the apparatus and observing the change in position of the meniscus with pressure. The value found was $0.000102 \mathrm{~cm}^{3}$ per $\mathrm{kg} / \mathrm{cm}^{2}$.

To determine the change in volume of bulb, A, with temperature, the apparatus was filled with mercury, except for the valve, V_{1}, and about 1 cm of the capillary below it which were filled with water. The procedure followed was the same as that described for the determination of the thermal expansion of an oil sample. The data used for the expansion of mercury were those given in the International Critical Tables. These data are probably not sufficiently accurato to give the value of V_{300} / V_{0} for mercury to better than about 0.01 per cent.

The observed volumes of the bulb, A, are represented closely by the linear equation:

$$
\begin{equation*}
V_{t}=23.9836+0.000238 t \tag{2}
\end{equation*}
$$

as is shown by the data given in Table 1.
Table 1.-Comparison of observed and calculated volumes of bulb A

Temperature C.	V obsorved	$\begin{aligned} & V \text { calcu- } \\ & \text { lated } \end{aligned}$	$\frac{\text { Vobserved }-V \text { calculated }}{V^{\text {obsserved }}} \times 10^{8}$
0	23. 9836	23.9836	0
27.73	23.9903	23.0900	+1
46.93	23.9944	23.9946	-1
59.33	23.9971	23. 9975	-2
75. 00	24.0014	24. 0012	+1
79.52	24.0018	24.0023	-2
150.02	24.0194	24. 0191	+1
225.02	24.0362	24.0371	-4
290.91	24.0403	24.0540	-20

When the bulb, A, was removed from the bath after this calibration, it was found that the internal surface of the bulb was covered with a large number of small gas bubbles. Apparently, the low value of the observed volume at $300^{\circ} \mathrm{C}$. may be attributed to the release of adsorbed gases by the walls. In subsequent experiments, the bulb was heated to $300^{\circ} \mathrm{C}$. and evacuated before filling and no further evidence of gas bubbles was obtained.

Making the usual assumption that the coefficient of cubical expansion is three times the coefficient of linear expansion, the above measurements yield the value 3.31×10^{-6} for the mean coefficient of

[^1]linear expansion of pyrex glass over the interval 0° to $300^{\circ} \mathrm{C}$. This value agrees well with the mean value 3.2×10^{-6} for laboratory pyrex over the interval 19° to $350^{\circ} \mathrm{C}$. recorded in International Critical Tables, Vol. III, p. 93, and credited to the Corning Glass Co. A somewhat larger mean value, 3.6×10^{-6}, for the greater interval 21° to 471° C., was obtained by Peters and Cragoe ${ }^{5}$ on a ring section cut from a Florence flask of pyrex.

As a check on the calibration of the apparatus, a few measirements were made of the compressibility and thermal expansion of water. ${ }^{6}$ The observed relative volumes, V_{t} / V_{o}, of water at atmospheric pressure are given in Table 2, together with corresponding values taken from International Critical Tables, Vol. III, p. 26.

Figure 4.-Compressibility of water
Table 2.-Expansion data on water compared with I. C. T. data

Temperature ${ }^{\circ} \mathrm{C}$	Relative volumes		Difference, observed -I. C. T.
	Ohserved	I. C. T.	
0	1. 00000	1. 00000	0
25. 98	1. 00306	1. 00306	0
40.36	1. 00781	1. 00783	-2
60.49	1. 01716	1. 01718	-2
80.54	1. 02918	1. 02921	-3

If the differences shown above are due to a systematic error in the calibration of the apparatus, and if the error increases with temperature at the rate indicated by these differences, it would amount to about 0.01 per cent of the volume at $300^{\circ} \mathrm{C}$.

The results of the compressibility measurements are compared in Figure 4 with values of compressibility obtained by Amagat ${ }^{7}$ (range 1 to 50 atmospheres), Tyrer^{8} (range 1 to 2 atmospheres) and values deduced from Bridgman's ${ }^{9}$ work. Bridgman gives his results

[^2]in terms of relative volumes at pressures differing by steps of 500 $\mathrm{kg} / \mathrm{cm}^{2}$. Values of mean compressibility between 0 and $50 \mathrm{~kg} / \mathrm{cm}^{2}$ were obtained from his results by fitting the data at each temperature with an equation of the form:
$$
v_{0}-v_{p}=a p-b p^{2}
$$
and plotting a deviation curve. From the volumes at $50 \mathrm{~kg} / \mathrm{cm}^{2}$ obtained in this way and the volumes at zero pressure the values of mean compressibility between 0 and $50 \mathrm{~kg} / \mathrm{cm}^{2}$ were computed.

5. COMPUTATION OF DATA

The method of computing values of V_{t} / V_{0} at atmospheric pressure from the observed data is illustrated by an example in Tables 3 and 4. The method consists in computing the total volume which the sample would occupy at $0^{\circ} \mathrm{C}$., and at the higher temperature ($225.01^{\circ} \mathrm{C}$.) if the oil in the capillary above M and in the value, V_{1}, were at the temperature of the bath. Values of V_{t} / V_{0} at the lower temperatures, 75° and $150^{\circ} \mathrm{C}$., had been obtained previously, and a curve of V_{t} / V_{0} against temperature had been drawn and extrapolated to $225^{\circ} \mathrm{C}$. The values of V_{t} / V_{0} and V_{225} / V_{t} given in Table 3 were obtained from this curve. At the higher temperature the large temperature gradient along the capillary and the fact that the volumetemperature curve is not linear, make it necessary to obtain values of V_{225} / V_{t} corresponding to the mean temperatures of short sections of the capillary and correct for each section separately.

The value given in Table 4 for the mass of mercury between M and N at $0^{\circ} \mathrm{C}$. was obtained from the known mass of mercury required to fill this space at $0^{\circ} \mathrm{C}$. and the mass displaced by introducing the oil sample. The mass displaced was determined from the weight of mercury removed through V_{2}, and the change in position of the meniscus h. The mass of mercury between M and N at $225^{\circ} \mathrm{C}$. was obtained from the mass at $0^{\circ} \mathrm{C}$., and the mass expelled by the expansion of the oil. The mass expelled was obtained from the weight of mercury removed through V_{2}, and the change in position of the meniscus h, corrected for the expansion of the mercury in the capillary. The position of h in each case was corrected to atmospheric pressure by means of the compressibility data.

Table 3.-Corrections for emergent stem

Section No.	Location of sectiondistance above bath liquid	Volume of section	Mean temperature with bath at-		Datã obtained from V_{t} / V_{0} curve-		Volume of oil reduced to-	
			$0^{\circ} \mathrm{C}$	$225.01^{\circ} \mathrm{C}$.	$V_{225.01} / V_{t}$	V_{t} / V_{0}	$0^{\circ} \mathrm{C}$.	$225.01^{\circ} \mathrm{C}$.
	$\begin{gathered} c m \\ 0-2.8 \\ 2.8-9.0 \\ 9.0-15.7 \end{gathered}$	$\begin{gathered} c m^{3} \\ 0.0226 \\ .0500 \\ .0545 \\ .1307 \\ 1207 \end{gathered}$	${ }^{\circ} C$.	${ }^{\circ} \mathrm{C}$ 214.4	1.0085		cm^{3}	$\begin{aligned} & c m^{3} \\ & 0.0228 \end{aligned}$
				141.5	1.0703			. 0535
				44.5 34.0	1.1502			. 0627
	0-15.7		24.8			1.0179	. 1248	
		Volume of oil above M (reduced to bath temperature)					. 2529	. 2905

Table 4.-Computation of V_{t} / V_{0}

Item	Bath temperature	
	$0^{\circ} \mathrm{C}$.	$225.01^{\circ} \mathrm{C}$.
	23. 9836	24. 0371
	66.9959	${ }_{13}^{18.2746}$
	${ }_{4}^{13.92978}$	13.0529 1.4000
	19.0558	22. 6371
Volume of oil above M reduced to bath temperature (Table 3).-----------------cm³	0. 2529	0.2905
	19.3087	22.9276
$V_{225} 0_{01} / V_{0}$		1. 18742

The computation of compressibility is illustrated in Table 5. The mass of mercury between M and N at $50 \mathrm{~kg} / \mathrm{cm}^{2}$ is obtained from the mass at $0 \mathrm{~kg} / \mathrm{cm}^{2}$ (Table 4) and the observed change in position of the meniscus h when the pressure is applied, corrected for the compressibility of the mercury in B and in the capillaries, and for the expansion of B with pressure. The value used for the compressibility of mercury at 225° was obtained from a linear extrapolation of Bridgman's values at $0^{\circ} \mathrm{C}$. and $22^{\circ} \mathrm{C}$. The volume of mercury in A is so small at $225^{\circ} \mathrm{C}$. that even a large error in the value of the compressibility of mercury would not cause an appreciable error in the compressibility of the oil. The reduction of the volume above M to the bath temperature was made in a manner similar to that shown in Table 3, using a volume-temperature curve for $50 \mathrm{~kg} / \mathrm{cm}^{2}$ to obtain values of $V_{225.01} / V_{t}$.

Table 5.-Computation of compressibility

Bath temperature
Volume between M and N at $50 \mathrm{~kg} / \mathrm{cm}^{2}=24.0371+(0.000484-$

Mass of mercury between M and $N=18.2746+2.7842 \ldots \ldots$. g_- $^{2} 1.0588$
Density of mercury $=13.0529\left(1+50 \times 5.6 \times 10^{-6}\right)--------\mathrm{g} / \mathrm{cm}^{3}-{ }^{-} \quad 13.0566$

Volume of oil above M reduced to bath temperature__.....-cm ${ }^{3}$ _- 0.2890
Total volume of oil at bath temperature and $50 \mathrm{~kg} / \mathrm{cm}^{2}$...-- cm^{3} -
22. 7324

Total volume of oil at bath temperature and $0 \mathrm{~kg} / \mathrm{cm}^{2}$ (Table

Change in volume of oil due to compression-----------------cm ${ }^{3}$-- 0.1952
Mean compressibility $=\frac{1}{V_{0}} \frac{V_{0}-V_{50}}{50}=\frac{0.1952}{22.9276 \times 50}-\ldots-\mathrm{cm}^{2} / \mathrm{kg}-$
0. 0001703

IV. RESULTS

1. DATA OBTAINED

Measurements have been made on 14 samples. Observations on aach sample were made at 5 or 6 temperatures and at from 4 to 6 pressures at each temperature. The data on two of the samples (samples 10 and 12) are shown graphically in Figures 5, 6, and 7. Figure 5 shows curves of $\mathrm{V}_{\mathrm{t}} / V_{0}$ at atmospheric pressure plotted against temperature. Figure 6 shows the mean compressibilities jetween 0 and $50 \mathrm{~kg} / \mathrm{cm}^{2}$ plotted against temperature. The compressijility decreases with pressure. Figure 7 shows the error introduced oy assuming the compressibility independent of pressure and equal oo the mean compressibility between 0 and $50 \mathrm{~kg} / \mathrm{cm}^{3}$.

Information regarding the sources of samples $1,2,3$, and 4 , together with A. S. T. M. distillation data, and values of specific gravity at $30^{\circ} / 60^{\circ} \mathrm{F}$. is given in Table 6. Relative volumes and mean com-
pressibilities between 0 and $50 \mathrm{~kg} / \mathrm{cm}^{2}$ for these samples are given in Table 7. Table 8 gives information as to sources of samples to 14 , inclusive, together with values of specific gravity at $60^{\circ} / 60^{\circ} \mathrm{F}$., and viscosity at $100^{\circ} \mathrm{F}$. Table 9 gives values of relative volume and mean compressibility between 0 and $50 \mathrm{~kg} / \mathrm{cm}^{2}$ for these samples. The vapor pressures of four of the oils (samples 7, 8, 9, and 10) were greater than atmospheric pressure at the higher temperatures. At $300^{\circ} \mathrm{C}$., for example, it was necessary to maintain a pressure of 3 to $5.5 \mathrm{~kg} / \mathrm{cm}^{2}$ on these oils to prevent the formation of vapor. The values for the volumes of these oils at atmospheric pressure, and at temperatures above the boiling point are given in parentheses in Table 9. These values were obtained by extrapolating the pressurerolume curves to atmospheric pressure, as indicated in Figure 7.

