[1]
T. Robinson et al., Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative, Bioresource Technology. 77(3) (2001) 247-275.
DOI: 10.1016/s0960-8524(00)00080-8
Google Scholar
[2]
A. Ezgi, B. Mufit, Y. Mustafa, Removal efficiency of a calyx [4] arene-based polymer for water-soluble carcinogenic direct azo dyes and aromatic amines, Journal of Hazardous Materials. 162 (2008) 960-966.
DOI: 10.1016/j.jhazmat.2008.05.127
Google Scholar
[3]
M. Mehra, T.R. Sharma, Photo catalytic degradation of two commercial dyes in aqueous phase using photo catalyst TiO2, Advances in Applied Science Research. 3(2) (2012) 849-853.
Google Scholar
[4]
E. Fosso-Kankeu et al., Gum ghatti and acrylic acid based biodegradable hydrogels for the effective adsorption of cationic dyes, Journal of Industrial and Engineering Chemistry. 22 (2015) 171-178.
DOI: 10.1016/j.jiec.2014.07.007
Google Scholar
[5]
G. Crini, Non-conventional low-cost adsorbents for dye removal: A review, Bioresource technology. 97(9) (2006) 1062-1070.
DOI: 10.1016/j.biortech.2005.05.001
Google Scholar
[6]
R. Malik, D.S. Ramteke, S.R. Wate, Adsorption of malachite green on groundnut shell waste based powdered activated carbon, Waste management. 27(9) (2006) 1-8.
DOI: 10.1016/j.wasman.2006.06.009
Google Scholar
[7]
I. Arslan et al., H2O2/UV-C and Fe2+/H2O2/UV-C versus TiO2/UV-A treatment for reactive dye wastewater, Journal of Environmental Engineering. 126(10) (2000) 903.
DOI: 10.1016/j.seppur.2005.07.036
Google Scholar
[8]
N. Stock et al., Combinative sonolysis and photocatalysis for textile dye degradation, Environmental Science & Technology. 34(9) (2000) 1747.
DOI: 10.1021/es991231c
Google Scholar
[9]
A. Ahmad et al., Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater, RSC. Adv. 5(39) (2015) 30801–30818.
DOI: 10.1039/c4ra16959j
Google Scholar
[10]
F. Meng et al., Localized fluorescent complexation enables rapid monitoring of airborne nanoparticles, Environmental Science: Nano. 1(4) (2014) 358–366.
DOI: 10.1039/c4en00017j
Google Scholar
[11]
F. Meng, V.M. Ugaz, Instantaneous physico-chemical analysis of suspension-based Nanomaterials, Sci. Rep. 5 (2015) 9896.
DOI: 10.1038/srep09896
Google Scholar
[12]
C. Hu, Y. Wang, Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastewater, Chemosphere. 39 (1999) 2107-2115.
DOI: 10.1016/s0045-6535(99)00118-6
Google Scholar
[13]
N. Deneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst for TiO2, Journal of Photochemistry and Photobiology. 162 (2004) 317-322.
DOI: 10.1016/s1010-6030(03)00378-2
Google Scholar
[14]
J. Jeni, S. Kanmani, Solar nanophotocatalytic decolorisation of reactive dyes using titanium dioxide, Iran J. Environ. Health. Sci. Eng. 8(1) (2011).
Google Scholar
[15]
M.T. Aghareed, S.H. Dina, Synthesis of TiO2 nanoparticles and their photocatalytic activity for methylene blue, American Journal of Nanomaterials. 3(2) (2015) 57-63.
Google Scholar
[16]
J.A. Abbas, H.K. Salih, H.H Falah, Photocatalytic degradation of textile dyeing wastewater using titanium dioxide and zinc oxide, E-Journal of Chemistry. 5(2) (2008) 219-223.
DOI: 10.1155/2008/876498
Google Scholar
[17]
P.S. Jon, D.F. Ollis, Integration of chemical and biological oxidation processes for water treatment: Review and recommendations, Environmental Progress. 14(2) (1995) 88-103.
DOI: 10.1002/ep.670140212
Google Scholar
[18]
S. Mioara, Z. Carmen, Advanced oxidation processes for decolorization of aqueous solution containing acid red G azo dye, Central European Journal of Chemistry. 2(4) (2004) 573-588.
DOI: 10.2478/bf02482722
Google Scholar
[19]
R. Chhotu, K.P. Ravi, S. Varinder, Photocatalytic degradation of textile dye by using titanium dioxide nanocatalyst, International Journal of Theoretical & Applied Sciences. 4(2) (2012) 82-88.
Google Scholar
[20]
B. Priti, S. Dhiraj, Photodegradation of commercial dye, procion blue herd from real textile wastewater using nanocatalysts, Desalination. 267 (2011) 244–249.
DOI: 10.1016/j.desal.2010.09.034
Google Scholar
[21]
N. Elaziouti, J. Laoued, A. Bekka, ZnO-assisted photocatalytic degradation of congo red and benzopurpurine 4B in aqueous solution, J. Chem. Eng. Process Technol. 2 (2011) 1-9.
DOI: 10.4172/2157-7048.1000106
Google Scholar
[22]
I.K. Konstantinou, T.A. Albanis, TiO2-Assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review, Applied Catalysis B-Environmental. 49(1) (2004) 1-14.
DOI: 10.1016/j.apcatb.2003.11.010
Google Scholar
[23]
S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, Journal of Hazardous Materials. 141(3) (2007) 581-590.
DOI: 10.1016/j.jhazmat.2006.07.035
Google Scholar