Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[5]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:13
  • preuzimanja u poslednjih 30 dana:11

Sadržaj

članak: 1 od 1  
2016, vol. 59, br. 3, str. 45-61
Metoda dinamičke krutosti u analizi vibracija kružne cilindrične ljuske
Univerzitet u Beogradu, Građevinski fakultet, Srbija

e-adresanevenka@grf.bg.ac.rs, marija@grf.bg.ac.rs, pmira@grf.bg.ac.rs
Projekat:
Istraživanje uticaja vibracija od saobraćaja na zgrade i ljude u cilju održivog razvoja gradova (MPNTR - 36046)

Ključne reči: slobodne vibracije; dinamička matica krutosti; Flügge-ova teorija ljuski
Sažetak
U ovom radu korišćena je metoda dinamičke krutosti za analizu slobodnih vibracija kružne cilindrične ljuske. Dinamička matrica krutosti formulisana je na osnovu tačnog rešenja sistema diferencijalnih jednačina problema slobodnih vibracija po Flügge-ovoj teoriji ljuski. To je frekventno zavisna matrica koja u sebi, pored krutosti, sadrži uticaj inercije i prigušenja. Izvedena dinamička matica krutosti implementirana je u za tu svrhu napisani Matlab program za određivanje sopstvenih frekvencija i oblika oscilovanja kružne cilindrične ljuske. Urađen je niz primera. Rezultati dobijeni primenom dinamičke matrice krutosti upoređeni su s rezultatima dobijenim pomoću komercijalnog programa zasnovanog na metodi konačnih elemenata Abaqus, kao i sa dostupnim analitičkim rezultatima iz literature.
Reference
Abaqus (2009) Users manual: Version 6.9. providence. RI, USA: DS SIMULIA Corp
Banerjee, J.R., Williams, F.W. (1992) Coupled bending-torsional dynamic stiffness matrix for timoshenko beam elements. Computers & Structures, 42(3): 301-310
Casimir, J.B., Vinh, T., Duforêt, C. (2003) Dynamic behaviour of structures in large frequency range by continuous element methods. Journal of Sound and Vibration, 267(5): 1085-1106
Casimir, J.B., Kevorkian, S., Vinh, T. (2005) The dynamic stiffness matrix of two-dimensional elements: application to Kirchhoff's plate continuous elements. Journal of Sound and Vibration, 287(3): 571-589
Doyle, J.F. (1997) Wave propagation in structures. New York: Springer Verlag
Goldenveizer, L. (1961) Theory of Thin Shells. New York: Pergamon Press
Gorman, D.J. (1978) Free vibration analysis of the completely free rectangular plate by the method of superposition. Journal of Sound and Vibration, 57(3): 437-447
Kolarevic, N., Nefovska-Danilovic, M., Petronijevic, M. (2015) Dynamic stiffness elements for free vibration analysis of rectangular Mindlin plate assemblies. Journal of Sound and Vibration, 359: 84-106
Kolarevic, N., Marjanović, M., Nefovska-Danilovic, M., Petronijevic, M. (2016) Free vibration analysis of plate assemblies using the dynamic stiffness method based on the higher order shear deformation theory. Journal of Sound and Vibration, 364: 110-132
le Sourne, H. (1998) Developpement delements continus de coques axisymetriques et de coudes. Universite de Nantes, Thesis
Lee, U. (2004) Spectral element method in structural dynamics. Incheon, Korea: Inha University Press
Leissa, A.W. (1973) Vibration of shells. Washington, D.C: US Government Printing Office
Leung, A.Y.T. (1993) Dynamic stiffness and substructures. New-York: Springer
Lundén, R., Åkesson, B. (1983) Damped second-order Rayleigh-Timoshenko beam vibration in space—an exact complex dynamic member stiffness matrix. International Journal for Numerical Methods in Engineering, 19(3): 431-449
Matlab, M.I. (2011) The language of technical computing. MATLAB
Nefovska-Danilovic, M., Petronijevic, M. (2015) In-plane free vibration and response analysis of isotropic rectangular plates using the dynamic stiffness method. Computers & Structures, 152: 82-95
Novozhilov, V.V. (1964) The theory of thin elastic shells. Groningen, The Netherlands: P. Noordhoff Lts
Timoshenko, S. (1959) Theory of plates and shells. New York: McGraw-Hill
Xiang, Y., Ma, Y., Kitipornchai, S., Lim, C., Lau, C. (2002) Exact solutions for vibration of cylindrical shells with intermediate ring supports. International Journal of Mechanical Sciences, 44(9): 1907-1924
Zhang, L., Xiang, Y., Wei, G.W. (2006) Local adaptive differential quadrature for free vibration analysis of cylindrical shells with various boundary conditions. International Journal of Mechanical Sciences, 48(10): 1126-1138
Zhang, L., Xiang, Y. (2007) Exact solutions for vibration of stepped circular cylindrical shells. Journal of Sound and Vibration, 299(4-5): 948-964
Zhang, X.M., Liu, G.R., Lam, K.Y. (2001) Vibration analysis of thin cylindrical shells using wave propagation approach. Journal of Sound and Vibration, 239(3): 397-403
 

O članku

jezik rada: srpski, engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/grmk1603045K
objavljen u SCIndeksu: 01.12.2016.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka