Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:14
  • preuzimanja u poslednjih 30 dana:13

Sadržaj

članak: 1 od 1  
2015, vol. 65, br. 2, str. 11-19
Eksperimentalno i numeričko istraživanje nadkritičnog strujanja oko hrapave kugle
aInstitut Goša, Beograd, Srbija
bUniverzitet u Beogradu, Mašinski fakultet, Srbija
cVojnotehnički institut - VTI, Beograd, Srbija

e-adresasumonja@yahoo.com
Projekat:
Naučno-tehnološka podrška unapređenju bezbednosti specijalnih drumskih i šinskih vozila (MPNTR - 35045)
Primena savremenih mernih i proračunskih tehnika za izučavanje strujnih parametara ventilacionih sistema na modelu energetski izuzetno efikasnog (pasivnog) objekta (MPNTR - 35046)
Istraživanje i optimizacija tehnoloških i funkcionalnih performansi ventilacionog mlina termoelektrane Kostolac B (MPNTR - 34028)

Sažetak
Rad predstavlja eksperimentalno i numeričko istraživanje modela sfere sa ciljem predviđanja ponašanja strujanja u prisustvu hrapavosti površina. Rezultati ukazuju na probleme i predlažu rešenje za inžinjersku primenu. Sličnost između strujnih slika dobijenih numeričkim putem i u aerotunelu je postignuta kombinovanim uvođenjem turbulencije u numeričkoj slobodnoj struji hrapavosti površine, zbog ograničavajućih zahteva turbulentnih modela.
Reference
*** ANSYS fluent 12 documentation
Achenbach, E. (1972) Experiments on the flow past spheres at very high Reynolds numbers. Journal of Fluid Mechanics, 54(03): 565
Achenbach, E. (1974) The effects of surface roughness and tunnel blockage on the flow past spheres. Journal of Fluid Mechanics, 65(01): 113
Anderson, T.J., Uhlherr, P.H.T. (1977) The influence of stream turbulence on the drag of freely entrained spheres. u: 6th Australasian Hydraulics and Fluid Mechanics Conference, Adelaide, Australia, 5-9 December
Batchelor, G.K. (2002) An Introduction to Fluid Dynamics. UK: Cambridge University Press, ISBN 0-521-66396-2
Constantinescu, G., Chapelet, M., Squires, K. (2003) Turbulence Modeling Applied to Flow over a Sphere. AIAA Journal, 41(9): 1733-1742
Constantinescu, G., Squires, K. (2004) Numerical investigations of flow over a sphere in the subcritical and supercritical regimes. Physics of Fluids, 16(5): 1449
Cross, R. Wind Tunnel Photographs, Physics Department. University of Sydney, http://www.physics.usyd.edu.au/~cross/TRAJECTORIES/Fluidflow%20Photos.pdf
Cross, R. Sports ball aerodynamics, Physics Department. University of Sydney, http://www.physics.usyd.edu.au/~cross/TRAJECTORIES/Sports%20Balls.pdf
Čantrak, Đ., Janković, N., Ristić, S., Ilić, D. (2014) Influence of the axial fan blade angle on the turbulent swirl flow characteristics. Scientific Technical Review, vol. 64, br. 3, str. 23-30
Fornberg, B. (1988) Steady viscous flow past a sphere at high Reynolds numbers. Journal of Fluid Mechanics, 190(-1): 471
Hoerner, S. (1935) Tests of spheres with reference to Reynolds number: Turbulence and surface roughness. NACA, TM 777
Jones, D.A., Clarke, D.B. (2008) Simulations of flow past sphere using a fluent code DSTO-TR-2232. Australian Government-Department of Defence-Maritime Platforms Division-Defence Science and Technology Organisation Australia
Kensrud, J.R. (2010) Determining Aerodynamic Properties of Sports Balls in Situ. Washington State University, Department of Mechanical and Materials Engineering, http://baseball.physics.illinois.edu/KensrudThesis.pdf.; MSc Thesis
Krumins, M.V. (1972) A review of sphere drag coefficient applicable to atmospheric sensing. Silver Spring, Maryland: Naval Ordnance Laboratory, NOLTR-72-34
Mehta, R., Pallis, J.M. (2001) Dynamics: Sport Ball aerodynamics: effects of velocity, spin and roughness. u: Material and Science in Sports, TMS, pp. 185-197
Riabouchinsky, D.P. (1921) On the resistance of spheres and elipsiods in Wind tunnels. NACA Technical Note, No. 44
Ristić, S. (2004) Vizuelizacija strujanja oko kugle metodom uljanih emulzija u aerotunelu T-35. VTI
Ristić, S. (2013) A - a view in the invisible. Theoretical and Applied Mechanics, vol. 40, br. 1, str. 87-119
Ristić, S. (2007) Flow visualization techniques in wind tunnels: Optical methods (Part II). Scientific Technical Review, vol. 57, br. 2, str. 38-49
Ristić, S. (2007) Flow visualization techniques in wind tunnels, Part I: Non optical methods. Scientific Technical Review, vol. 57, br. 1, str. 39-50
Schlichting, H. (1979) Boundary-Layer Theory. New York: McGraw-Hill, ISBN 0-07-055334-3; 7th edn
Taneda, S. (2000) Flow visualization: Scientific images. Tokyo, Japan: SciPress, ISBN 4-88704-126-8
Terwagne, D., Brojan, M., Reis, P.M. (2014) Smart Morphable Surfaces for Aerodynamic Drag Control. Weinheim: WILEY VCH Verlag GmbH & Co. KGaA, pp. 1-4
Wieselsberger, C. (1922) New data on the laws of fluid resistance. NACA, No. 84
Zahm, A.F. (1927) Flow and drag formulas for simple quadrics. NACA, Report No. 253
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/STR1502011L
objavljen u SCIndeksu: 24.01.2016.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka