Short Review on the Aggressive Behaviour: Genetical, Biological Aspects and Oxytocin Relevance

Article Preview

Abstract:

In this mini-review we were interested in describing the main genetic, biological and mechanistic aspects of the aggressive behaviour in human patients and animal models. It seems that violent behaviour and impulsive traits present a multifactorial substrate, which is determined by genetic and non-genetic factors. Thus, aggressivity is regulated by brain regions such as the amygdala, which controls neural circuits for triggering defensive, aggressive or avoidant behaviour. Moreover, other brain structures such as the anterior cingulate cortex and prefrontal cortex regions could modulate circuits involved in aggression. Regarding the genetic aspects, we could mention the mutations in the monoamine oxidase or the polymorphisms of the genes involved in the metabolism of serotonin, such as tryptophan hydroxylase. Also, besides the low levels of serotonin metabolites, which seem to be associated with impulsive and aggressive traits, there are good evidences that deficiencies in glutamate transmission, as well as testosterone, vasopressin, hypochloesterolemia or oxytocin modifications could be related to the aggressive behaviour. Regarding oxytocin we present here in the last chapter the controversial results from the current literature regarding the various effects exhibited by oxytocin administration on the aggressive behavior, considering the increased interest in understanding the role of oxytocin on the main neuropsychiatric disorders.

Info:

Pages:

43-53

Citation:

Online since:

March 2016

Export:

* - Corresponding Author

[1] C. Anderson, B. Bushman, Human aggression, Annual Review of Psychology. 53 (2000) 27–51.

Google Scholar

[2] J. Ramírez, J. Andreu, Aggression, and some related psychological constructs (anger, hostility, and impulsivity); some comments from a research project Neuroscience and Biobehavioural Reviews 30 (2006) 276–91.

DOI: 10.1016/j.neubiorev.2005.04.015

Google Scholar

[3] N. Sillmay, Dicţionar de Psihologie Larousse. Ed. Univers Enciclopedic, Bucharest, 1995, 19.

Google Scholar

[4] M. Briffa, Territoriality and Aggression, Nature Education Knowledge. 3 (2010) 81.

Google Scholar

[5] M. Van Staaden, W. Earcy, R. Hanlon, Signaling Aggression in Aggression Academic Press, Stephen F. Goodwin, 2011.

Google Scholar

[6] D. Maestripieri, D. Functional Aspects of Maternal Aggression in Mammals, Canadian Journal of Zoology. 70 (1992) 1069–1077.

DOI: 10.1139/z92-150

Google Scholar

[7] C. Tanner, Numerical assessment affects aggression and competitive ability: a team-fighting strategy for the ant Formica xerophila, Proceedings. Biological Sciences, 273 (2006) 2737–42.

DOI: 10.1098/rspb.2006.3626

Google Scholar

[8] A. Rezanur Rahman, Cultural differences in aggression: a case study in Bangladesh, J. Life Earth Sci. 3-4 (2009) 2009.

Google Scholar

[9] M. Bond, Culture and aggression-from context to coercion, Pers Soc Psychol Rev. 8 (2004) 62-78.

DOI: 10.1207/s15327957pspr0801_3

Google Scholar

[10] C. Cornaggia, M. Beghi, F. Pavone, F. Barale, Aggression in psychiatry wards: a systematic review. Psychiatry Res. 189 (2011) 10-20.

DOI: 10.1016/j.psychres.2010.12.024

Google Scholar

[11] F. Poulin, M. Boivin, Reactive and Proactive Aggression :Evidence of a Two-Factor Model, Psychological Assessment. 12 (2000) 115-122.

DOI: 10.1037/1040-3590.12.2.115

Google Scholar

[12] K. Barlow, B. Grenyer, O. Ilkiw-Lavalle, Prevalence and precipitants of aggression in psychiatric inpatient units, Aust N Z J Psychiatry. 34 (2000) 967-74.

DOI: 10.1080/000486700271

Google Scholar

[13] P. Reebye, Aggression During Early Years — Infancy and Preschool, Child Adolesc Psychiatr Rev. 14 (2005) 16–20.

Google Scholar

[14] H. Heyne, S. Lautenschläger, R. Nelson, F. Besnier, M. Rotival, A. Cagan, R. Kozhemyakina, I. Plyusnina, L. Trut, O. Carlborg, E. Petretto, L. Kruglyak, S. Pääbo, T. Schöneberg, F. Albert, Genetic influences on brain gene expression in rats selected for tameness and aggression, Genetics. 198 (2014) 1277-90.

DOI: 10.1534/genetics.114.168948

Google Scholar

[15] M. Bortolato, K. Chen, S. Godar, G. Chen, W. Wu, I. Rebrin I, M. Farrell, A. Scott, C. Wellman, J. Shih, Social deficits and perseverative behaviours, but not overt aggression, in MAO-A hypomorphic mice, Neuropsychopharmacology. 36 (2011) 2674-88.

DOI: 10.1038/npp.2011.157

Google Scholar

[16] A. Marusic, A. Farmer, Genetic risk factors as possible causes of the variation in European suicide rates, Br J Psychiatry. 179 (2001) 194-6.

DOI: 10.1192/bjp.179.3.194

Google Scholar

[17] A. Takahashi, M. Isabel, R. Quadros, M. de Almeida, K. Miczek, Behavioural and Pharmacogenetics of Aggressive Behaviour, Curr Top Behav Neurosci. 12 (2012) 73–138.

Google Scholar

[18] P. Trzepacz, P. Yu, P. Bhamidipati, B. Willis, T. Forrester, L. Tabas, A. Schwarz, Alzheimer's Disease Neuroimaging Initiative. Frontolimbic atrophy is associated with agitation and aggression in mild cognitive impairment and Alzheimer's disease, Alzheimers Dement. 9 (2013) S95-S104.

DOI: 10.1016/j.jalz.2012.10.005

Google Scholar

[19] A. New, E. Hazlett, M. Buchsbaum, Blunted prefrontal cortical 18-fluorodeoxyglucose positron emission response to metachloro-phenylpiperazine in impulsive aggression, Arch Gen Psychiatry. 59 (2002) 621-629.

DOI: 10.1001/archpsyc.59.7.621

Google Scholar

[20] A. Falkner, P. Dollar, P. Perona, D. Anderson, D. Lin, Decoding ventromedial hypothalamic neural activity during male mouse aggression, J Neurosci. 34 (2014) 5971-84.

DOI: 10.1523/jneurosci.5109-13.2014

Google Scholar

[21] L. van Elst, F. Woermann, L. Lemieux, P. Thompson, M. Trimble, Affective aggression in patients with temporal lobe epilepsy: a quantitative MRI study of the amygdala, Brain. 123 (2000) 234-43.

DOI: 10.1093/brain/123.2.234

Google Scholar

[22] D. Dougherty, F. Moeller, J. Bjork, D. Marsh, Plasma L-tryptophan depletion and aggression, Adv Exp Med Biol. 467 (1999) 57-65.

DOI: 10.1007/978-1-4615-4709-9_7

Google Scholar

[23] G. Pandey, Biological basis of suicide and suicidal behaviour. Bipolar Disord. 15 (2013) 524-41.

Google Scholar

[24] H. Soderstrom, K. Blennow, A. Sjodin, A. Forsman, New evidence for an association between the CSF HVA:5-HIAA ratio and psychopathic traits, J Neurol Neurosurg Psychiatry. 74 (2003) 918–921.

DOI: 10.1136/jnnp.74.7.918

Google Scholar

[25] E. Audero, B. Mlinar, G. Baccini, Z. Skachokova, R. Corradetti, C. Gross, Suppression of serotonin neuron firing increases aggression in mice, J Neurosci. 33 (2013) 8678-88.

DOI: 10.1523/jneurosci.2067-12.2013

Google Scholar

[26] C. Widom, L. Brzustowicz, MAOA and the "cycle of violence": childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behaviour, Biol Psychiatry. 60 (2006) 684–910.

DOI: 10.1016/j.biopsych.2006.03.039

Google Scholar

[27] O. Cases, I. Seif, J. Grimsby, P. Gaspar, K. Chen, S. Pournin, U. Müller, Aggressive behaviour and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA, Science. 268 (1995) 1763-6.

DOI: 10.1126/science.7792602

Google Scholar

[28] A. Caspi, J. McClay, T. Moffitt, J. Mill, J. Martin, I. Craig, A. Taylor, Role of genotype in the cycle of violence in maltreated children, Science. 297 (2002) 851–854.

DOI: 10.1126/science.1072290

Google Scholar

[29] J. Kim-Cohen, A. Caspi, A. Taylor, B. Williams, R. Newcombe, I. Craig, T. Moffitt, MAOA, maltreatment, and gene-environment interaction predicting children's mental health: new evidence and a meta-analysis, Mol Psychiatry. (2006)

DOI: 10.1037/e552512012-071

Google Scholar

[30] N. Alia-Klein, R. Goldstein, A. Kriplani, J. Logan, D. Tomasi, B. Williams, F. Telang, E. Shumay, A. Biegon, I. Craig, F. Henn, G. Wang, N. Volkow, J. Fowler, Brain monoamine oxidase A activity predicts trait aggression, J Neurosci. 28 (2008) 5099–5104.

DOI: 10.1523/jneurosci.0925-08.2008

Google Scholar

[31] M. Niciu, B. Kelmendi, G. Sanacora, Overview of glutamatergic neurotransmission in the nervous system, Pharmacology, Biochemistry, and Behaviour. 100 (2012) 656–64.

DOI: 10.1016/j.pbb.2011.08.008

Google Scholar

[32] K. Schubert, M. Shaikh, A. Siegel, NMDA receptors in the midbrain periaqueductal gray mediate hypothalamically evoked hissing behaviour in the cat, Brain Research. 726 (1996) 80–90.

DOI: 10.1016/0006-8993(96)00261-2

Google Scholar

[33] R. Bandler, Identification and midbrain periaqueductal grey neurones mediating aggressive and defensive behaviour by intracerebral microinjections of excitatory amino acids. New York: Alan R. Liss, Inc, (1984) 369–91

DOI: 10.1016/0166-4328(85)90058-0

Google Scholar

[34] E. Coccaro, R. Lee, P. Vezina, Cerebrospinal fluid glutamate concentration correlates with impulsive aggression in human subjects, J Psychiatr Res. 47 (2013) 1247-53.

DOI: 10.1016/j.jpsychires.2013.05.001

Google Scholar

[35] K. Chichinadze, T. Domianidze, T. Matitaishvili, N. Chichinadze, A. Lazarashvili, Possible relation of plasma testosterone level to aggressive behaviour of male prisoners, Bull Exp Biol Med. 149 (2010) 7–9.

DOI: 10.1007/s10517-010-0861-z

Google Scholar

[36] M. Giammanco, G. Tabacchi, S. Giammanco, D. Di Majo, M. La Guardia, Testosterone and aggressiveness, Med Sci Monit. 11 (2005) 136–45.

Google Scholar

[37] P. Negri-Cesi, A. Colciago, F. Celotti, M. Motta, Sexual differentiation of the brain: role of testosterone and its active metabolites, J Endocrinol Invest. 27 (2004) 120–7.

Google Scholar

[38] Y. Kuepper, N. Alexander, R. Osinsky, E. Mueller, A. Schmitz, P. Netter, Aggression--interactions of serotonin and testosterone in healthy men and women, Behav Brain Res. 206 (2010) 93–100.

DOI: 10.1016/j.bbr.2009.09.006

Google Scholar

[39] G. Van Wingen, L. Ossewaarde, T. Backstrom, E. Hermans, G. Fernandez, Gonadal hormone regulation of the emotion circuitry in humans, Neuroscience. 191 (2011) 38–45.

DOI: 10.1016/j.neuroscience.2011.04.042

Google Scholar

[40] S. Caughey, S. Klampfl, V. Bishop, J. Pfoertsch, I. Neumann, O. Bosch, S. Meddle, Changes in the intensity of maternal aggression and central oxytocin and vasopressin V1a receptors across the peripartum period in the rat, J Neuroendocrinol. 23 (2011) 113-24.

DOI: 10.1111/j.1365-2826.2011.02224.x

Google Scholar

[41] B. Golomb, T. Kane, J. Dimsdale, Severe irritability associated with statin cholesterol-lowering drugs, QJM. 97(2004) 229-35.

DOI: 10.1093/qjmed/hch035

Google Scholar

[42] C. Ferris, Vasopressin/oxytocin and aggression, Novartis Found Symp. 2005;268:190-8

Google Scholar

[43] C. Widom, L. Brzustowicz, MAOA and the "cycle of violence": childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behaviour, Biol Psychiatry. 60 (2006) 684–910.

DOI: 10.1016/j.biopsych.2006.03.039

Google Scholar

[44] E. Coccaro, R. Kavoussi, R. Hauger, T. Cooper, C. Ferris, Cerebrospinal fluid vasopressin levels: correlates with aggression and serotonin function inpersonality-disordered subjects, Arch Gen Psychiatry. 55 (1998) 708-14.

DOI: 10.1001/archpsyc.55.8.708

Google Scholar

[45] Yatawara CJ, Einfeld SL, Hickie IB, Davenport TA, Guastella AJ. The effect of oxytocin nasal spray on social interaction deficits observed in young children with autism: a randomized clinical crossover trial. Mol Psychiatry. 2015 Oct 27

DOI: 10.1038/mp.2015.162

Google Scholar

[46] Guastella AJ, Ward PB, Hickie IB, Shahrestani S, Hodge MA, Scott EM, Langdon R. A single dose of oxytocin nasal spray improves higher-order social cognition in schizophrenia. Schizophr Res. 2015;168(3):628-33.

DOI: 10.1016/j.schres.2015.06.005

Google Scholar

[47] Alvares GA, Chen NT, Balleine BW, Hickie IB, Guastella AJ. Oxytocin selectively moderates negative cognitive appraisals in high trait anxious males. Psychoneuroendocrinology. 2012;37(12):2022-31.

DOI: 10.1016/j.psyneuen.2012.04.018

Google Scholar

[48] Einfeld SL, Smith E, McGregor IS, Steinbeck K, Taffe J, Rice LJ, Horstead SK, Rogers N, Hodge MA, Guastella AJ. A double-blind randomized controlled trial of oxytocin nasal spray in Prader Willi syndrome. Am J Med Genet A. 2014;164A(9):2232-9.

DOI: 10.1002/ajmg.a.36653

Google Scholar

[49] Dadds MR, Moul C, Cauchi A, Dobson-Stone C, Hawes DJ, Brennan J et al. Methylation of the oxytocin receptor gene and oxytocin blood levels in the development of psychopathy. Dev Psychopathol. 2014;26(1):33-40.

DOI: 10.1017/s0954579413000497

Google Scholar

[50] Hernádi A, Kis A, Kanizsár O, Tóth K, Miklósi B, Topál J. Intranasally administered oxytocin affects how dogs (Canis familiaris) react to the threatening approach of their owner and an unfamiliar experimenter. Behav Processes. 2015;119:1-5.

DOI: 10.1016/j.beproc.2015.07.001

Google Scholar

[51] Rault JL, Carter CS, Garner JP, Marchant-Forde JN, Richert BT, Lay DC Jr. Repeated intranasal oxytocin administration in early life dysregulates the HPA axis and alters social behaviour. Physiol Behav. 2013;112-113:40-8.

DOI: 10.1016/j.physbeh.2013.02.007

Google Scholar

[52] Hellmanna J, Reddonb A., Ligockia I., O'Connorb C, Kelly A., Susan E. et al. Group response to social perturbation: impacts of isotocin and the social landscape. Animal Behaviour. 2015;105:55–62.

DOI: 10.1016/j.anbehav.2015.03.029

Google Scholar

[53] Bosch OJ, Meddle SL, Beiderbeck DI, Douglas AJ, Neumann ID. Brain oxytocin correlates with maternal aggression: link to anxiety. J Neurosci. 2005;25(29):6807-15.

DOI: 10.1523/jneurosci.1342-05.2005

Google Scholar

[54] Bosch OJ. Maternal aggression in rodents: brain oxytocin and vasopressin mediate pup defence. Philos Trans R Soc Lond B Biol Sci. 2013;368(1631):20130085.

DOI: 10.1098/rstb.2013.0085

Google Scholar

[55] DeWall C, Gillath O., Pressman D., Black L., Bartz A., Moskovitz J., Stetler A. When the Love Hormone Leads to Violence: Oxytocin Increases Intimate Partner Violence Inclinations Among High Trait Aggressive People Social Psychological and Personality Science. February 12, 2015:.

DOI: 10.1177/1948550613516876

Google Scholar

[56] Lind NM, Moustgaard A, Jelsing J, Vajta G, Cumming P, Hansen AK. The use of pigs in neuroscience: modeling brain disorders. Neurosci Biobehav Rev 2007;31:728–51.

DOI: 10.1016/j.neubiorev.2007.02.003

Google Scholar

[57] AlcornIII L., Rathnayaka N., Swann C., Gerard Moeller F., Lane D. Effects of Intranasal Oxytocin on Aggressive Responding in Antisocial Personality Disorder. The Psychological Record. 2015;65(4):691-703.

DOI: 10.1007/s40732-015-0139-y

Google Scholar

[58] De Jong D, Beiderbeck D., Neumann I. Oxytocin reduces aggressive behaviour in virgin female rats. Neuroscience 2013 - Society for Neuroscience, Nov 9-13, San Diego, poster no. 754.09.

Google Scholar

[59] Lee H, Macbeth A, Pagani J, Young W. Oxytocin: the great facilitator of life. Prog. Neurobiol. 2009;88:127–151.

Google Scholar

[60] Romero T, Nagasawa M, Mogi K, Hasegawa T, Kikusui T. Oxytocin promotes social bonding in dogs. Proc. Natl. Acad. Sci. 20104;111:9085–9090.

DOI: 10.1073/pnas.1322868111

Google Scholar

[61] Alcorn J, Dias N, Moeller F, Lane S. A preliminary analysis of aggressive behaviour under oxytocin dose. Drug Alcohol Depend. 2014;140:4.

DOI: 10.1016/j.drugalcdep.2014.02.032

Google Scholar

[62] De Dreu C. Oxytocin modulates cooperation within and competition between groups: an integrative review and research agenda. Horm. Behav. 2012;61:419–428.

DOI: 10.1016/j.yhbeh.2011.12.009

Google Scholar

[63] De Dreu CK, Greer LL, Handgraaf MJ, Shalvi S, Van Kleef GA, Baas M, Ten Velden FS, Van Dijk E, Feith SW. The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science. 2010;328(5984):1408-11.

DOI: 10.1126/science.1189047

Google Scholar