Figure 5.-Expansion curves of samples 10 (upper curve) and 12 (lower curve)

Table 6.-Description of samples 1 to 4, inclusive

	Materlal	Source	A. S. T. M. distillation data							$\begin{aligned} & \text { Specific } \\ & \text { gravity, } \\ & 60^{\circ} / 60^{\circ} \mathrm{F} . \end{aligned}$
No.			Initial	$\begin{gathered} 20 \\ \text { per } \\ \text { cent } \end{gathered}$	$\begin{gathered} 50 \\ \text { per } \\ \text { cent } \end{gathered}$	$\begin{gathered} 90 \\ \text { per } \\ \text { cent } \end{gathered}$	Max-	Loss	Residue	
$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Cracked aasoline. Fighting a viation gas .do. \qquad	Los Angeles basin. West Virginia Oklahoma	$\begin{array}{r} { }^{\circ} C_{51} \\ 53 \\ 53 \\ 58 \end{array}$	$\begin{array}{r} { }^{\circ} C \\ 109 \\ 75 \\ 68 \end{array}$	$\left\lvert\, \begin{gathered} \circ \\ 163 \\ 79 . \\ 79.5 \\ 72.5 \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & { }^{\circ} C . \\ & 215 \\ & 110 \\ & 85.5 \end{aligned}\right.$	$\begin{gathered} { }^{\circ} C \\ 224 \\ 163 \\ 106 \end{gathered}$	$\begin{array}{r} \text { Per } \\ \text { cent } \\ 1.5 \\ .4 \\ .5 \end{array}$	$\begin{gathered} \text { Per } \\ \text { cent } \\ 1.4 \\ 1.8 \\ .5 \end{gathered}$	$\begin{array}{r} 0.768 \\ .695 \\ .697 \end{array}$
4	Liquefled petroleum gis.		14.5				per ce ermin		$\text { ane, } 1 \text {. }$	per cent

Figure 6.-Mean compressibilities of samples 10 (upper curve) and 12 (lower curve)
Table 7.-Data obtained on samples 1 to 4, inclusive SAMPLE 1

Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ (gauge)	Relative volumes and mean compressibilities									
	$0^{\circ} \mathrm{C}$.	$27^{\circ} \mathrm{C}$.	$28^{\circ} \mathrm{C}$.	$35^{\circ} \mathrm{C}$	$36^{\circ} \mathrm{C}$.	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$.	$65^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
0.-	1. 00000	1.02865		1.03754			1.05483		1. 07281	
${ }_{20}^{10}$. 99910	1. 02752		1. 03632			1. 05346		1.07123	
30	. 99821	1.02642		1. 03512			1. 05210		1. 06968	
40.	. 99646	1. 02421		1. 03277			1. 04944		1.06664	
50.	. 99561	1. 02314		1. 03161			1.04814		1. 06515	
$\begin{aligned} & \text { Mean compressi- } \\ & \text { bility } \times 10^{5} \end{aligned}$	8.78	10. 71		11.43			12.68		14.28	

SAMPLE 2

SAMPLE 3

Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ (gauge)	Relative volumes and mean compressibilities									
	$0^{\circ} \mathrm{C}$.	$27^{\circ} \mathrm{C}$.	$28^{\circ} \mathrm{C}$.	$35^{\circ} \mathrm{C}$.	$36^{\circ} \mathrm{C}$.	$40^{\circ} \mathrm{C}$.	$50^{\circ} \mathrm{C}$.	$55^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$.	$70^{\circ} \mathrm{C}$
0.	1.00000	1. 03554				1.05408		1.07686		1. 10129
10	. 998882	1.03397				1. 05226		1.07472		1. 09870
20	. 997763	1.03241				1. 05046		1.07260		1. 09617
30.	. 99646	1. 03089				1. 04869		1.07052		1. 09370
40.	. 99530	1.02937				1. 04696		1.06850		1. 09129
50	. 99415	1. 02788				1. 04526		1. 06652		1.08896
Mean compressibility $\times 10^{3}$	11. 70	14.79				16.73		19.20		22.39

SAMPLE 4

Figure 7.-Error introduced by assuming the compressibilities of samples 10 (left) and 12 (right) independent of pressure and equal to the mean compressibilities between 0 and $50 \mathrm{~kg} / \mathrm{cm}^{2}$

Table 8.-Description of samples 5 to 14, inclusive

Sample No.	Material	Source	Viscosity at $100^{\circ} \mathrm{F}$.		$\begin{gathered} \text { Specific } \\ \text { gravity, } \\ 60^{\circ} / 60^{\circ} \mathrm{F} . \end{gathered}$	${ }^{\circ}$ A.P.I.
			Kinematic	Saybolt Universal		
			cgs units	Seconds		
6	Spindle oil	Pennsylvan	0.317	147	0.8724	30.7
7	Gas oil	Los Angeles basin	.317 .062	147	.8724 .8739	30. 7
8	----do.	Oklahoma	. 042	40	. 8835	28.7
9	---do	Mid-Continent	. 056	44	. 8812	29. 1
10	--do	Bradford, Pa., district....-	. 028	36	. 8019	44.9
11	Lubricating oil	Oklahoma (Tonkowa-Osage)	. 698	318	. 8995	25.8
12	----do..---.		. 713	325	. 9335	20.1
13	----do.	Pennsylvania	. 658	300	. 8768	29.9
14	----do	----do.	. 953	433	. 8804	29.2

Table 9.-Daia obtained on samples 5 to 14, inclusive SAMPLE 5

Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ (gauge)	Relative volumes and mean compressibilities						
	$0^{\circ} \mathrm{C}$.	$30^{\circ} \mathrm{C}$.	$75^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$.	$225^{\circ} \mathrm{C}$.	$275^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$.
0	1.00000		1. 05745	1. 12186	1. 1971		1.28933
10	. 99943		1. 05656	1. 12041	1.19468		1. 28490
20	. 99886		1. 05567	1.11901	1.19238		1. 28069
30	. 99830		1. 05480	1. 11764	1. 19010		1. $2766{ }_{5}$
40	. 99775		1. 05395	1. 11627	1. $1878{ }^{5}$		1. 27283
	. 99721		1. 05309	1.11492	1.18562		1. $2691{ }_{3}$
Mean compressibility $\times 10^{5}$	5. 58		8.25	12.37	19.20		31.35

SAMPLE 6

SAMPLE 7

0.	1. 00000		1. 06218	1.13360	1.22099		(1.33660)
10	. 99935		1.06116	1. 13189	1.2179 ${ }_{1}$		1.32998
20	. 99873		1. 06018	1. 13023	1.2149_{3}		1. 32391
30	. 99813		1.05921	1. 12858	1.2120_{4}		1. 31818
40	. 99753		1. 05825	1.12698	1.20922		$1.312 \overline{7}_{3}$
50	. 99693		1. 05728	1.12541	1. 20647		1. 3070_{5}
Mean compressibility $\times 10^{5}$ -	6. 14		9. 23	14.45	23. 78		43.31

SAMPLE 8

Table 9.-Data obtained on samples 5 to 14, inclusive-Continued
SAMPLE 9

Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ (gauge)	Relative volumes and mean compressibilities						
	$0^{\circ} \mathrm{C}$.	$30^{\circ} \mathrm{C}$.	$75^{\circ} \mathrm{C}$,	$150^{\circ} \mathrm{C}$.	$225^{\circ} \mathrm{C}$.	$275{ }^{\circ} \mathrm{C}$.	$300^{\circ} \mathrm{C}$.
0.	1. 00000		1. 06213	1. 13295	1.21905	(1.29027)	(1.33231)
10	. 99942		1. 06118	1. 13135	1. 21614	1.28563	1.32620
20	. 99883		1. 06024	1. 12976	1.21330	1.28120	1.32053
30	. 99825		1. 05930	1. 12820	1. 21054	1. 2769_{4}	1.31518
40.	. 99766		1.05837	1. 12666	1. 20785	1. 27288	1.31005
50	. 99708		1. 05764	1.12516	1.2052s	1.26897	1.30516
Mean compressibility $\times 10^{5}$	5. 84		8.79	13. 75	22. 64	33.02	40.76

SAMPLE 10

0	1.00000		1. 06788	1. 14831	(1.25079)	(1.34208)	(1. 39842)
10	. 99930		1. 06671	1.14622	1.2465s	1.33469	1.38809
20	. 99861		1. 06555	1. 14416	1. 24254	$1.3278{ }_{1}$	1.37860
30	. 93793	--	1. 06440	1. 14215	1.23870	1. 3213_{3}	1.36988
40	. 99725		1.06327	1. 14020	1.2350 ${ }_{1}$	1.31525	1.36182
50	. 99658		1. 06217	1.13828	1. 23144	1.30947	1. 3542_{8}
Mean compressibility $\times 10^{5}$	6.84		10.70	17.47	30.94	48. 59	63.12

SAMPLE 11

SAMPLE 12

SAMPLE 13

0	1.00000	1. 02282	1. 05719	1. 11990	119234	1.27975
10	. 99942	1. 02217	1. 05632	1.11854	1.19007	1. 27574
20	. 99884	1. 02152	1. 05548	1. 11720	1.18787	1. 27190
30	. 99827	1. 02088	1. 05463	1. 11588	1.18572	1. 268830
40	. 99770	1. 02018	1.05381	1.11458	1. 18364	1.2617
50	. 99714	1. 01961	1. 05299	1. 11329	1.18160	1. 2614_{1}
Mean compressibility $\times 10^{5}$	5. 72	6. 27	7.94	11.80	18.02	28.66

SAMPLE 14

$\begin{aligned} & 0 \\ & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 80 \end{aligned}$	1.00000 .99942 .99885 .99828 .99773 .99717	1. 02269 1. 02205 1.02141 1. 02077 1. 02015 1.01953	1. 05666 1. 05581 1. 05498 1. 05416 1. 05256	$\begin{aligned} & 1.11849 \\ & 1.11715 \\ & 1.11583 \\ & 1.11453 \\ & 1.11327 \\ & 1.11203 \end{aligned}$	1. 1895_{1} 1. 1873_{2} 1. 1851_{8} 1. 1831_{0} 1. 1810_{8} 1.17903	1. 2746 1. 2708 1. 2671 1. 2637 1. 2570
Mean compressibility $\times 10^{5}$	5. 66	6. 18	7. 76	11.55	17.53	27. 54

Before any measurements had been made at the higher temperatures it was expected that considerable difficulty would be experienced at those temperatures due to dissolved air coming out of solution. In order to avoid this expected difficulty an attempt was made to remove the dissolved air from sample 5 by evacuation. Some of the lighter constituents of the oil were probably removed by this process, so that the properties of the sample were changed to some extent. Sample 6 is the same as sample 5 except that no attempt had been made to remove the dissolved air. As the expected difficulty did not materialize in the case of sample 6 , no effort was made to remove the dissolved air from the other samples.

The data on samples 11,13 , and 14 indicated abnormally large expansion in the range 0° to $75^{\circ} \mathrm{C}$. It was also noticed that these oils became cloudy when cooled to $0^{\circ} \mathrm{C}$., indicating that wax had

Figure 8.-Deviations of expansion curves of samples 11, 13, and 14, from straight lines
begun to freeze out at this temperature. The compressibilities of samples 13 and 14 were also abnormally large at $0^{\circ} \mathrm{C}$., probably due to additional precipitation of wax at the higher pressures. The forms of the expansion curves of these three samples were investigated in the range 0° to $55^{\circ} \mathrm{C}$. by means of a dilatometer which had been made for another investigation. Figure 8 shows the deviations of the observed expansion curves from straight lines through the 0° and 30° points. The volumes at 75° obtained by means of the apparatus shown in Figure 1 are included, showing that the two sets of data are in good agreement. It is seen from this figure that the expansion curves are concave downward at the lower temperatures, whereas such .curves are normally concave upward.

The large expansion of these samples at the lower temperatures is also shown in Figure 9, where the ordinate is a quantity analogous to the mean coefficient of expansion. The curves for samples 11, 13, and 14 bend up more sharply at the lower temperatures than do those for the other samples.

At $300^{\circ} \mathrm{C}$. a gradual increase in the volume of some of the samples was observed. This was probably due to a slight cracking of the oil. In some cases the increase in volume was measured by repeating the observation at $0^{\circ} \mathrm{C}$. after completing the observations at 300° C. For sample 8 the increase in volume was only 0.002 per cent at $0^{\circ} \mathrm{C}$., which is within the limits of accuracy of the measurement. For samples 12 and 13 the increase amounted to 0.014 and 0.010 per cent, respectively. Observations at $0^{\circ} \mathrm{C}$. were not repeated for any of the other samples. For sample 10 the change in volume at $300^{\circ} \mathrm{C}$. during the time required for the observations (about one hour) amounted to about 0.02 per cent. The change for the other samples under the same conditions amounted to about 0.005 per cent.

Figure 9.-Plot of $\frac{V_{t}-V_{o}}{V_{t} t}$ against temperature for samples 5 to 14, inclusive

2. ACCURACY OF THE DATA

As mentioned in Section III of this paper, there is an uncertainty in the data used for the expansion of mercury amounting to 0.01 per cent in the value of V_{t} / V_{0} at $300^{\circ} \mathrm{C}$. In addition, there is an uncertainty at $300^{\circ} \mathrm{C}$. of about 0.015 per cent due to cracking of the oil. The errors involved in calibration, in applying the various corrections, and errors of observation probably amount to about 0.005 per cent at $300^{\circ} \mathrm{C}$. The estimated maximum error is therefore about 0.03 per cent in the value of V_{300} / V_{0} at atmospheric pressure. The errors in the values of V_{t} / V_{0} at the lower temperatures are probably considerably less.

Bridgman's value for the compressibility of mercury $\left(3.8 \times 10^{-6}\right)$, judging by the precision of his observations and the agreement with values obtained by several other observers, is probably accurate within 0.1×10^{-6}. The precision of the observations in the present work, as shown by Figure 7, indicates that the values of mean com-
pressibility are accurate within about 0.6×10^{-6} at the lower temperatures. At $300^{\circ} \mathrm{C}$. the change in volume due to cracking introduces some uncertainty, although the method of making the observations tends to eliminate errors due to this cause.
3. QUANTITIES CALCULATED FROM THERMODYNAMIC RELATIONS

The data obtained are sufficient to permit the calculation of a number of quantities by means of general relations derived from the laws of thermodynamics. For example, the difference of the specific heats is given by

$$
C_{p}-C_{v}=-T \frac{\left(\frac{\partial v}{\partial T}\right)_{p}^{2}}{\left(\frac{\partial v}{\partial p}\right)_{T}}
$$

the change in C_{p} with pressure by

$$
\left(\frac{\partial C_{p}}{\partial p}\right)_{T}=-T\left(\frac{\partial^{2} v}{\partial T^{2}}\right)_{p}
$$

the change in internal energy with volume by

$$
\left(\frac{\partial E}{\partial v}\right)_{T}=-T \frac{\left(\frac{\partial v}{\partial T}\right)_{p}}{\left(\frac{\partial v}{\partial p}\right)_{T}}-p
$$

and the change in heat content with pressure by

$$
\left(\frac{\partial h}{\partial p}\right)_{T}=-T\left(\frac{\partial v}{\partial T}\right)_{p}+v
$$

In order to make use of these relations it is necessary to have the Jalues of the partial derivatives of volume with repsect to temperaure and pressure. The derivatives with respect to temperature for one sample (sample 12) were obtained by means of the following equation expressing V_{t} / V_{0} as a function of temperature at atmospheric pressure:

$$
V_{t} / V_{0}=1+0.69645\left(\frac{t}{1000}\right)+0.2150\left(\frac{t}{1000}\right)^{2}+1.482\left(\frac{t}{1000}\right)^{3}
$$

Talues of V_{t} / V_{0} computed from this equation are compared in Table 0 with the observed values.

Table 10.-Comparison of observed and calculated values of V_{t} / V_{0} at atmospheric pressure for sample 12

Temperature ${ }^{\circ} \mathrm{C}$.	$\begin{gathered} \left(V_{t} / V_{0}\right) \\ \text { calculated } \end{gathered}$	$\begin{gathered} \left(V_{d} / V_{0}\right) \\ \text { observed } \end{gathered}$	(Observed$\underset{\times 10^{5}}{\text { calculated) }}$
0	1.00000	1.00000	
${ }^{75}$	1. 05407		
225	1. 18447	1.1844	$\pm{ }_{-1}$
	1. 26830	1. 26831	+1

$15377^{\circ}-30-3$

The partial derivatives $\left(\frac{\partial v}{\partial T}\right)_{p}$ and $\binom{\partial^{2} v}{\partial T^{2}}_{p}$ were obtained by multiplying the above expression for V_{t} / V_{0} by the specific volume of the oil at $0^{\circ} \mathrm{C}$. (1.0607) and differentiating. The compressibilities at atmospheric pressure were obtained from the mean compressibilities by means of deviation curves similar to those of Figure 7. The compressibility at each temperature was multiplied by the specific volume of the oil at that temperature to obtain the value of the derivative $\left(\frac{\partial v}{\partial p}\right)_{T}$. The values of these derivatives, together with values of $C_{p}, C_{p}-C_{v}$, etc., are given in Table 11. The values of C_{p} were obtained from an equation by Cragoe ${ }^{10}$ for an oil of the same specific gravity as sample 12.

Table 11.-Quantities derived from data on sample 12 at atmospheric pressure

4. CORRELATION OF DATA

Inspection of the data in Table 9 showed that the relation between specific gravity at $60^{\circ} / 60^{\circ} \mathrm{F}$. and thermal expansion over a moderate temperature range (0° to 50° C.) found by Bearce and Peffer ${ }^{11}$ did not satisfactorily represent the data over the larger temperature range (0° to $300^{\circ} \mathrm{C}$.). For example, samples 9 and 14 are of approximately the same specific gravity (0.88), but the values of V_{300} / V_{0} at atmospheric pressure for these samples are 1.33 and 1.27 , respectively. The fact that the compressibilities of these samples at $300^{\circ} \mathrm{C}$. are 40.8×10^{-5} and 27.5×10^{-5} per $\mathrm{kg} / \mathrm{cm}^{5}$, respectively, indicates that there is no close relation between compressibility and specific gravity, at least at the higher temperatures.

The data indicated, however, that both thermal expansion and compressibility were more closely related to the viscosity of the oils. When values of V_{t} / V_{0} are plotted as ordinate against kinematic viscosity on a linear scale as abcissa, the lines for a given temperature

[^3]curve upward markedly in the region of low viscosity. The curvature was much reduced when the values were plotted against a linear scale of $1 / \sqrt{\log (1,000 \mu / \rho)^{12}}$ as abcissa, where μ / ρ is kinematic viscosity at $100^{\circ} \mathrm{F}$. in cgs units.

It was found that the observed values all lay on a smooth curve within about 1 per cent. The directions of the deviations indicated that the agreement would be improved by using $1 / d \sqrt{\log (1,000 \mu / \rho)}$ as the independent variable (d is specific gravity at $60^{\circ} \mathrm{F}$. referred to water at the same temperature). Figure 10 shows the curves obtained in this way for the temperatures $75^{\circ}, 150^{\circ}, 225^{\circ}$, and $300^{\circ} \mathrm{C}$. The values of V_{t} / V_{0} for samples 13 and 14, as plotted in Figure 10, have

Figure 10.-Correlation of expansion data
been lowered by 0.2 per cent from the observed values in order to eliminate the effect of the abnormally large expansion in the vicinity of $0^{\circ} \mathrm{C}$. As might be expected, the deviations of the observed points from the curves are larger at the higher temperatures. The maximum deviation is 0.4 per cent of the value of V_{t} / V_{0} at $300^{\circ} \mathrm{C}$.

Figure 11 shows curves of mean compressibility at the various temperatures plotted against the same independent variable. The maximum deviation of an observed point from the curve to which it belongs is 2×10^{-5} per $\mathrm{kg} / \mathrm{cm}^{2}$, corresponding to a difference of 0.1 per ent in the volume at $50 \mathrm{~kg} / \mathrm{cm}^{2}$.

Data obtained from the curves of Figures 10 and 11 are shown in Figures 12 and 13 , respectively, plotted against $1 / \sqrt{\log (1,000 \mu / \rho)}$. The curves in these figures are curves of constant specific gravity and emperature.

[^4]

Figure 11.--Correlation of compressibility data

Figure 12.-Curves showing relation between expansion and kinematic viscosity for oils of various specific gravities

Tables of the relative volumes of oils at various temperatures and at two pressures are given in the Appendix to this paper. These tables were obtained from the data of Figures 12 and 13 by plotting values of volume against temperature, and drawing curves through the points. Two curves were drawn for each oil, one for atmospheric pressure and one for $50 \mathrm{~kg} / \mathrm{cm}^{2}$. The curves were drawn by means of a spline and were extrapolated to $400^{\circ} \mathrm{C}$. Values of volumes at temperatures above $300^{\circ} \mathrm{C}$. are given in parentheses in the tables, in order to emphasize that these values represent extrapolation beyond the range covered by the experiments.

Figure 13.-Curves showing relation between compressibility and linematic viscosity for oils of various specific gravities

As mentioned in Section IV, the vapor pressures of some of the lighter oils are higher than atmospheric pressure at the higher temperatures. The values of relative volumes at atmospheric pressure given in the Appendix may represent fictitious values at the higher temperatures if the vapor pressure is greater than atmospheric pressure. They are, however, the values which would be obtained by extrapolating the pressure-volume curves to atmospheric pressure, and are given for convenience in interpolating.

V. COMPARISON WITH PREVIOUS WORK

Measurements of thermal expansion of oils from various sources have been made by Bearce and Peffer. ${ }^{13}$ Measurements of thermal expansion of a number of California oils were made by Zeitfuchs. ${ }^{14}$

[^5]Fortsch and Wilson ${ }^{15}$ give expansion data on a number of oils, but give no information as to methods of measurement.

Direct comparison of the present measurements with those of Bearce and Peffer and those of Zeitfuchs is not possible, as these observers do not give the viscosities of their samples. It can be shown, however, that their measurements are at least not inconsistent with those described in this paper. The results of Bearce and Peffer have been embodied in Bureau of Standards Circular No. 154. Expansion data from this circular are compared in Table 12 with similar data taken from the tables in the Appendix to this paper. It is seen that for an oil of a given specific gravity the values

Figure 14.-Comparison of data of present work with those of Zeitfuchs
of V_{t} / V_{80} from Circular No. 154 usually lie between the highest and lowest values from the present work.

In Figure 14 the results of Zeitfuchs, represented by circles, are compared with data from the present work, represented by the curves. Each curve is for an oil of the same specific gravity as the corresponding oil reported by Zeitfuchs and of a viscosity so chosen as to make the agreement with his data as good as possible. The high values obtained by Zeitfuchs at $410^{\circ} \mathrm{C}$. are probably due to cracking of the oil and the consequent formation of gas bubbles. Table 13 gives Zeitfuchs' values for the specific gravities of the various oils together with values of kinematic viscosity inferred from the expansion data. These values of kinematic viscosity, excepting those for the two samples of mineral seal distillate, are in fair agreement

[^6]with a curve of viscosity versus density for California oils based on the work of Lane and Dean. ${ }^{16}$

Table 12.-Values of V_{t} / V_{60} from B. S. Circular No. 154 compared with present work

	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.														
	0.80			0.85			0.90			0.95			1.00		
	Kinematic viscosity at $100^{\circ} \mathrm{F}$. (cgs units)														
	C. 154	0.016	0.028	C. 154	0.028	0.200	C. 154	0.049	5.000	C. 154	0.200	5.000	C. 154	$\left\|{ }^{1} 0.042\right\| 11.100$	
		Present work													
20.	0.980	0.981	0.981	0.982	0.981	0. 983	0.984	0.983	0.985	0.985	0.984	0.985	0.985	0.985	0.985
	-990	1.990	1.990	- 9901	1. 991	. 990	. 992	. 991	. 992	. 992	. 992	. 993	. 993	. 993	. 993
	1.010	1.010	1.010	1. 009	1.009	1.009	1. 1.008	1.000 1.009	1.000 1.008	1. 1.000	1.000 1.008	1.000 1.008	1.000	1.000	1. 000
	1. 021	1.021	1.020	1. 018	1.019	1.017	1. 017	1.018	1. 016	1. 015	1.016	1.015	1. 015	1.016	1. 1.007
120	1. 031	1. 031	1. 030	1. 027	1. 029	1. 026	1. 025	1. 027	1. 023	1. 023	1. 025	1.023	1. 022	1. 024	1. 020
140	1. 042	1.042	1. 040	1. 037	1. 039	1. 035	1. 033	1. C36	1. 031	1. 031	1. 033	1. 030	1. 029	1. 031	1. 027
160				1.046	1.048	1. 044	1. 042	1. 045	1. 039	1. 039	1. 042	1.038	1. 037	1. 040	1. 034
180				1. 056	1. 059	1. 053	1. 051	1. 055	1. 047	1. 047	1. 050	1. 046	1. 044	1. 048	1. 041

${ }^{1}$ Kinematic viscosity at $210^{\circ} \mathrm{F}$.
Table 13.-Description of samples used by Zeitfuchs

Curre	Material	Specific gravity $60^{\circ} / 60^{\circ} \mathrm{F}$. (Zeitiuchs)	$\begin{aligned} & \mu / \rho \text { at } 100^{\circ} \mathrm{F} . \\ & \text { from expan- } \\ & \text { sion data } \end{aligned}$
1	Engine distillate	0.7991	0.007
3	Crude naphtha---------	${ }^{.} 7886$	
4	18^{18} tar----------	. 9485	1.0
5	Lubricating oil--------	. 9321	1.8
6	Mineral seal distillate_-	. 8564	. 086
8	Water white distillate.-.--	. 884936	
9	Kerosene..	. 8842	. 020
10	Light lubricating distillate.	. 9021	. 12
11	Gas oil.	. 8885	. 05
12	Light lubricating distillate	. 9005	10
13 14	Asphalt.	1. 017	$10,080.0$

${ }^{1}$ The comparison curve for this material is the expansion curve of sample 1, a cracked gasoline ($d=0.668$) from California crude.

The results of Fortsch and Wilson are compared with data from the present work in Figure 15. These observers give both the specific gravities and the viscosities of their samples, which are described in Table 14. Each comparison curve in Figure 15 is for an oil of the same viscosity and specific gravity as the corresponding sample of Fortsch and Wilson. For some of the oils the agreement is very good, while for others it is poor. The difference between the observed

[^7]points and the curves amounts in some cases to as much as 2 per cent of the value of V_{t} / V_{60}. As no experimental details are given it is not possible to say whether the differences are due to experimental error or to the fact that the method of correlation used in this paper may not be applicable to all classes of oils.

Measurements of the compressibilities at $40^{\circ} \mathrm{C}$. of water and four mineral oils have been made by Hyde ${ }^{17}$. The pressure range covered

Figure 15.-Comparison of data of present work with those of Fortsch and Wilson
was from 0 to about $1,500 \mathrm{~kg} / \mathrm{cm}^{2}$. Values of compressibility between 0 and $50 \mathrm{~kg} / \mathrm{cm}^{2}$ were obtained from his data by means of values of mean compressibility, and deviation curves similar to those of Figure 7. These values are compared in Table 15 with values doduced from the correlation given in this paper. It is seen that Hyde's values for the oils are all lower than those deduced from the present work, although his value for water is slightly higher. The maximum difference is 1.0×10^{-5} per $\mathrm{kg} / \mathrm{cm}^{2}$, corresponding to 0.05 per cent of the volume of the oil at $50 \mathrm{~kg} / \mathrm{cm}^{2}$.

