Alfalfa (Medicago sativa L.)/Crops intercropping provides a feasible way to improve productivity under environmental constraints

Authors

  • Amal Guerchi
  • Wiem Mnafgui
  • Alessio Mengoni
  • Mounawer Badri

DOI:

https://doi.org/10.56027/JOASD.112023

Keywords:

Intercropping, Alfalfa, Environmental Constraints, Productivity, Quality

Abstract

The growing threats facing both food security and the environment require a sustainable development. The need for sustainable agricultural alternative systems is prompted by economic, environmental and biological perspectives. Producers require cultivation methods that minimize environmental damage while simultaneously preserving and improving farm profitability. One of the key solutions is intercropping. Which is a cropping system where the crop can coexist in the same soil and can be irrigated simultaneously at the same time. It is used to improve crop yields, land use rates, as well as to reduce the barriers towards sustainable cultivation and the development of disease and insect pests as well as control weed growth. Besides, intercropping of legumes in a cropping system provides advantages for non-legumes due to improved nutrient distribution, to improved soil biology and to enhanced use of available resources. The biological fixation of nitrogen by legume crops makes intercropping legumes, especially alfalfa, a cost-effective solution to the problem of using artificial fertilizers. Alfalfa intercropping does not only meet the requirements of food security and forage needs, but also preserves the eco-environment, which has made this cultivation model a very promising one for agricultural development under environmental constraints.

References

Al-Shareef, A.R., Ismail, S.M., & El-Nakhlawy, F.S. (2018). Blue panic-alfalfa combination as affected by irrigation water regimes and forage mixing ratio under subsurface drip irrigation in arid regions. Grassland Science, 64(4), 234–244.

Berti, M.T., Lukaschewsky, J., &Samarappuli, D. P. (2021a). Intercropping alfalfa into silage maize can be more profitable than maize silage followed by spring-seeded alfalfa. Agronomy, 11(6), 1196.

Berti, M.T., Cecchin, A., Samarappuli, D.P., Patel, S., Lenssen,A.W., Moore, K.J., Wells, S.S., &Kazula, M.J. (2021b). Alfalfa established successfully in intercropping with corn in the midwest US.Agronomy, 11(8), 1676.

Bhattarai, S., Biswas, D., Fu, Y. B., & Biligetu, B. (2020). Morphological, physiological, and genetic responses to salt stress in alfalfa: A review.Agronomy 10(4), 577.

Bo, P.T., Dong, Y., Zhang, R., Htet, M.N.S., &Hai, J. (2022a). Optimization of alfalfa-based mixed cropping with winter wheat and ryegrass in terms of forage yield and quality traits. Plants, 11(13), 1752.

Bo, P.T., Bai, Y., Dong, Y., Shi, H., SoeHtet, M.N., Samoon, H.A., Zhang, R., Tanveer, S.K., &Hai, J. (2022b). Influence of different harvesting stages and cereals–legume mixture on forage biomass yield, nutritional compositions, and quality under loess plateau region. Plants, 11(20), 2801.

Umar, O.B., Ranti, L.A., Abdulbaki, A.S., Bola, A.L., Abdulhamid, A.K., Biola, M.R.,&Victor, K.O. (2021).Stresses in plants: biotic and abiotic. Agronomy, chapter (Current trends in Wheat research; Ansari, M., Ed.; IntechOpen).DOI10.5772/intechopen.87473

Cui, T., Fang, L., Wang, M., Jiang, M., &Shen, G. (2018).Intercropping of gramineous pasture ryegrass (Loliumperenne L.) and leguminous forage alfalfa (Medicago sativa L.) increases the resistance of plants to heavy metals.Journal of Chemistry, 2018, 1–12.

Degooyer, T.A., Pedigo, L.P., & Rice, M.E. (1999). Effect of alfalfa-grass intercrops on insectpopulations.Environmental Entomology, 28(4), 703-710.

Fahey, C., Koyama, A., Antunes, P.M., Dunfield, K., & Flory, S.L. (2020). Plant communities mediate the interactive effects of invasion and drought on soil microbial communities. ISME Journal, 14(6), 1396–1409.

Fu, Z., Dan, Zhou, L., Chen, P., Du, Q., Pang, T., Song, C., Wang, X. Chun, Liu, W. Guo, Yang, W. Yu, & Yong, T. Wen. (2019). Effects of maize-soybean relay intercropping on crop nutrient uptake and soil bacterialcommunity. Journal of IntegrativeAgriculture, 18(9), 2006-2018.

Gómez-Sagasti,M.T., Garbisu,C., Urra, J., Míguez, F., Artetxe, U., Hernández, A., Vilela, J., Alkorta, I.,&Becerril, J.M. (2021).Mycorrhizal-assisted phytoremediation and intercropping strategies improved the health of contaminated soil in a Peri-urban area. Frontiers in Plant Science, 12, 693044.

Hassen, A., Talore, D.G., Tesfamariam, E.H., Friend, M.A., &Mpanza, T.D.E. (2017). Potential use of forage-legume intercropping technologies to adapt to climate-change impacts on mixed crop-livestock systems in Africa: a review. Regional Environmental Change, 17(6), 1713–1724.

Huss, C.P., Holmes, K.D., &Blubaugh, C.K. (2022).Benefits and risks of intercropping for crop resilience and pest management.Journal of Economic Entomology, 115(5), 1350–1362.

Iqbal, M. A., Hamid, A., Ahmad, T., Siddiqui, M. H., Hussain, I., Ali, S., Ali, A., & Ahmad, Z. (2019).Foragesorghum-legumes intercropping: Effect on growth, yields, nutritional quality and economic returns. Bragantia, 78(1), 82–95.

Jeder, S., Nouairi, I., Melki, F., Chebil, S., Louati, F., Mhadhbi, H., &Zribi, K. (2021). Effect of intercropping alfalfa on physiological and biochemical parameters of young grapevine plants cultivated on agricultural and contaminated soils. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 1–14.

Lai, H., Gao, F., Su, H., Zheng, P., Li, Y., & Yao, H. (2022). Nitrogen distribution and soil microbial community characteristics in a legume–cereal intercropping system: a review. Agronomy, 12(8), 1900.

Li, C., Stomph, T. J., Makowski, D., Li, H., Zhang, C., Zhang, F., & van der Werf, W. (2023a).The productive performance of intercropping.Proceedings of the National Academy of Sciences of the United States of America, 120(2), e2201886120.

Li, C., Hoffland, E., Kuyper, T. W., Yu, Y., Zhang, C., Li, H., Zhang, F., & van der Werf, W. (2020a). Syndromes of production in intercropping impact yield gains. Nature Plants, 6(6), 653–660.

Li, M., Wei, Y., Yin, Y., Zhu, W., Bai, X., & Zhou, Y. (2023b).Characteristics of soil physicochemical properties and microbial community of mulberry (Morusalba L.) and alfalfa (Medicago sativa L.) intercropping system in northwest Liaoning.Microorganisms, 11(1), 114.

Li, X., Zhao, Y. S., Sun, G. Y., Jin, W. W., Sun, M. L., Zhang, H. H., Xu, N., Cai, D. J., & Li, D. M. (2020b). Linking soil bacterial community and crop yield in a wheat (TriticumaestivumL.)/alfalfa (Medicago sativa L.)intercropping system. Applied Ecology and Environmental Research, 18(3), 4487–4505.

Liang, J., & Shi, W. (2021). Cotton/halophytes intercropping decreases salt accumulation and improves soil physicochemical properties and crop productivity in saline-alkali soils under mulched drip irrigation: A three-year field experiment. Field Crops Research, 262, 108027.

Liu, X., Zhao, Y., Tong, C., & Wu, Y. (2021).Changes in soil physicochemical properties and soil bacterial community in alfalfa (Medicago sativa L.)/oat (Avenanuda L.) intercropping system.ResearchSquare, 10, 21203.

Litalien, A., &Zeeb, B. (2020).Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation.Science of the Total Environment, 698, 134235.

Ma, J., Lei, E., Lei, M., Liu, Y., & Chen, T. (2018). Remediation of Arsenic contaminated soil usingmalposed intercropping of Pterisvittata L. and maize. Chemosphere, 194, 737–744.

Mårtensson, L.-M.D., Barreiro, A., Li, S., & Steen Jensen, E. (2022). Agronomic performance, nitrogen acquisition and water-use efficiency of the perennial grain crop Thinopyrumintermedium in a monoculture and intercropped with alfalfa in Scandinavia.Agronomy for Sustainable Development, 42(2), 21.

Mir, M.S., Saxena, A., Kanth, R.H., Raja, W., Dar, K. A., Mahdi, S.S., Bhat, T.A., Naikoo, N.B., Nazir, A., Amin, Z., Mansoor, T., Myint, M.Z., Khan, M. R., Mohammad, I., & Mir, S.A. (2022). Role of intercropping in sustainable insect-pest management: a review. International Journal of Environment and Climate Change, 3390–3404.

Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security.Journal of Environmental Management, 280, 111736.

Pannu, M.W., Meinhardt, K.A., Bertagnolli, A., Fransen, S.C., Stahl, D.A., & Strand, S.E. (2019). Nitrous oxide emissions associated with ammonia-oxidizing bacteria abundance in fields of switchgrass with and without intercropped alfalfa. Environmental Microbiology Reports, 11(5), 727–735.

Patel, S., Bartel, C.A., Lenssen, A.W., Moore, K. J., &Berti, M.T. (2021). Stem density, productivity, and weed community dynamics in corn-alfalfa intercropping. Agronomy, 11(9), 1696.

Pang, Z., Dong, F., Liu, Q., Lin, W., Hu, C., & Yuan, Z. (2021). Soil metagenomics reveals effects of continuous sugarcane cropping on the structure and functional pathway of rhizospheric microbial community. Frontiers in Microbiology, 12, 627569.

Pellissier, M. E., Nelson, Z., &Jabbour, R. (2017).Ecology and management of the alfalfa weevil (Coleoptera: Curculionidae) in Western United States alfalfa. Journal of Integrated Pest Management, 8(1), 5.

Qadir, M., Steffens, D., Yan, F., & Schubert, S. (2003). Sodium removal from a calcareous saline-sodic soil through leaching and plant uptake during phytoremediation.Land Degradation and Development, 14(3), 301–307.

Qiong, W., Yu-hui, W., Xiao-hong, Z., En-hui, L., &Shen-jiao, Y.(2022). Analysis of crop growth rhythm in alfalfa-wheat intercropping. Scholars Journal of Agriculture and Veterinary Sciences, 9(3), 35–42.

Radovic, J., Sokolovic, D., &Markovic, J. (2009). Alfalfa-most important perennial forage legume in animal husbandry. Biotechnology in Animal Husbandry, 25(5-6–1), 465–475.

Ramos-Ulate, C.M., Pérez-Álvarez, S., Guerrero-Morales, S., &Palacios-Monarrez, A. (2022).Biofertilization and nanotechnology in alfalfa (Medicago sativa L.) as alternatives for a sustainable crop.Characterization and Application of Nanomaterials, 5(2), 111.

Shao, Z. Q., Zheng, C. C., Postma, J. A., Lu, W. L., Qiang, G. A. O., Gao, Y. Z., & Zhang, J. J.. (2021). Nitrogen acquisition, fixation and transfer in maize/alfalfa intercrops are increased through root contact and morphological responses to interspecies competition. Journal of Integrative Agriculture, 20(8), 2240–2254.

Skelton, L.E., & Barrett, G.W. (2005).A comparison of conventional and alternative agroecosystems using alfalfa (Medicagosativa) and winter wheat (Triticumaestivum).Renewable Agriculture and Food Systems, 20(1), 38–47.

Su, K., Mu, L., Zhou, T., Kamran, M., & Yang, H. (2022). Intercropped alfalfa and spring wheat reduces soil alkali-salinity in the arid area of northwestern China. Plant and Soil 1-18.

Sun, B., Peng, Y., Yang, H., Li, Z., Gao, Y., Wang, C., Yan, Y., & Liu, Y. (2014). Alfalfa (Medicago sativa L.)/maize (Zea mays L.) intercropping provides a feasible way to improve yield and economic incomes in farming and pastoral areas of northeast China. PLoS ONE, 9(10).

Sun, B., Gao, Y., Yang, H., Zhang, W., & Li, Z. (2019). Performance of alfalfa rather than maize stimulates system phosphorus uptake and overyielding of maize/alfalfa intercropping via changes in soil water balance and root morphology and distribution in a light chernozemic soil. Plant and Soil, 439(1–2), 145–161.

Sun, B., Gao, Y., Wu, X., Ma, H., Zheng, C., Wang, X., Zhang, H., Li, Z., & Yang, H. (2020). The relative contributions of pH, organic anions, and phosphatase to rhizosphere soil phosphorus mobilization and crop phosphorus uptake in maize/alfalfa polyculture. Plant and Soil, 447(1–2), 117–133.

Sun, M., Fu, D., Teng, Y., Shen, Y., Luo, Y., Li, Z., & Christie, P. (2011). In situ phytoremediation of PAH-contaminated soil by intercropping alfalfa (Medicago sativa L.) with tall fescue (FestucaarundinaceaSchreb.) and associated soil microbial activity. Journal of Soils and Sediments, 11(6), 980–989.

Sun, Y.M., Zhang, N.N., Wang, E.T., Yuan, H.L., Yang, J.S., & Chen, W.X. (2009). Influence of intercropping and intercropping plus rhizobial inoculation on microbial activity and community composition in rhizosphere of alfalfa (Medicago sativa L.) and Siberian wild rye (ElymussibiricusL.). FEMS Microbiology Ecology, 70(2), 218–226.

Tajmiri, P., Fathi, S.A.A., Golizadeh, A., & Nouri-Ganbalani, G. (2017). Strip-intercropping canola with annual alfalfa improves biological control of Plutellaxylostella(L.) and crop yield. International Journal of Tropical Insect Science, 37(3), 208–216.

Tautges, N.E., Jungers, J.M., Dehaan, L.R., Wyse, D. L., &Sheaffer, C. C. (2018).Maintaining grain yields of the perennial cereal intermediate wheatgrass in monoculture v. bi-culture with alfalfa in the Upper Midwestern USA. Journal of Agricultural Science, 156(6), 758–773.

Tang, W., Guo, H., Baskin, C. C., Xiong, W., Yang, C., Li, Z., Song, H., Wang, T., Yin, J., Wu, X., Miao, F., Zhong, S., Tao, Q., Zhao, Y., & Sun, J. (2022). Effect of light intensity on morphology, photosynthesis and carbon metabolism of alfalfa (Medicago sativa) seedlings.Plants, 11(13), 1688.

Wang, L., Hou, B., Zhang, D., Lyu, Y., Zhang, K., Li, H., Rengel, Z., &Shen, J. (2020). The niche complementarity driven by rhizosphere interactions enhances phosphorus-use efficiency in maize/alfalfa mixture. Food and Energy Security, 9(4),e252.

Xu, R., Zhao, H., You, Y., Wu, R., Liu, G., Sun, Z., Bademuqiqige, & Zhang, Y. (2022). Effects of intercropping, nitrogen fertilization and corn plant density on yield, crude protein accumulation and ensiling characteristics of silage corn interseeded into alfalfa stand. Agriculture, 12(3), 357.

Yin, W., Chai, Q., Zhao, C., Yu, A., Fan, Z., Hu, F., Fan, H., Guo, Y., & Coulter, J. A. (2020). Water utilization in intercropping: A review. Agricultural Water Management, 241, 106335.

Zhang, J., Yin, B., Xie, Y., Li, J., Yang, Z., & Zhang, G. (2015). Legume-cereal intercropping improves forage yield, quality and degradability. PLoSOne, 10(12), e0144813.

Zhang, M.M., Wang, N., Hu, Y.B., & Sun, G.Y. (2018). Changes in soil physicochemical properties and soil bacterial community in mulberry (Morusalba L.)/alfalfa (Medicago sativa L.) intercropping system.MicrobiologyOpen, 7(2), e00555.

Zhang, B., Nasar, J., Dong, S., Zhou, X., &Gao, Q. (2022). Maize/alfalfa intercropping and nitrogen fertilizer application lead to different impacts on 2 maize yield, rhizospheric soil characteristics, and microbial community structure. Rhizospheric Soil Characteristics, and Microbial Community Structure.https://dx.doi.org/10.2139/ssrn.4312916

Zhang, G., Zhang, C., Yang, Z., & Dong, S. (2013). Root distribution and N acquisition in an alfalfa and corn intercropping system. Journal of Agricultural Science, 5(9), 128.

Zhao, Y., Liu, X., Tong, C., & Wu, Y. (2020).Effect of root interaction on nodulation and nitrogen fixation ability of alfalfa in the simulated alfalfa/triticale intercropping in pots.Scientific Reports, 10(1), 1-11.

Downloads

Published

2023-05-22

How to Cite

Guerchi, A., Mnafgui, W., Mengoni, A., & Badri, M. (2023). Alfalfa (Medicago sativa L.)/Crops intercropping provides a feasible way to improve productivity under environmental constraints. JOURNAL OF OASIS AGRICULTURE AND SUSTAINABLE DEVELOPMENT, 5(2), 38–47. https://doi.org/10.56027/JOASD.112023

Plum Analytics

 Artifact Widget

Most read articles by the same author(s)