Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:2
  • preuzimanja u poslednjih 30 dana:2

Sadržaj

članak: 1 od 1  
2017, vol. 58, br. 4, str. 487-497
Efikasnost zeolita i apatita na mobilnost teških metala u zemljištima praćena preko test kulture Sinapis Alba
aInstitut za tehnologiju nuklearnih i drugih mineralnih sirovina - ITNMS, Beograd, Srbija
bUniverzitet u Beogradu, Poljoprivredni fakultet, Srbija
cUniverzitet u Kragujevcu, Agronomski fakultet, Čačak, Srbija

e-adresam.grubisic@itnms.ac.rs
Projekat:
Razvoj tehnologija i proizvoda na bazi mineralnih sirovina i otpadne biomase u cilju zaštite resursa za proizvodnju bezbedne hrane (MPNTR - 31003)
Osvajanje tehnoloških postupaka dobijanja ekoloških materijala na bazi nemetaličnih mineralnih sirovina (MPNTR - 34013)

Ključne reči: apatit; zeolit; teški metali Pb; Cd; Zn; U; zemljište; slačica; imobilizacija
Sažetak
Zaštita i unapređenje životne sredine, posebno očuvanje i zaštita zemljišta, postao je danas jedan od najznačajnijih problema savremenog sveta. Istraživanja u ovom radu imaju za cilj ispitivanje efikasnosti dva tipa mineralnih sirovina, zeolita i apatita na imobilzaciju teških metala i sprečavanja njihovog uključenja u lanac ishrane. Ispitivani su Pb, Cd, Zn i radionuklid (U), u dozama 10 mg kg-1 Cd, 500 mg kg-1 Pb, 300 mg kg-1 Zn i 300 mg kg-1 U na zemljištima različitih fizičko-hemijskih karakteristika (peskoviti černozem i pseudoglej). Efikasnost mineralnih sirovina kroz procese adsorpcije/precipitacije polutanata u zemljištima ispitivana je preko vegetacionih ogleda sa test kulturom-biljke slačice, Sinapis Alba, preko sadržaja Pb, Cd, Zn i U u korenu i nadzemnoj masi. Rezultati ukazuju da su i zeolit i apatit, domaćeg porekla, u dozi 20 g kg-1 zemljišta, doprineli imobilizaciji ispitivanih polutanata, da njihova efikasnost zavisi od fizičko hemijskih osobina polutanta i kiselosti zemljišta, tako da njihovo korišćenje opravdava primenu u tehnologijama remedijacije kontaminiranih zemljišta a u funkciji održivosti poljoprivredne proizvodnje i proizvodnji zdravstveno bezbedne hrane.
Reference
*** (2010) Uredba o programu sistemskog praćenja kvaliteta zemljišta, indikatorima za ocenu rizika od degradacije zemljišta i metodologiji za izradu remedijacionih programa. Sl. glasnik RS, br. 88
*** (1966) Hemijske metode ispitivanja zemljišta. u: Priručnik za ispitivanje zemljišta, Beograd-Zemun, knjiga 1, 1-279
*** (1999) Technologically enhanced naturally occurring radioactive material. NRC, TENORM, https://www.nrc.gov/docs/ML0106/ML010670073.pdf, 18.06.2017
Blum, W.E. (2002) Environmental protection through sustainable soil management: A holistic approach. u: Pagliai M., Jones R. [ur.] Sustainable land management: Environmental protection: A soil physical approach, Advan. Geoecol. 35, 1-8
Boisson, J., Ruttens, A., Mencha, M., Vangronsveld, J. (1999) Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils. Part 1. Infuence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation. Environmental Pollution, 225-233; 104
Chlopecka, A., Adriano, D.C. (1997) Influence of zeolite, apatite and Fe-oxide on Cd and Pb uptake by crops. Science of the total environment, 207(2-3): 195-206
Conca, J.L. (1997) Phosphate-induced metal stabilization (PIMS): Final report to the U.S. Environmental Protection Agency. Triangle Park, NC, 68D60023, Res
Entry, J.A., Watrud, L.S., Reeves, M. (1999) Accumulation of 137Cs and 90Sr From Contaminated Soil by Three Grass Species Inoculated With Mycorrhizal Fungi. Environmental Pollution, 449-457; 104
Entry, J.A., Watrud, L.S., Manasse, R.S., Vance, N.C. (1997) Phytoremediation and reclamation of soils contaminated with radionuclides. u: Kruger E.L., Anderson T.A.Coats J.R. [ur.] Phytoremediation of soil and water contaminants, New York: American Chemical Society, Chapter 22, 299-306
Glass, D.J. (2000) Economic potential of phytoremediation. u: Ensley B., Raskin I. [ur.] Phytoremediation of Toxic Metals: Using Plants to Clean-Up the Environment, John Wiley & Sons, p. 15-31
Grubišić, M., Boškovič-Rakočević, Lj., Stojanović, M., Mihajlović, M., Milojković, J., Hojka, Z. (2011) Polupropustljive barijere na bazi zeolita i apatita za sprečavanje kontaminacije zemljišta i podzemnih voda. u: III Savetovanje Stanje i perspektive deponija pepela, šljake i jalovine u termoelektranama i rudnicima, 226-235
Grubišić, M., Stojanović, M., Adamović, M. (2006) Station and Important Plants in Decontamination of soils and waste water-Phytoremediation. u: Radionuclide contamination of Serbian soil and remediation possibility, Beograd, p. 291-317