[^8]Table 14.-Description of samples used by Fortsch and Wilson

Curve	Material	$\begin{gathered} \text { Specific } \\ \text { gravity, } \\ 60^{\circ} / 60^{\circ} \mathrm{F} . \end{gathered}$	μ / ρ at $100^{\circ} \mathrm{F}$.
	Kerosene.		cgs units 0.0184
2	Mineral seal	0.8234 .848	0.0184 .056
3	Mid-Continent crude	. 849	. 059
4	Pressed distillate.-	. 876	. 091
5	Light paraffin oil.	. 8837	. 155
6	White oil	. 8604	. 234
8		. 892	. 301
8	Distillate from Louisana heavy crude	. 918	. 363
9	Light motor oil.------------	. 8985	. 481
10	Red oil	. 909	1. 067
11	Road oil	1. 050	3.88
12	North Louisiana heavy crude	. 943	${ }^{255}$ (${ }^{2.58}$
13	Heavy motor oil.--	. 914	$.255 \text { (at } 210^{\circ} \mathrm{F} . \text {) }$
14		. 91970	$\begin{gathered} 338\left(\text { at } 210^{\circ} \mathrm{F} .\right) \\ 59.0 \end{gathered}$
15	14.5 gravity mid-Continent residuum	. 970	59.0

Table 15.-Comparison of Hyde's values of compressibility at $40^{\circ} \mathrm{C}$. with values deduced from the present work

Material	$\begin{aligned} & \text { Specific } \\ & \text { gravity, } \\ & 60^{\circ} / 60^{\circ} \mathrm{F} . \end{aligned}$	$\begin{aligned} & (\mu / \rho) \text { at } \\ & 100^{\circ} \mathrm{F} . \end{aligned}$	Compressibility $\times 10^{5}$	
			Hyde	Present work
FFF Cylinder	0.893	cgs units 4.2	5.0	5.9
Mobiloil A	. 910	. 60	5. 2	6. 2
Mobiloil BB.	. 914	1.8	5.2	5.9
Bayonne---	. 907	. 60	5. 2	6.2
Victory rod.-	. 944	2.2	5. 0	5. 6
Water.-.--			4.5	4.2

VI. CONCLUSION

It has been shown that the data on thermal expansion and compressibility of four gas oils and six lubricating oils can be correlated with specific gravity and viscosity. These oils were obtained from crudes from a number of different sources, and appear to be fairly representative of these two classes of oils. It seems reasonably safe to conclude that the correlation is applicable to all mineral oils of these classes; that is, to oils whose constituents have a relatively narrow range of volatilities. As no data were obtained on crudes or other oils whose constituents have a wide range of volatilities, it is not possible to say whether or not the correlation is applicable to such oils.

In conclusion, the author acknowledges with thanks the advice and assistance of C. S. Cragoe and H. C. Dickinson, under whose supervision this work was done.
VII. APPENDIX. TABLES OF RELATIVE VOLUMES OF OILS
I. Centigrade table for oils of moderate viscosity

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

I. Ceniigrade table for oils of moderate viscosity-Continued

Temperature ${ }^{\circ} \mathrm{C}$.	Kinematic viscosity at $100^{\circ} \mathrm{F}$., cgs units					
	0.028					
	Saybolt universal viscosity at $100^{\circ} \mathrm{F}$.					
	36 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.8		0.85		0.50	
	${ }^{\circ}$ A. P. I.					
	45.4		35.0		25.7	
	Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$					
	0	50	0	50	0	50
	1.000	0.997	1.000	0.997	1.000	0. 997
10.	1.008	1.005	1.008	1. 004	1.008	1. 005
20.	1.017	1.013	1.017	1. 013	1.016	1. 013
30	1.026	1.022	1.025	1.021	1.025	1.021
40.	1.035	1.031	1. 034	1. 030	1. 033	1.029
50	1.045	1.039	1.043	1.038	1.042	1.037
60.	1.054	1.048	1.052	1.047	1.051	1. 0446
80.	1.063 1.073	1.057	1.070	1.065	1. 069	
90	$\begin{aligned} & 1.083 \\ & 1.093 \end{aligned}$	1.0761.086	$\begin{aligned} & 1.080 \\ & 1.090 \\ & 1.090 \end{aligned}$	1. 074	1. 078	$\begin{aligned} & \text { 1. } 063 \\ & 1.072 \end{aligned}$
100				1.081	1.088	$\begin{aligned} & 1.072 \\ & 1.082 \end{aligned}$
120.	1.114	1. 106	1.110	1. 103	1.107	1.1001.120
140	1.137	1.127	1.132	1.123	1.128	
160	1.1611.1861.2	1.150	1.155	1.145	1.150	1.1411.162
180		1.198	1. 205	1.191	1.197	
200	1.1214					1. 185
220	1. 244	1. 225	1. 233	1. 216	1. 224	1. 1.234
240	1.276	1.254 1.284	1.263	1. 243	1. 252	
260	1. 313		1.297	1.272	1. 283	1.2621.291
280	$\begin{aligned} & 1.354 \\ & 1.399 \end{aligned}$	$\begin{aligned} & 1.318 \\ & 1.355 \end{aligned}$	$\begin{aligned} & 1.334 \\ & 1.376 \end{aligned}$	1. 338	1.3561.35	
300						1.323
320	$\begin{aligned} & (1.45) \\ & (1.51) \\ & (1.58) \\ & (1.66) \\ & (1.74) \end{aligned}$	$\begin{aligned} & (1.39) \\ & (1.44) \\ & (1.49) \\ & (1.54) \\ & (1.60) \end{aligned}$	$\begin{aligned} & (1.42) \\ & (1.47) \\ & (1.54) \\ & (1.60) \\ & (1.68) \end{aligned}$	$\begin{aligned} & (1.37) \\ & (1.41) \\ & (1.46) \\ & (1.50) \\ & (1.56) \end{aligned}$	$\begin{aligned} & (1.40) \\ & (1.45) \\ & (1.50) \\ & (1.57) \\ & (1.64) \end{aligned}$	$\begin{aligned} & (1.36) \\ & (1.40) \\ & (1.44) \\ & (1.48) \\ & (1.52) \end{aligned}$
340						
360						
380 400						

I. Centigrade table for oils of moderate viscosity-Continued

Temperature ${ }^{\circ} \mathrm{C}$.	Kinematic viscosity at $100^{\circ} \mathrm{F}$., cgs units					
	0.050					
	Saybolt universal viscosity at $100^{\circ} \mathrm{F}$.					
	4.2 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.8		0.35		0.90	
	${ }^{\circ}$ A. P. I.					
	45.4		35.0		25.7	
	Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$					
	0	50	0	50	0	50
0	1.000	0.997	1.000	0.997	1.000	0. 997
	1.008	1.005	1.008	1. 005	1.008	1. 005 1. 012
30.	1.017 1.025	1.013	1. 024	1. 021	1.024	1. 020
40.	1. 0341. 043	1. 030	1. 033	1. 029	1. 032	1. 028
50.		1. 038	1. 041	1. 037	1. 040	1. 030
$¢ 0$	1.052	1. 047	1.050	1. 046	1.0491.057	1.0441.053
70	1. 051	1. 055	1. 059	1. 054		
80	1. 070	1. 054	1. 068	1. 063	1. 066 1.075 1	$\begin{aligned} & 1.061 \\ & 1.070 \end{aligned}$
100	$\begin{aligned} & 1.080 \\ & 1.089 \end{aligned}$	1. 074	1. 077	1. 072	1. 1.075 1.084	1. 070 1. 078
$\begin{aligned} & 120 \\ & 140 \\ & 110 \\ & 180 \\ & 200 \end{aligned}$	$\begin{aligned} & 1.110 \\ & 1.131 \\ & 1.153 \\ & 1.177 \\ & 1.202 \end{aligned}$	1. 102	1. 106	1. 099	1. 103	1. 096 1. 115 1. 135 1. 155 1. 176
		1.123	1.127	1.119	1. 123	
		1.143	1.148	1. 139	1. 144	
		1.165	1.171	1.160	1. 165	
		1. 189	1. 194	1. 182	1. 188	
$\begin{aligned} & 220 \\ & 240 \\ & 200 \\ & 230 \\ & 300 \end{aligned}$	$\begin{aligned} & 1.230 \\ & 1.250 \\ & 1.293 \\ & 1.329 \\ & 1.369 \end{aligned}$	$\begin{aligned} & 1.214 \\ & 1.240 \\ & 1.2 c 9 \\ & 1.300 \\ & 1.333 \end{aligned}$	$\begin{aligned} & 1.220 \\ & 1.248 \\ & 1.278 \\ & 1.311 \\ & 1.349 \end{aligned}$	$\begin{aligned} & 1.203 \\ & 1.231 \\ & 1.258 \\ & 1.287 \\ & 1.318 \end{aligned}$	$\begin{aligned} & 1.212 \\ & 1.238 \\ & 1.266 \\ & 1.297 \\ & 1.331 \end{aligned}$	$\begin{aligned} & 1.199 \\ & 1.222 \\ & 1.248 \\ & 1.275 \\ & 1.304 \end{aligned}$
$\begin{aligned} & 320 \\ & 340 \\ & 300 \\ & 350 \\ & 400 \end{aligned}$	$\begin{aligned} & (1.42) \\ & (1.47) \\ & (1.54) \\ & (1.62) \\ & (1.71) \end{aligned}$	$\begin{aligned} & (1.37) \\ & (1.41) \\ & (1.46) \\ & (1.53) \\ & (1.56) \end{aligned}$	$\begin{aligned} & (1.39) \\ & (1.44) \\ & (1.49) \\ & (1.56) \\ & (1.63) \end{aligned}$	$\begin{aligned} & (1.35) \\ & (1.39) \\ & (1.43) \\ & (1.47) \\ & (1.51) \end{aligned}$	$\begin{aligned} & (1.37) \\ & (1.41) \\ & (1.45) \\ & (1.50) \\ & (1.56) \end{aligned}$	$\begin{aligned} & (1.34) \\ & (1.37) \\ & (1.41) \\ & (1.44) \\ & (1.48) \end{aligned}$

I. Centigrade table for oils of moderate viscosity-Continued

Temperature ${ }^{\circ} \mathrm{C}$.	Kinematic viscosity at $100^{\circ} \mathrm{F}$., ces units					
	0.100					
	Saybolt universal viscosity at $100^{\circ} \mathrm{F}$.					
	60 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.8		0.90		0.95	
	${ }^{\circ} \mathrm{A} . \mathrm{P} . \mathrm{I}$.					
	35.0		25.7		17.5	
	Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$					
	0	50	0	50	0	50
	1.000	0.997	1. 000	0.997	1. 000	0. 997
10	1. 008	1. 005				
30	$\begin{aligned} & 1.024 \\ & 1.032 \end{aligned}$	$\begin{aligned} & \text { 1. } 020 \\ & \text { 1. } 028 \end{aligned}$	$\begin{aligned} & \text { 1. } 023 \\ & \text { 1. } 031 \end{aligned}$	1. 1.020	1. 1.0231.031	1. 1.012
40						1.0271.034
50	1. 040	1. 036	1. 039	1. 035	1. 038	
60	1.048	1. 044	1.047	1. 043	1. 016	1. 042
70	1. 057	1. 052	1.055	1. 051	1. 054	
80	1. 066	1. 060	1. 064	1. 059	1. 062	$\begin{aligned} & 1.058 \\ & 1.066 \end{aligned}$
90	1. 074 1. 083	1.0691.078	1. 1.081	1. 057	1. 071	
100					1. 079	$\begin{aligned} & 1.066 \\ & 1.074 \end{aligned}$
120--	1. 102	1.096	1. 059	1.093	1. 097	1. 1.109
140	1.121	1. 114	1. 118	1.111	1. 115	
160	1. 142	1. 133	1. 137		1. 134	1. 126
180	1. 11631.185	1. 153	11581.179	1.1491.169	1. 153	1. 1145
200		1. 174				
220-.--	1. 209	1. 196	1. 202	1. 190	1. 195	1. 184
240---	1.234$1.2 ¢ 2$1	1. 219	1. 2252	1. 212	1. 218	
$2 ¢ 0$		1. 244		1. 236	1.243	1. 227
250	1. 292		1. 280	1. 261	1. 2299	1.251
300-.----	1. 325	1. 299	1. 309			
320	$\begin{aligned} & (1.36) \\ & (1.40) \\ & (1.44) \\ & (1.49) \\ & (1.54) \end{aligned}$	$\begin{aligned} & (1.33) \\ & (1.36) \\ & (1.40) \\ & (1.43) \\ & (1.47) \end{aligned}$	$\begin{aligned} & (1.34) \\ & (1.38) \\ & (1.41) \\ & (1.45) \\ & (1.49) \end{aligned}$	$\begin{aligned} & (1.31) \\ & (1.34) \\ & (1.37) \\ & (1.41) \\ & (1.44) \end{aligned}$	$\begin{aligned} & (1.33) \\ & (1.36) \\ & (1.39) \\ & (1.43) \\ & (1.47) \end{aligned}$	$\begin{aligned} & (1.30) \\ & (1.33) \\ & (1.36) \\ & (1.39) \\ & (1.43) \end{aligned}$
310						
400						

I. Centigrade table for oils of moderate viscosity-Continued

Temperature ${ }^{\circ} \mathrm{C}$.	Kinematic viscosity at $100^{\circ} \mathrm{F}$., cgs units					
	0.200					
	Saybolt universal viscosity at $100^{\circ} \mathrm{F}$.					
	98 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
			0.90		0.95	
	${ }^{\circ}$ A. P. I.					
	35.0		25.7		17.5	
	Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$					
	0	50	0	50	0	50
	1.000	0.997	1. 000	0.997	1. 000	0.997
10.	1. 007	1. 005	1. 007	1. 005	1. 007	1. 005
20	1.015	1. 012	1. 015	1. 012	1. 015	1. 012
30	1. 023	1. 020	1. 022	1. 019	1. 022	1. 019
40	1. 031	1. 027	1. 030	1. 027	1. 029	1. 026
50	1. 039	1. 035	1. 038	1. 034	1. 037	1. 034
60.	1,047	1,043	1. 046	1. 042	1. 045	1. 041
70	1. 055	1. 051	1. 054	1. 050	1. 053	1. 049
80	1. 063	1. 059	1.062	1. 057	1.060	1. 056
90	1.081	1.067	1.070	1.065	1.069	1. 064
100.		1. 075	1.078	1.073	1.077	1. 072
120	1.093	1.093	1.095	1. 090	1. 094	1.088
140	1.117	1.110	1.113	1. 107	1.111	1. 105
180	1. 136	1.129	1. 131	1.125	1. 129	1.122
180	1.177	1. 148	1. 151	1. 143	1. 148	1. 158
200.			1. 171	1. 162	1. 167	
220	1. 200	1. 188	1. 193	1. 183	1. 188	1. 177
240	1. 224	1. 210	1. 216	1. 203	1. 209	1. 197
260	1. 249	1. 233	1. 240	1. 225	1. 232	1. 219
280	1. 306	1. 284	1. 293	1. 273	1. 282	1. 264
300.						
320.	(1.34)	(1.31)	(1.32)	(1.30)	(1.31)	(1.29)
340 300	(1.37)	(1.34)	(1.35)	(1.33)	(1.34)	(1.31)
${ }_{3}^{3} 50$.	(1.41)	(1.37)	(1.39)	(1.36)	(1.37)	(1.34)
$400 \ldots$	(1.49)	(1.44)	(1.46)	(1.42)	(1.44)	(1.40)

I. Centigrade table for oils of moderate viscosity-Continued

Temperature ${ }^{\circ} \mathrm{C}$.	Kinematic viscosity at $100^{\circ} \mathrm{F}$., cgs units					
	0.500					
	Saybolt universal viscosity at $100^{\circ} \mathrm{F}$.					
	229 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.85		0.90		0.95	
	${ }^{\circ}$ A. P. I.					
	35.0		25.7		17.5	
	Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$					
	0	50	0	50	0	50
	1. 000	0.997	1.000	0.997	1.000	0.998
10.	1.0071.015	1. 005	1. 007	1. 004	1. 007	1. 1.005
20.		1.012	1.014	1. 012	1. 014	
30	1. 022	1.019				1.019
50	1.030 1.038	1. 027	1.037	1.033	1. 029	1.026 1.033
60.	1.046	1.042	1.044	1.040	1. 043	1.0401.047
70	1. 053	1. 057	1. 060	1. 1.055	1. 1.058	
80	1. 061					1. 055
90	1.0701.078	1. 1.065	1. 1.068	1. 063	1.066	1.0621.070
100				1. 071	1. 074	
120	1.095	1. 089		1.087	1.090	1.0851.101
140	1.113	1. 1061.124		1.1031.120	1.124	
160	1. 131		$\begin{aligned} & 1.110 \\ & 1.127 \end{aligned}$			1.1181.135
180	1. 150 1. 170	1. 142	1.146 1.165	1. 138	1. 142	
220	1. 191	1. 180	1. 185	1. 175	1. 181	1.1711.190
240	1. 213	1. 201	1. 206	1. 195		
260	1. 237	1. 223	1. 229	1. 215	1. 222	1.2091.2301.252
280	$\begin{aligned} & 1.262 \\ & 1.289 \end{aligned}$	1. 2451.269	1. 252	1. 237		
300.					$\begin{aligned} & \text { 1. } 245 \\ & \text { 1. } 269 \end{aligned}$	1. 252
320	(1.32)	(1. 29)	(1.30)	$(1.28)$$(1.31)$	(1.29)	(1.27)
340	(1.35)					(1.30)
360		(1.35)	(1.36)	(1.33)	(1.34) (1.37)	$(1.32)$$(1.34)$$(1.37)$
380	$(1.41)$$(1.45)$	$\begin{aligned} & (1.38) \\ & (141) \end{aligned}$				
400---			(1.43)	(1.38)	(1.40)	

I. Centigrade table for oils of moderate viscosity-Continued

Temperature ${ }^{\circ} \mathrm{C}$.	Kinematic viscosity at $100^{\circ} \mathrm{F}$., cgs units					
	1.000					
	Saybolt universal viscosity at $100^{\circ} \mathrm{F}$.					
	445 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.8		0.90		0.95	
	${ }^{\circ}$ A. P. I.					
	35.0		25.7		17.5	
	Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$					
	0	50	0	50	0	50
0	1.000	0.997	1.000	0.998	1.000	0.998
10.	1. 007	1.005	1. 007	1.004	1.007	1.004
20	1.015	1. 1.012	1. 014	1. 011	1.014	
40	1. 022		1. 021	1.018	1.021	1.018
50	1.029 1.037	1.026 1.034	.1. 029	1.025	1. 028	1.025 1.032
60.	1.045	1.041	1. 044	1.040	1.043	$\begin{aligned} & 1.039 \\ & 1.046 \\ & 1.054 \\ & 1.061 \\ & 1.068 \end{aligned}$
70	1. 052	1. 018	1.051	1.047	1.050	
80	1. 030	1.056	1.059	1.055	1.058	
¢0	1. 068	1. 064	1. 066	1. 062	1.065	
100	1. 076	1.071	1. 074	1.070	1. 073	
120	1.093	1.087	1. 090	1.085	1. 088	$\begin{aligned} & 1.083 \\ & 1.099 \\ & 1.115 \\ & 1.131 \\ & 1.149 \end{aligned}$
110	1. 110	1. 104	1. 107	1. 101		
160	1.128	1. 121	1.124	1.118	1. 121	
180	1.146	1. 138	1. 142	1. 135	1. 139	
200	1. 165	1.157	1.161	1.152	1. 157	
220	1. 186	1. 176	1. 180	1.171	1.1761.195	$\begin{aligned} & 1.166 \\ & 1.185 \\ & 1.204 \\ & \text { 1. } 226 \end{aligned}$
${ }_{260}^{240}$	1. 207	1. 195				
280	1. 230	1. 216	1.222	1. 210	1.216	
300	1.254 1.279	1. 238	1. 245	1. 230	1. 238	
320	$\begin{aligned} & (1.30) \\ & (1.33) \\ & (1.37) \\ & (1.40) \\ & (1.43) \end{aligned}$		$\begin{aligned} & (1.29) \\ & (1.32) \\ & (1.35) \\ & (1.38) \\ & (1.41) \end{aligned}$		$\begin{aligned} & (1.28) \\ & (1.31) \\ & (1.33) \\ & (1.36) \\ & (1.39) \end{aligned}$	$\begin{aligned} & (1.27) \\ & (1.29) \\ & (1.31) \\ & (1.33) \\ & (1.36) \end{aligned}$
310.		$(1.28)$$(1.31)$$(1.33)$$(1.36)$$(1.39)$		$\begin{aligned} & (1.27) \\ & (1.30) \\ & (1.32) \\ & (1.34) \\ & (1.37) \end{aligned}$		
360						
350						
403.						

I. Centigrade table for oils of moderate viscosity-Continued

Temperature ${ }^{\circ} \mathrm{C}$.	Kinematic viscosity at $100^{\circ} \mathrm{F}$., egs units					
	2.000					
	Saybolt universal viscosity at $100^{\circ} \mathrm{F}$.					
	910 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.8		0.90		0.95	
	${ }^{\circ}$ A. P.I.					
	35.0		25.7		17.5	
	Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$					
	0	50	0	50	0	50
0	1.000	0.998	1.000	0.998	1.000	0.998
10.	1.0071.014	1.004	1.007	1.005	1.007	1.0041.011
20.		1.011	1.014	1.018	1.014	
30	1.0211.029	1.018	1.021		1. 021	1.0181.025
40		1.033	1. 036	1.025	1.028	
50.	1. 036			1. 033	1.035	1.032
60.	1.044	1.040	1.043	1.040	1.042	1.0391.046
70	1. 051	1. 047	1. 051	1.047	1.049	
80	1. 059	1. 055	1. 058	1.054	1.056	1. 053
100	1. 067	1.062	1. 066	1.061	1. 064	1. 060
20	1.091	1.085	1.089	1.084	1.087	1.0821.097
140	1.125	1. 102	1. 105	$\begin{aligned} & 1.099 \\ & 1.115 \end{aligned}$	1.1021.119	
60		1.118				1.112
80	1.1431.162	1.1351.153	1.1391.157	1.132	1. 136	
200				1.149	1.153	1.129 1.145
22	$\begin{aligned} & 1.181 \\ & 1.202 \\ & 1.223 \\ & 1.246 \\ & 1.270 \end{aligned}$	1.171	1.176	1.167	1.1721.191	1.1631.180
240		1.210	1. 217	1.185		
260				1. 205	1. 211	1.1991.218
280		1. 231	1. 239	1.225	1. 232	
300		1.253	1. 261	1. 24.5	1. 254	1. 239
320	$\begin{aligned} & (1.30) \\ & (1.32) \\ & (1.35) \\ & (1.38) \\ & (1.41) \end{aligned}$	$\begin{aligned} & (1.28) \\ & (1.300 \\ & (1.32) \\ & (1.35) \\ & (1.37) \end{aligned}$	$\begin{aligned} & (1.29) \\ & (1.31) \\ & (1.34) \\ & (1.36) \\ & (1.39) \end{aligned}$	(1.27)$(1.29)$$(1.31)$$(1.34)$$(1.36)$	$\begin{aligned} & (1.28) \\ & (1.30) \\ & (1.32) \\ & (1.35) \\ & (1.37) \end{aligned}$	$\begin{aligned} & (1.26) \\ & (1.23) \\ & (1.30) \\ & (1.32) \\ & (1.35) \end{aligned}$
340						
360						
380						
400						

I. Centigrade table for oils of moderate viscosity-Continued

Temperature ${ }^{\circ} \mathrm{C}$.	Kinematic viscosity at $100^{\circ} \mathrm{F}$., cgs units					
	5.000					
	Saybolt universal viscosity at $100^{\circ} \mathrm{F}$.					
	2,270 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.8		0.90		0.95	
	${ }^{\circ} \mathrm{A}$. P. I.					
	35.0		25.7		17.5	
	Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$					
	0	50	0	50	0	50
0..---------------------------	1.000	0.998	1.000	0.988	1.000	0.998
10.	1.0071.014	1.004	1.007	1. 004	1.007	1.0041.011
20.		1.011	1. 014	1.011	1.013	
30.	1.0211.028	1. 018	1.021	1.018	1. 020	1. 018
40		1.0251.032	1.0281.035	1.0251.032	1. 027	1. 024
50	$\begin{aligned} & 1.028 \\ & 1.035 \end{aligned}$				1.034	1.031
60.	1.043	1.039	1.042	1.039	1.041	1.0381.045
70.	1.050	1.046	1. 049	1.046	1.048	
80	1.058	1. 054	1.056	1.053	1.055	1.051
90	$\begin{aligned} & 1.065 \\ & 1.073 \end{aligned}$	1. 1.0611.068	$\begin{aligned} & 1.064 \\ & 1.071 \\ & 1.071 \end{aligned}$	1.0601.087	1. 062	
100					1. 069	$\begin{aligned} & 1.058 \\ & 1.065 \end{aligned}$
120	1.089	1.084	1.086	1.082	1.084	1.0801.094
140	1.122	1. 099	1. 162	1.097		
160		1.115	1.119	1.112	1. 115	1.1091.125
180	1.1391.157	1.1321.149	$\begin{aligned} & 1.136 \\ & 1.153 \end{aligned}$	1.1281.145	1.131	
200.						1. 141
$220-$	1.176	1.167	1.172	1. 163	1. 166	1.1581.175
240	1. 217	1. 1851. 204	1. 1911	1.1811.199	1. 184	
260					1. 203	$\begin{aligned} & 1.192 \\ & 1.210 \end{aligned}$
300	1. 2261	1.224 1.245	1.232 1.254	$\begin{aligned} & 1.218 \\ & 1.238 \end{aligned}$	1. 223	
320.	$\begin{aligned} & (1.29) \\ & (1.23) \\ & (1.34) \\ & (1.36) \\ & (1.39) \end{aligned}$	$(1.27)$$(1.29)$$(1.31)$$(1.33)$$(1.36)$	$\begin{aligned} & (1.28) \\ & (1.30) \\ & (1.32) \\ & (1.35) \\ & (1.38) \end{aligned}$	$\begin{aligned} & (1.26) \\ & (1.28) \\ & (1.30) \\ & (1.32) \\ & (1.35) \end{aligned}$	$\begin{aligned} & (1.26) \\ & (1.29) \\ & (1.31) \\ & (1.33) \\ & (1.36) \end{aligned}$	$\begin{aligned} & (1.25) \\ & (1.27) \\ & (1.29) \\ & (1.31) \\ & (1.33) \end{aligned}$
340						
360						
400.-.-						

II. Centigrade table for oils of high viscosity

II. Centigrade table for oils of high viscosity-Continued

Temperature ${ }^{\circ} \mathrm{C}$.	Kinematic viscosity at $210^{\circ} \mathrm{F}$., cgs units					
	0.100					
	Saybolt universal viscosity at $210^{\circ} \mathrm{F}$.					
	60 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.2		0.95		1.00	
	${ }^{\circ}$ A. P.I.					
	25.		17.5		10.0	
	Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$					
	0	50	0	50	0	50
0.	1. 000	0.998	1.000	0.998	1.000	0.998
10.	1. 007	1.004	1. 007	1. 004	1. 007	1. 004 1. 01
20.	$\begin{aligned} & 1.014 \\ & 1.021 \end{aligned}$	1. 011	1. 014	1. 011	1. 014	
30.		1. 018	1. 021	1.018	1.020	1. 0171.024
40	$\begin{aligned} & 1.021 \\ & 1.029 \end{aligned}$	1. 025	1. 028	1. 025	1. 027	
50	1. 036	1. 032	1.035	1. 032		1. 1.024
60.	1. 043	1. 039	1.042	1.038	1.041	1. 037
70.	1. 051	1. 047	1. 049	1.046	1. 048	1. 044
80	1. 058	1. 054	1. 057	1.053	1. 055	1.051
90	1. 066	1. 062	1. 064	1. 060	1. 063	1. 059
100	1.074	1. 070	1. 071	1. 067	1.070	1. 066
120	1. 090	1.085	1.087	1.082	1. 085	1.080
140	1. 107	1. 101	1. 103	1. 098	1. 100	1.095
160	1. 124	1.118	1. 119	1.113	1. 116	1.110
200	1. 142	1. 152	1. 136	1. 130	1. 132	1. 142
	1. 161		1. 154	1. 147	1. 149	
220	1. 180	1. 171	1. 173	1. 164	1. 167	1. 159
240	1. 201	1. 190	1. 192	1. 182	1. 186	1. 176
260.	1. 222	1. 210	1. 213	1. 201	1. 205	1. 194
300.	1.245 1.269	1. 1.250	1. 234	1.221	1. 225	1. 213
320340300380400		$\begin{aligned} & (1.27) \\ & (1.30) \\ & (1.32) \\ & (1.35) \\ & (1.37) \end{aligned}$	$\begin{aligned} & (1.28) \\ & (1.30) \\ & (1.33) \\ & (1.35) \\ & (1.38) \end{aligned}$			$\begin{aligned} & (1.25) \\ & (1.27) \\ & (1.29) \\ & (1.32) \\ & (1.34) \end{aligned}$
	$\begin{aligned} & (1.29) \\ & (1.32) \\ & (1.35) \\ & (1.38) \\ & (1.41) \end{aligned}$			(1.26)	$\begin{gathered} (1.27) \\ (1.29) \\ (1.32) \\ (1.34) \\ (1.37) \end{gathered}$	
				(1.28)		
				(1.33)		
				(1.35)		

II. Centigrade table for oils of high viscosity-Continued

Temperature ${ }^{\circ} \mathrm{C}$.	Kinematic viscosity at $210^{\circ} \mathrm{F}$., cgs units					
	0.200					
	Saybolt universal viscosity at $210^{\circ} \mathrm{F}$.					
	100 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.90		0.95		1.00	
	${ }^{\circ}$ A. P.I.					
	25.7		17.5		10.0	
	Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$					
	0	50	0	50	0	50
-----------	1. 000	0. 998	1.000	0.998	1.000	0.998
10	1. 007	1. 004	1.006	1. 004	1. 006	1. 004
20.	1. 014	1. 011		1. 011	1. 013	
30	1. 021	1. 018	1. 020	1. 017	1. 020	$\begin{aligned} & 1.017 \\ & \text { 1. } 023 \end{aligned}$
40	1. 1.028	1. 0241.031		1. 024	1. 026	
50			1. 027		1. 033	$\begin{aligned} & 1.023 \\ & 1.030 \end{aligned}$
60--	1. 042	1. 038	1. 041	1. 038	1. 040	1. 037 1. 043 1. 050 1. 057 1. 064
70.	1.049	1.045	1. 048	1.045	1. 046	
80	1. 057	1. 052	1. 055	1. 051	1. 053	
90	1. 054	1. 1.067	1. 1.069	1. 1.065	1. 067	
100	1. 072					
120---	1.087	1. 082	1. 084	1. 080	1. 1.082	1. 1.078
140	1. 104	1. 098	1. 100	1. 094		
160.	1. 120	1. 113	1.115	1. 109	1.1121.128	1.1071.122
180	1.137	1. 130	1. 132	1. 125		
200	1. 155	1. 147	1. 149	1. 141	1.144	1. 137
220----------1.173						
240	$\begin{aligned} & 1.193 \\ & 1.213 \\ & 1.235 \\ & 1.258 \end{aligned}$	$\begin{aligned} & \text { 1. } 164 \\ & 1.183 \\ & 1.201 \\ & 1.221 \\ & 1.241 \end{aligned}$	$\begin{aligned} & 1.167 \\ & 1.185 \\ & 1.204 \\ & 1.224 \\ & 1.245 \end{aligned}$	$\begin{aligned} & 1.158 \\ & 1.175 \\ & 1.193 \\ & 1.212 \\ & 1.230 \end{aligned}$	$\begin{aligned} & 1.161 \\ & 1.179 \\ & 1.198 \\ & 1.217 \\ & 1.237 \end{aligned}$	$\begin{aligned} & 1.170 \\ & 1.170 \\ & 1.187 \\ & 1.205 \\ & 1.223 \end{aligned}$
260						
280						
300						
320..	$\begin{aligned} & (1.28) \\ & (1.31) \\ & (1.33) \\ & (1.36) \\ & (1.39) \end{aligned}$	$\begin{aligned} & (1.26) \\ & (1.28) \\ & (1.31) \\ & (1.33) \\ & (1.35) \end{aligned}$	$\begin{aligned} & (1.27) \\ & (1.29) \\ & (1.31) \\ & (1.33) \\ & (1.33) \end{aligned}$	$\begin{aligned} & (1.25) \\ & (1.27) \\ & (1.29) \\ & (1.31) \\ & (1.33) \end{aligned}$	$(1.26)$$(1.28)$$(1.30)$$(1.32)$$(1.35)$	$\begin{aligned} & (1.24) \\ & (1.26) \\ & (1.28) \\ & (1.30) \\ & (1.32) \end{aligned}$
340						
360						
380						
400						

II. Centigrade table for oils of high viscosity-Continued

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

II. Centigrade table for oils of high viscosity-Continued

Temperature ${ }^{\circ} \mathrm{C}$.	Kinematic viscosity at $210^{\circ} \mathrm{F}$., egs units					
	1.100					
	Saybolt universal viscosity at $21 \imath^{\circ} \mathrm{F}$.					
	500 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.9		0.95		1.00	
	${ }^{\circ}$ A. P.I.					
	25.7		17.5		10.0	
	Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$					
	0	50	0	50	0	50
	1.000	0.998	1.000	0.998	1.000	0. 998
10.	1.006 1.013	1.004 1.010	1.006 1.012	1.004 1.010		1.004 1.010
30	1.020	1.017	1.019	1.017	1.018	1.0161.022
40	1.0261.033	1. 023	1.025	1.023	1. 025	
50		1.030	1.032	1.029	1. 031	$\begin{aligned} & 1.022 \\ & 1.028 \end{aligned}$
60.	1.040	1.037	1.038	1.036	1.037	1.0341.040
70.	1.047	1.044	1.045	1.042	1.043	
80	1. 054	1.050	1. 052	1.049	1.050	1.047
90	1.0611.068	1.057 1.065	1.058 1.065	1.055	1.056 1.063	1.0531.060
100		1.065	1.065	1.062		
120.-	1.083	1.079	1.080	1.075	1.0761.089	1.072
140	1.098	1.093	1.0941.109	1.089		1.0861.099
160.	1.113	1.108		1.103	1.089 1.104	
180	1.129	1. 123	1.1251.140	1.118	1. 118	1.1131.128
200-------	1. 146	1.139		1.133	1.134	
220.	1.163	1. 155	1.157	1.149	1.1501.166	1.1421.157
240	1.182	1.1721.189				
260			1.192	1.181	1. 183	1.173 1.188
280....	$\begin{aligned} & 1.220 \\ & 1.241 \end{aligned}$	1. 207	1. 229	1.216	1. 218	1. 205
320	$\begin{aligned} & (1.26) \\ & (1.28) \\ & (1.31) \\ & (1.33) \\ & (1.35) \end{aligned}$	$\begin{aligned} & (1.24) \\ & (1.26) \\ & (1.28) \\ & (1.31) \\ & (1.33) \end{aligned}$	$\begin{aligned} & (1.25) \\ & (1.27) \\ & (1.28) \\ & (1.31) \\ & (1.33) \end{aligned}$	$\begin{aligned} & (1.23) \\ & (1.25) \\ & (1.26) \\ & (1.29) \\ & (1.31) \end{aligned}$	$\begin{aligned} & (1.24) \\ & (1.26) \\ & (1.28) \\ & (1.30) \\ & (1.32) \end{aligned}$	$\begin{aligned} & (1.22) \\ & (1.24) \\ & (1.26) \\ & (1.27) \\ & (1.29) \end{aligned}$
340						
360						
380						
400.-.-						

III. Fahrenheit table for oils of moderate viscosity

Temperature ${ }^{\circ} \mathrm{F}$.	Kinematic viscosity at $100^{\circ} \mathrm{F}$., cgs units					
	0.020					
	Saybolt universal viscosity at $100^{\circ} \mathrm{F}$.					
	34 secouds					
	Specific gravity $60^{\circ} / 60^{\circ} \mathrm{F}$.					
			0.85		0.90	
	${ }^{\circ}$ A. P. I.					
	45.4		35.0		25.7	
	Pressure, lbs./in. ${ }^{2}$					
	0	700	0	700	0	700
20.	0.981.9901.000	0.978	0.981.990	0.978.987	0.982.9911.000	0.978
40		. 987				. 987
60		. 998	1. 000	. 996		.9961.005
$80-$		1.006 1.016	1.0101.019		$\begin{aligned} & \text { 1.000 } \\ & \text { 1. } 009 \end{aligned}$	
100	1.010 1.020			1.006 1.015	$\begin{aligned} & 1.009 \\ & 1.019 \end{aligned}$	1.015
120	1.030	1.026	1.029	1.025	1.028	1.0241.034
140	1.0411.052	1.036	1.040	1.035	1. 038	
160		1.046	1.050	1. 045	1.048	1. 044
180	$\text { 1. } 063$$1.074$	1. 1.056	$\begin{aligned} & 1.061 \\ & 1.072 \end{aligned}$	1.055	1.0591.069	$\begin{aligned} & 1.053 \\ & 1.063 \end{aligned}$
200				1. 065		
$\begin{aligned} & 220 \\ & 240 \\ & 250 \\ & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & 1.086 \\ & 1.098 \\ & 1.110 \\ & 1.123 \\ & 1.136 \end{aligned}$	1.079	1.083	1.076	1. 080	1.0741.084
		1. 090	1. 095	1.087	1. 091	
		1. 113	$\begin{aligned} & 1.106 \\ & 1.119 \end{aligned}$	1.0981.109	1.1031.115	1.095
						1. 1061.118
		1.126	1. 131	1. 121	1.126	
$\begin{aligned} & 350 \\ & 400 \\ & 450 \\ & 500 \\ & 550 \end{aligned}$	$\begin{aligned} & 1.172 \\ & 1.212 \\ & 1.257 \\ & 1.310 \\ & 1.371 \end{aligned}$	1. 159 1.195 1. 235 1,279 1,328	$\begin{aligned} & 1.165 \\ & 1.203 \\ & 1.245 \\ & 1.293 \\ & 1.349 \end{aligned}$	$\begin{aligned} & 1.153 \\ & 1.187 \\ & 1.225 \\ & 1,266 \\ & 1.313 \end{aligned}$	$\begin{aligned} & 1.159 \\ & 1.195 \\ & 1.234 \\ & 1.279 \\ & 1.331 \end{aligned}$	$\begin{aligned} & 1.148 \\ & 1.181 \\ & 1.216 \\ & 1.2256 \\ & 1.299 \end{aligned}$
$\begin{aligned} & 600 \\ & 6.50 \\ & 700 \\ & 750 \\ & 750 \\ & 800 \end{aligned}$	$\begin{aligned} & (1.45) \\ & (1.53) \\ & (1.64) \end{aligned}$	$\begin{aligned} & (1.39) \\ & (1.45) \\ & (1.53) \\ & (1.61) \\ & (1.7) \end{aligned}$	$\begin{aligned} & (1.42) \\ & (1.49) \\ & (1.58) \\ & (1.70) \\ & (1.83) \end{aligned}$	$\begin{aligned} & (1.37) \\ & (1.42) \\ & (1.49) \\ & (1.56) \\ & (1.65) \end{aligned}$	$\begin{aligned} & (1.39) \\ & (1.46) \\ & (1.55) \\ & (1.65) \\ & (1.76) \end{aligned}$	$\begin{aligned} & (1.35) \\ & (1.40) \\ & (1.47) \\ & (1.54) \\ & (1.61) \end{aligned}$

III. Fahrenheit table for oils of moderate viscosity-Continued

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

III. Fahrenheit table for oils of moderate viscosity-Continued

Temperature ${ }^{\circ} \mathrm{F}$.	Kinematic viscosity at $100^{\circ} \mathrm{F}$., cgs units					
	0.050					
	Saybolt Universal viscosity at $100^{\circ} \mathrm{F}$.					
	42 seconds					
	Speciflc gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.8		0.85		0.90	
	${ }^{\circ} \mathrm{A} . \mathrm{P} . \mathrm{I}$.					
	45.4		35.0		25.7	
	Pressure, lbs./in. ${ }^{2}$					
	0	700	0	700	0	700
20.	0.982	0.979	0.982	0.979	0.983	0.980
40.	. 991	. 988	. 991	. 988	. 991	. 988
60	1.000	. 997	1. 000	. 996	1. 000	. 996
80	1.009 1.019	1.005 1.014	1.009 1.018	1.005 1.014	1.009 1.018	1. 005
120.	1. 028	1. 024	1.028	1.023	1.027	1.023
140	1.038	1. 033	1. 037	1.033	1.036	1. 032
160.	1048	1.043	1.047	1.042	1.045	1.041
180	1. 059	1. 053	1.057	1. 052	1. 055	1. 050
200.	1.039	1.083	1.067	1. 061	1.065	1.059
220.	1. 080	1. 074	1. 077	1. 071	1. 075	1. 069
240	1. 091	1.084	1.088	1.081	1. 085	1. 079
260	1. 103	1. 095	1. 099	1. 092	1.096	1. 089
280	1. 114	1. 108	1.110	1. 103	1. 107	1. 099
300.	1. 126	1.117	1. 122	1.113	1.118	1.110
350	1. 157	1. 147	1.152	1.142	1. 147	1.137
400	1. 193	1. 179	1.185	1.173	1.178	1. 167
450 500	1. 232	1. 214	1. 222	1. 206	1.213	1. 199
500.	1. 276	1. 253	1.262	1. 242	1.251	1.233
550.	1. 327	1. 296	1. 309	1. 283	1. 294	1.270
600		(1.34)	(1.36)			(1.31)
650	(1.46)	(1.40)	(1.43)	(1.38)	(1.40)	(1.36)
700	(1.56)	(1.47)	(1.51)	(1.43)	(1.47)	(1.41)
8800	(1.69)	(1.54)	(1.60)	(1.49)	(1.56)	(1.46)
	(1.82)	(1.63)	(1.70)	(1.56)	(1.66)	(1. 53)

III. Fahrenheit table for oils of moderate viscosity-Continued

Temperature ${ }^{\circ} \mathrm{F}$.	Kinematic viscosity at $100^{\circ} \mathrm{F}$., egs units					
	0.100					
	Saybolt universal viscosity at $100^{\circ} \mathrm{F}$.					
	60 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.8		0.90		0. 95	
	- A. P. I.					
	35.0		25.7		17.5	
	Pressure, lbs./in. ${ }^{\text {a }}$					
	0	700	0	700	0	700
20--	0. 982	0. 980	0. 983	0. 980	0. 983	0. 981
60	1. 000	. 998	1. 000	. 998	1. 000	. 989
80	1. 009	1. 005	1. 009	1. 005	1. 008	1. 005
100-----	1. 018	1.014	1.017	1.014	1.017	1. 013
120.-	1. 027	1. 022	1. 026	1. 022	1. 025	1. 022
140-.	1. 036	1. 031	1. 035	1. 031	1.034	1. 031
160	1. 045	1. 040	1. 044	1. 040	1. 043	1. 039
180	1. 1.055	1. 1.049	1. 1.063 1.062	1.049 1.058	1.052 1.061	1.048 1.056
220.	1. 074	1.069	1. 072	1. 087	1.071	1. 066
240.	1. 084	1. 078	1. 082	1. 076	1. 080	1. 075
260.	1. 095	1. 088	1. 092	1. 086	1. 090	1. 084
280	1. 105	1. 098	1. 102	1. 096	1.100	1. 094
300------	1.116	1. 109	1.113	1. 105	1.110	1.103
350.-	1.145	1. 136	1. 141	1. 132	1. 137	1. 128
400--	1. 176	1. 164	1. 170	1. 160	1.185	1.155
450-	1. 209	1. 1229	1. 2222	1. 182	1. 1925	1.183 1.213
500.	1. 1.288	1. 225	1. 275	1. 225	1. 265	1. 246
	(1.34)	(1.31)	(1.32)	(1.29)	(1.30)	(1.28)
650	(1.39)	(1.35)	(1.37)	(1.33)	(1.35)	(1.32)
700	(1.45)	(1.40)	$\left(\begin{array}{ll}(12)\end{array}\right.$	(1.38)	(1.40)	(1.36)
750	(1.52)	(1.45) (1.51)	(1.47) (1.54)	(1.42)	(1.45)	(1.41)
800---------	(1.60)	(1.51)	(1.54)	(1.48)	(1.51)	(1.46)

III. Fahrenheit iable for oils of moderate viscosity-Continued

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

III. Fahrenheit table for oils of moderate viscosity-Continued

Temperature ${ }^{\circ} \mathrm{F}$.	Kinematic viscosity at $100^{\circ} \mathrm{F}$., egs units					
	0.500					
	Saybolt universal viscosity at $100^{\circ} \mathrm{J}$.					
	229 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.8		0.90		0.95	
	${ }^{\circ}$ A. P. I.					
	35.0		25.7		17.5	
	Pressure, lbs./in. ${ }^{2}$					
	0	700	0	700	0	700
20.	0.984 . 992 1.000 1. 008 1.017	0.981	0.984	0.982	0.985	0.982
40		. 989	. 992	. 980	992	. 990
80.		. 997	1.000	. 997	1.000	. 997
100		1.013	1.016	1.013	1.016	1.005 1.013
120	1.025	1.021	1.024	1.021	1.0241.032	1.021
140	1.034	1.030	1. 033	1.029		
160	1.042	1.038	1.041	1.037	1.040	1.0371.045
180	1.0511.060	1.047	1. 0501.059	1.045	1. 049	
200.		1.055		1.054	1.057	1.045 1.053
220	1.069	1.064	1.068	1. 063	1.066	1.0621.070
240	1. 079	1. 073	1.077	1.071 1.080	1.084	
280	1.0981.108		1. 096	1.089	1.093	1.079
300		1.092 1.101		1.099	1.102	1.087 1.096
350	1.134	1. 126	1.1301.156	1.122	1.1271.153	1.1191.144
400	1. 161	1. 1.179		1.147		
450	1.191		1. 185	1. 174	1. 180	1.1701.196
500	1. 223	1. 209	1.248	1.202	1. 209	
550	1.257	1.240		1. 232	1.240	1. 225
600	$\begin{aligned} & (1.30) \\ & (1.34) \\ & (1.38) \\ & (1.43) \\ & (1.48) \end{aligned}$	$\begin{aligned} & (1.27) \\ & (1.31) \\ & (1.35) \\ & (1.39) \\ & (1.43) \end{aligned}$	$(1.28)$$(1.32)$$(1.37)$$(1.41)$$(1.46)$	(1.26)	$(1.27)$$(1.31)$$(1.35)$$(1.38)$$(1.43)$	$\begin{aligned} & (1.25) \\ & (1.29) \\ & (1.32) \\ & (1.35) \\ & (1.39) \end{aligned}$
650				(1.30)		
700				(1.33)		
750				(1.37)		
800				(1.41)		

III. Fahrenheit table for oils of moderate viscosity-Continued

Temperature ${ }^{\circ} \mathrm{F}$.	Kinematic viscosity at $100^{\circ} \mathrm{F}$., cgs units					
	1.000					
	Saybolt universal viscosity at $100^{\circ} \mathrm{F}$.					
	445 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.85		0.90		0.95	
	${ }^{\circ}$ A. P.I.					
	35.0		25.7		17.5	
	Pressure, lbs./in. ${ }^{2}$					
	0	700	0	700	0	700
20.	0.984	0.982	0.984	0.982	0.985	0.983
40.	. 992	. 990	. 992	. 990	. 992	$\begin{array}{r} .900 \\ .990 \\ .998 \end{array}$
60	$\begin{aligned} & 1.000 \\ & 1.008 \end{aligned}$	1. 005	1.008	1. 005	1.008	
${ }^{80}$						1.005
120	1.025	1.021	1.024	1.021	1.024	1.021
140	1.033	1. 030	1.032	1.029	1.032	1.020
160	1.042	1.038	1.041	1.037	1.040	1.037
180	1.050	1.046	1.049	1.045	1.048	1.044
200	1. 059	1. 054	1. 057	1.053	1.057	1.052
220	1.068	1.063	1.066	1.061	1.065	1.0601.069
240	1.077	1.072	1.075	1. 070	1.074	
260.	1.086	1.081	1. 084	1. 079	1.082	1.0771.0861.094
280	1.095	1.090	1. 093	1.087	1.091	
300.	1.105	1.099	1.102	1.096	1. 100	1.094
350	1. 130	1.123	1.127	1.120	1.124	1.1171.141
400	1.157	1.148	1. 152	1.144	1. 149	
450	1.186	1.175	1.180	1.170	1.176	1. 1.1661.1911.219
500. 550.	1. 216	$\begin{aligned} & 1.203 \\ & 1.232 \end{aligned}$	$\begin{aligned} & 1.209 \\ & 1.240 \end{aligned}$	$\begin{aligned} & 1.197 \\ & 1.225 \end{aligned}$	1.2031.233	
550.	1. 249					1. 219
600	$\begin{aligned} & (1.28) \\ & (1.32) \\ & (1.36) \\ & (1.41) \\ & (1.45) \end{aligned}$	$\begin{aligned} & (1.26 \\ & (1.30 \\ & (1.33 \\ & (1.37) \\ & (1.41) \end{aligned}$	$\begin{aligned} & (1.27) \\ & (1.31) \\ & (1.35) \\ & (1.39) \\ & (1.43) \end{aligned}$	$\begin{aligned} & (1.26) \\ & (1.29) \\ & (1.32) \\ & (1.36) \\ & (1.39) \end{aligned}$	$\begin{aligned} & (1.27) \\ & (1.30) \\ & (1.33) \\ & (1.37) \\ & (1.42) \end{aligned}$	$\begin{aligned} & (1.25) \\ & (1.28) \\ & (1.31) \\ & (1.34) \\ & (1.38) \end{aligned}$
650 700						
780						
8850						
800.						

III. Fahrenheit table for oils of moderate viscosity-Continued

Temperature ${ }^{\circ} \mathrm{F}$.	Kinematic vicosity at $100^{\circ} \mathrm{F}$., cgs units					
	2.000					
	Saybolt universal viscosity at $100^{\circ} \mathrm{F}$.					
	910 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.8		0.90		0.95	
	${ }^{\circ}$ A. P. I.					
	35.0		25.9		17.5	
	Pressure, lbs./in. ${ }^{2}$					
	0	700	0	700	0	700
20.	0.984	0.982.990	0.984	0.982	0.985	0.983.990
40.	1. 9900		. 992	. 990	. 992	
60		. 997	$\begin{aligned} & \text { 1.000 } \\ & \text { 1. } 008 \end{aligned}$. 997	1. 000	$\begin{array}{r}.998 \\ 1.005 \\ \hline 1.012\end{array}$
80	1.016	1.013		1.013	1.016	
120.	1.024	1.021	1.024	1.021	1.023	1.020
140	1.032	1.029	1.032	1. 029	1.031	1. 028
160	1.041	1.037	1. 040	1. 036	1.039	1. 036
180	1.049	1.045	1.048	1. 044	1.047	1. 051
200.-	1.058	1.053	1.056	1.052	1.055	
220	1.066	1.062	1.065	1. 061	1. 063	1. 059
240.	1.075	1. 070	1. 074	1. 069	1. 072	1. 067
260	1. 084	1.079	1. 083	1.077	1. 080	1. 075
280	1.0931.103	1.097	1. 100	1.095	1.098	1.092
300...						
350.	1.127	1.120	1.1241.149	1.117	1.145	1. 1137
400.	1.153	1.145				
450.-	1. 181	1. 170	1. 176	$\begin{aligned} & 1.166 \\ & 1.192 \end{aligned}$	1.1711.198	1.1611.186
500	1.242	1. 197				
550.-----		1. 226	1. 234	1. 219	1. 227	1. 213
600	(1.28)	(1. 26)	(1.27)	$\begin{aligned} & (1.25) \\ & (1.28) \end{aligned}$	(1.26)	(1.24)
650						(1.27)
700	(1.35)	(1.32)(1.36)	(1.34)(1.38)	(1.31) (1.34)	(1.32)	(1.30)
8500	(1.39) (1.43)			(1.34) (1.38)	(1.36)	$\begin{aligned} & (1.33) \\ & (1.37) \end{aligned}$
800.	(1.43)					

III. Fahrenheit table for oils of moderate viscosity-Continued

Temperature ${ }^{\circ} \mathrm{F}$.	Kinematic viscosity at $100^{\circ} \mathrm{F}$., cgs units					
	5.000					
	Saybolt universal viscosity at $100^{\circ} \mathrm{F}$.					
	2270 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.8		0.90		0.95	
	${ }^{\circ}$ A. P. I.					
	35.0		25.7		17.5	
	Pressure, lbs./in. ${ }^{2}$					
	0	700	0	700	0	700
20.	$\begin{aligned} & 0.985 \\ & 1.992 \\ & 1.000 \\ & 1.008 \\ & 1.016 \end{aligned}$	0.983	0.985.992	0.983	0.985.993	0.983
40		. 990		. 990		
80		1. 005	1.008	1. 005	1. 008	1.0051.012
100		1.013	1. 016	1. 013	1.015	
120	1. 024	1.020	1. 023	1.020	1.023	1.0201.027
140.	1. 040	1.028	1.031	1. 028	1.030	
160		1. 036	1. 039	1. 036	1. 038	1.0351.0421.05
150	1.0481.056	1. 044	1. 047	1. 044	1. 046	
200.		1.052	1.055	1. 051	1.054	1.042 1.050
220	$\begin{aligned} & 1.065 \\ & 1.074 \\ & 1.082 \\ & 1.091 \\ & 1.100 \end{aligned}$	1.061	1.064	1.059	1. 062	1.0581.066
240		1. 069	1.0721.080	1. 057	1.0701.078	
230				1. 075		1. 074
250		1. 085	$\begin{aligned} & 1.089 \\ & 1.098 \end{aligned}$	$\begin{aligned} & 1.084 \\ & 1.092 \end{aligned}$	$\begin{aligned} & 1.087 \\ & 1.096 \end{aligned}$	1.0821.090
300.		1. 094				
100.	$\begin{aligned} & 1.124 \\ & 1.149 \\ & 1.176 \\ & 1.204 \\ & 1.234 \end{aligned}$	1.117 1.141	1.146	1. 1137	1. 141	1. 134
450.		1. 166	1.1711.1981.1	1. 1621.1871.18	1.1661.193	$\begin{aligned} & 1.157 \\ & 1.182 \end{aligned}$
500.						
550		1. 219	1.227	1. 213	1. 220	
000.	$(1.27)$$(1.30)$$(1.34)$$(1.38)$$(1.42)$	$\begin{aligned} & (1.25) \\ & (1.28) \\ & (1.31) \\ & (1.34) \\ & (1.38) \end{aligned}$	$\begin{aligned} & (1.26) \\ & (1.29) \\ & (1.33) \\ & (1.36) \\ & (1.40) \end{aligned}$	$\begin{aligned} & (1.24) \\ & (1.27) \\ & (1.30) \\ & (1.33) \\ & (1.37) \end{aligned}$	$\begin{aligned} & (1.25) \\ & (1.28) \\ & (1.31) \\ & (1.35) \\ & (1.38) \end{aligned}$	$(1.23)$$(1.26)$$(1.29)$$(1.32)$$(1.35)$
${ }_{6}^{650} 0$.						
750.						
800.						

IV. Fahrenheit table for oils of high vis cosity

$15377^{\circ}-30-5$
IV. Fahrenheit table for oils of high viscosity-Continued

Temperature ${ }^{\circ} \mathrm{F}$.	Kinematic viscosity at $210^{\circ} \mathrm{F}$., cgs units					
	0.100					
	Saybolt universal viscosity at $210^{\circ} \mathrm{F}$.					
	60 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.90		0.95		1.00	
	${ }^{\circ} \mathrm{A} . \mathrm{P} . \mathrm{I}$.					
	25.7		17.5		10.0	
	Pressure, lbs./in. ${ }^{2}$					
	0	700	0	700	0	700
20.	0. 984	0.982	0.985	0.983	0.986	0.983
40.	. 992	. 990	. 993	. 990	. 993	. 990
60	1.000	. 997	1. 000	. 997	1. 000	. 997
80	1. 008	1. 005	1. 008	1. 005	1. 007	1. 004
100	1. 016	1. 013	1.015	1. 012	1.015	1.012
120	1.024	1.020	1.023	1.020	1.023	1.019
140	1. 032	1.028	1. 031	1.028	1. 030	1.027
160	1.040	1.036	1. 039	1.036	1.038	1.034
180	1. 048	1.045	1. 047	1. 043	1. 046	1. 042
200.	1.057	1.053	1.055	1.051	1. 054	1. 050
220	1. 066	1. 061	1. 064	1.059	1. 062	1. 058
240	1. 075	1. 070	1. 072	1. 068	1. 070	1. 066
260	1. 084	1. 078	1. 081	1.076	1. 078	1.074
250	1. 093	1. 087	1. 089	1. 084	1. 087	1. 082
300	1. 102	1.096	1. 098	1. 093	1.095	1. 090
350	1. 127	1.120	1. 121	1.115	1. 118	1. 111
400	1. 153	1. 144	1. 146	1. 138	1. 141	1. 134
450	1. 180	1.169	1. 172	1. 163	1. 166	1.157
550.	1. 209	1.197	1. 200	1. 189	1. 193	1. 182
550	1. 240	1.225	1. 229	1.216	1.221	1.208
600.	(1.27)	(1.26)	(1.26)	(1.24)	(1.25)	(1.24)
${ }^{650}$	(1.31)	(1.29)	(1.29)	(1.27)	(1.28)	(1.26)
750.	(1.35)	(1.32)	(1.33)	(1.31)	(1.32)	(1.29)
800-....	(1.44)	(1.40)	(1.30)	(1.37)	(1.35)	(1.32) (1.36)

IV. F'ahrenheit table for oils of high viscosity-Continued

Temperature ${ }^{\circ} \mathrm{F}$.	Kinematic viscosity at $210^{\circ} \mathrm{F}$., cgs uuits								
	0.200								
	Saybolt Universal viscosity at $210^{\circ} \mathrm{F}$.								
	100 seconds								
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.								
	0.9		0.95		1.00				
	${ }^{\circ}$ A. P. I.								
	25.7		17.5		10.0				
	Pressure, lbs./in. ${ }^{2}$								
	0	700	0	700	0	700			
20	0.985.9931.000	0.983	0.986.993	0.983	0.986.993	0.984			
40		. 990		. 990		. 990			
60		. 997	1. 000	. 998		. 998			
80	1.008	1. 005	1.007	1. 005	1. 007	1. 005			
	1.016	1. 012	1.015	1.012	1.014	1. 012			
120	1. 023	1. 020	1. 022	1.019	1. 022	1.019			
140	1. 0231	1. 028	1. 030	1.027	1.029	1. 026			
160	1. 039	1. 036	1. 038	1. 035	1.037	1.034			
220	1. 064	1. 059	1. 062	1. 058	1. 060	1.0561.0641.0711.0791.087			
240	1.073	1.068	1.070	1. 065	1. 068				
260	1.082	1. 076	1.078	1.073	1.076				
280	1. 090	1. 093	1.095	1. 089	1. 084				
300-	1.099				1.092				
350400	1.122	1. 115	1.118	1. 111	1.1141.137	1. 108			
	1. 147	1. 139	1.141	1.133					
450	1. 173	1. 163	1. 166	1. 157	1.1611.186	1. 152			
500	1. 231	1. 189	1. 219	1. 206					
550		1. 216			1. 212	1. 200			
$\begin{aligned} & 600- \\ & 650- \\ & 700- \\ & 700- \\ & 800- \end{aligned}$	$\begin{aligned} & (1.26) \\ & (1.30) \\ & (1.34) \\ & (1.38) \\ & (1.42) \end{aligned}$	$\begin{aligned} & (1.24) \\ & (1.27) \\ & (1.31) \\ & (1.34) \\ & (1.37) \end{aligned}$	$\begin{aligned} & (1.25) \\ & (1.28) \\ & (1.31) \\ & (1.34) \\ & (1.37) \end{aligned}$	$\begin{aligned} & (1.23) \\ & (1.26) \\ & (1.29) \\ & (1.32) \\ & (1.35) \end{aligned}$	$\begin{aligned} & (1.24) \\ & (1.27) \\ & (1.30) \\ & (1.33) \\ & (1.36) \end{aligned}$	$\begin{aligned} & (1.22) \\ & (1.25) \\ & (1.28) \\ & (1.31) \\ & (1.34) \end{aligned}$			

IV. Fahrenheit table for oils of high viscosity-Continued

Temperature ${ }^{\circ} \mathrm{F}$.	Kinematic viscosity at $210^{\circ} \mathrm{F}$., egs units					
	0.440					
	Saybolt Universal viscosity at $210^{\circ} \mathrm{F}$.					
	200 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.		0.95		1.00	
	${ }^{\circ}$ A. P. I.					
	25.7		17.5		10.0	
	Pressure, lis./in. ${ }^{2}$					
	0	700	0	700	0	700
20.	0.986	0.983	0. 386	0. 984	0. 986	0. 984
40.	. 993	. 990	. 993	. 991	. 993	. 991
60	1.000	. 998	1.000	. 998	1.000	. 998
80	1. 1.008	1. 005	1. 007	1. 005	1. 007	1. 005
100	1. 015	1.012	1. 015	1. 012	1. 014	1. 012
120.	1. 023	1. 020	1. 022	1. 019	1. 021	1. 019
140	1. 030	1. 028	1. 029	1.026	1. 029	1.026
160	1. 039	1. 035	1. 037	1. 034	1.036	1.033
180	1. 047	1. 043	1. 045	1.041	1. 044	1. 041
200.	1.055	1. 051	1. 052	1. 049	1.051	1. 048
220.	1.063	1. 059	1.060	1. 056	1. 059	1. 655
240	1. 071	1. 067	1. 068	1. 064	1. 066	1. 063
280	1. 079	1. 075	1. 076	1. 072	1.074	1. 070
300.	1.088 1.097	1. 1.093	1. 1.093	1.080 1.088	1.082 1.090	1. 1.078
$\begin{aligned} & 350 \\ & 400 \\ & 450 \\ & 510 \\ & 500 \end{aligned}$		1. 113	1. 114	1. 109	1. 111	1. 105
	$\begin{aligned} & 1.119 \\ & 1.143 \\ & 1.168 \\ & 1.195 \\ & 1.223 \end{aligned}$	1. 135	1. 137	1. 130	1.133	1.126
		1. 159	1. 161	1.152	1. 156	1. 147
		1. 183	1. 186	1.176	1. 180	1. 169
		1. 209	1. 213	1. 200	1. 205	1. 192
$\begin{aligned} & 600 . \\ & 650 . \\ & 700 . \\ & 750 . \\ & 700 . \end{aligned}$	$\begin{aligned} & (1.25) \\ & (1.28) \\ & (1.32) \\ & (1.35) \\ & (1.38) \end{aligned}$					
		(1.27)	(1.27)	(1.25)	(1.26)	(1.24)
		(1.30)	(1.30)	(1.28)	(1.29)	(1.27)
		(1.33)	(1.33)	(1.31)	(1.32)	(1.29)
		(1.36)	(1.36)	(1.34)	(1.35)	(1.32)

IV. Fahrenheit table for oils of high viscosity-Continued

Temperature ${ }^{\circ} \mathrm{F}$.	Kinematic viscosity at $210^{\circ} \mathrm{F}$., cgs units					
	1.100					
	Saybolt universal viscosity at $210^{\circ} \mathrm{F}$.					
	500 seconds					
	Specific gravity, $60^{\circ} / 60^{\circ} \mathrm{F}$.					
	0.9		0.95		1.00	
	${ }^{\circ}$ A. P. I.					
	25.7		17.5		10.0	
	Pressure, lbs/in. ${ }^{2}$					
	0	700	0	700	0	700
20	0.986	0.983	0.986	0.985	0.987	0. 985
40.	. 993	. 990	. 993	. 991	. 903	. 991
60	1. 000	. 998	1. 000	. 998	1. 000	. 998
80	1.007 1.015	1.005 1.012	1.007 1.014	1.005 1.012	1. 007 1.013	1.004 1.011
120.	1. 022	1. 019	1.021	1. 019	1.020	1.018
140..	1. 030	1.027	1. 028	1. 026	1.027	1. 025
160	1.037	1. 034	1.036	1.033	1.034	1. 032
180	1. 045	1. 042	1. 043	1. 040	1.041	1. 038
200	1. 053	1. 049	1.051	1. 047	1. 048	1. 045
220.	1. 061	1. 057	1. 059	1. 055	1. 056	1. 053
240	1. 069	1. 065	1.066	1. 062	1. 063	1. 060
260	1. 077	1. 073	1. 074	1. 070	1. 070	1. 067
280	1. 085	1. 081	1. 082	1. 077	1. 1.078	1. 1.074
300	1. 094	1.089	1.090	1. 085	1.086	1.082
350.-	1.116	1. 109	1. 111	1. 105	1. 106	1. 100
400	1. 139	1. 131	1. 133	1. 126	1.127	1.120
450	1. 163	1. 154	1. 156	1. 147	1. 149	1. 140
500	1. 189	1. 177	1. 180	1. 170	1.172	1.161
550	1.216	1. 202	1. 206	1. 194	1. 196	1.183
600	(1.24)	(1.23)	(1.23)	(1.22)	(1.22)	(1.21)
650	(1.27)	(1.25)	(1.26)	(1. 24)	(1.25)	(1.23)
700	(1.31)	(1. 28)	(1.29)	(1.27)	(1.28)	(1.25)
800.	(1.37)	(1.34)	(1.35)	(1.33)	(1.33)	(1.30)

Washington, July 19, 1930.

[^0]: ${ }^{1}$ This paper contains results obtained in an investigation of "The Thermodynamic Properties of Petroleum Hydrocarbons" listed as Project No. 38 of American Petroleum Institute Research. Financial assistance in this work has been received from a research fund of the American Petroleum Institute donated by John D. Rockefeller. This fund is being administered by the institute with the cooperation of the Central Petroleum Committee of the National Research Council.

[^1]: - Proc. Am. Acad. Arts and Sci., 47, p. 347, 1011.

[^2]: B. S. Sci. Papers, 16 (S 393) p. 449; 1929.

 - The sample of distilled water used was boiled vigorously to remove dissolved air prior to flling the зpparatus.
 ${ }_{7}$ Ann. Chim. Phys. (6), 29, p. 544; 1893.
 ${ }^{8}$ J. Chem. Soc., 10^{3}, p. 1675; 1913.
 - Proc. Am. Acad. of Arts and Sci., 47, p. 441; 1012.

[^3]: No. $97 ; 1920$. Properties of Petroleum Products, Miscellaneous Publications of the Bureau of Siandards
 ${ }^{11}$ B. S. Tech. Paper No, 77.

[^4]: ${ }^{12}$ The use of this quantity as the independent variable was suggested by C. S. Cragoe, of this bureau.

[^5]: ${ }^{13}$ See footnote 11, p. 1004.
 ${ }^{14}$ J. Ind. and Eng. Chem., 17, p. 1280; 1925.

[^6]: ${ }^{16}$ J. Ind. and Eng. Chem., 16, p. 789; 1924.

[^7]: ${ }^{16}$ J. Ind. and Eng. Chem., 16, p. 905; 1924.

[^8]: ${ }^{17}$ Report of the Lubricants and Lubrication Inquiry Committee, Dept. of Sci. and In. Research of Gt Britian (1920). Sce also l'roc. Roy. Soc., A. 97 , D. 210; 190.2