Hseu, Z. (2004) Evaluating heavy metal contents in nine composts using four digestion methods. Bioresource technology, 95(1): 53-9
Khan, E., Muhammad, A.S. (2013) Phytoremediation of heavy metals-Concepts and applications. Chemosphere, 91 (7): 869-881
Laperche, V., Logan, T.J., Gaddam, P., Traina, S.J. (1997) Effect of apatite amendments on plant uptake of lead from contaminated soil. Environmental Science and Technology, 31(10): 2745-2753
Ma, Q.Y., Traina, S.J., Logan, T.J. (1993) In situ lead immobilization by apatite. Environmental Science and Technology, 27(9): 1803
Mahabadi, A.A., Hajabbasi, M.A., Khademi, H., Kazemian, H. (2007) Soil cadmium stabilization using an Iranian natural zeolite. Geoderma, 137(3-4), 388-393
Ostroski, I.C., Barros, M.A.S.D., Silva, E.A., Dantas, J.H., Arroyo, P.A., Lima, O.C.M. (2009) A comparative study for the ion exchange of Fe(III) and Zn(II) on zeolite NaY. Journal of hazardous materials, 161(2-3): 1404-12
Prasad, M.N.V., Freitas, H.M.O. (2003) Metal hyperaccumulation in plants-Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6(3): 225-321
Puschenreiter, M., Horak, O., Friesl, W. (2005) Hartl3Low-cost agricultural measures to reduce heavy metal transfer into the food chain - a review. Plant soil environ, 51 (1): 1-11
Raičević, S., Kaluđerović-Radoičić, T., Zouboulis, A.I. (2005) In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification. Journal of hazardous materials, vol. 117, br. 1, str. 41-53
Shi, G., Chen, Z., Xu, S., Zhang, J., Wang, L., Bi, C., Teng, J. (2008) Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environmental Pollution, 251-260; 156
Shi, W., Shao, L., Shao, M., Du, S. (2009) Progress in the remediation of hazardous heavy metalpolluted soils by natural zeolite. J Hazard Mater, 170 (1), 1-6
Shi, W., Shaoa, H., Li, H., Shaoa, M., Dua, S. (2009) Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. J. Hazar. Materials, 1-6; 170
Sprynskyy, M., Buszewski, B., Terzyk, A.P., Namiesnik, J. (2006) Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. Journal of Colloid and Interface Science, 304(1): 21
Stojanović, M., Grubišić, M., Stevanović, D., Milojković, J., Ileš, D. (2008) Remediation of the Serbian soils contaminated by radionuclides in the function of the sustainable development. Chemical Industry and Chemical Engineering Quarterly / CICEQ, vol. 14, br. 4, str. 265-267
Stojanović, M., Milojković, J. (2011) Phytoremediation of uranium contaminated soils. u: Golubev Ivan [ur.] Handbook of Phytoremediation, New York, United States of America: Nova Science Publishers Inc, p. 93-136
Stojanović, M., Milojković, J., Lopičić, Z., Mihajlović, M., Rajković, M., Vitorović, G. (2012) Anthropogenic sources of uranium in Serbia-risk assessment on environment and human health. u: Vasiliev Alik Ya., Sidorov Mikhail [ur.] Uranium: Characteristics, Occurrence and Human Exposure, New York, United States of America: Nova Science Publishers Inc, 46-86
Stojanović, M., Mrdaković-Popić, J., Stevanović, D., Martinović, L.J. (2006) Phosphorus Fertilizers As Source Of Uranium In Serbian Soils. Agronomy for Sustainable Development, 179-183; 26
Stojanović, M., Martinović, Z. (1993) Pregled analitičkih metoda za određivanje urana. u: Uticaj upotrebe fosfornih đubriva na kontaminaciju uranom, Naučni skup, 18. novembar 1992, Zbornik radova, Beograd: SANU, str. 19-29
Thomson, B.M., Smith, C.L., Busch, R.D., Siegel, M.D., Baldwin, C. (2003) Removal of Metal and Radionuclides Using Apatitet and Other Natural Sorbents. J. Envir. Engrg, 129 (6): 492-499
Tunney, H., Stojanović, M., Mrdaković-Popić, J., Mcgrath, D., Zhang, C. (2009) Relationship of soil phosphorus with uranium in grassland mineral soils in Ireland using soils from a long-term phosphorus experiment and a National soil database. J. Plant Nutr. Soil Sci, 173(3), 346-352
Usman, A., Kuzyakov, Y., Lorenz, K., Stahr, K. (2006) Remediation of a soil contaminated with heavy metals by immobilizing compounds. J. Plant Nutr. Soil Sci., 205-212; 169
Westerman, R.L. (1990) Soil Testing and Plant Analysis. Soil Science of America Book Series, p. 757; 3rd Edition
Zimdahl, R.L. (1975) Entry and movement in vegetation of lead derived from air and soil sources. u: Paper presented at 68th Annu. Meeting of the Air Pollution Control Association, Boston, MA, June 15
 

O članku

jezik rada: srpski
vrsta rada: naučni članak
DOI: 10.5937/ZasMat1704487G
objavljen u SCIndeksu: 08.01.2018.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka