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Biological significance and clinical utility of lactate  
in sepsis

Juan B. Dartiguelonguea 

ABSTRACT

Sepsis is a global health problem; progression to septic shock is associated with a marked increase in 
morbidity and mortality.

In this setting, increased plasma lactate levels demonstrated to be an indicator of severity and 
a predictor of mortality, and are usually interpreted almost exclusively as a marker of low tissue 
perfusion. However, a recent paradigm shift has occurred in the exegesis of lactate metabolism and 
its biological properties. Indeed, metabolic adaptation to stress, even with an adequate oxygen supply, 
may account for high circulating lactate levels. Likewise, other pathophysiological consequences of 
sepsis, such as mitochondrial dysfunction, are associated with the development of hyperlactatemia, 
which is not necessarily accompanied by low tissue perfusion.

Interpreting the origin and function of lactate may be of great clinical utility in sepsis, especially when 
circulating lactate levels are the basis for resuscitative measures.
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INTRODUCTION
The clinical definition of sepsis is the presence 

of organ dysfunction caused by a dysregulated 
response to infection.1,2 Tissue aggression 
mediated by an inflammatory storm causes 
endothelial damage, microvascular dysfunction, 
and an alteration in cellular metabolism, which 
may sometimes progress to septic shock. This 
is a critical situation, resulting from a serious 
imbalance between oxygen (O2) supply and 
demand.3 Clinically, shock is characterized by the 
presence of hemodynamic compromise, which 
may rapidly lead to multiple organ failure.4,5 Sepsis 
and septic shock are part of a continuum, which, 
in the absence of an adequate management, is 
associated with a marked increase in mortality.4–7

Lactic acid, almost completely dissociated 
into lactate and protons at the physiological 
pH level of body fluids, has been extensively 
studied in sepsis and shock, based on its role 
as a biochemical marker of tissue perfusion.8–10 
Hyperlactatemia, i.e., an elevation of lactate 
levels above 2 mmol/L (normal value: 0.3–
1.8 mmol/L) was correlated to increased mortality 
in observational studies of pediatric patients 
with sepsis,11–15 particularly if persistent.16–18 
Likewise, early lactate normalization was shown 
to decrease the risk of multiple organ failure.19 In 
this regard, the latest publication of the Surviving 
Sepsis Campaign (SSC) guidelines for children20 
included lactate measurement (along with clinical 
and advanced monitoring parameters) to assess 
hemodynamic response to fluid therapy and 
guide treatment. This recommendation has been 
recently replicated,7 although capillary refill was 
shown to be superior to lactate as a resuscitation 
target.7,21 Also, it has been recently proposed to 
add lactate measurement to the quick Sequential 
Organ Failure Assessment (qSOFA), a clinical 
scoring system that predicts mortality in septic 
patients.22

It is evident that circulating lactate levels are 
intimately related to sepsis and septic shock. 
However, the information available in pediatrics 
was obtained from observational studies, with 
dissimilar designs in terms of cut-off points for 
defining hyperlactatemia (2 to 5 mmol/L), the 
time of measurement (at admission, at 1, 2, 4, 
24 hours, etc.), follow-up, and results; moreover, 
they were carried out in very heterogeneous 
populations.10–19 Therefore, the recommendation 
made by the SSC guidelines is weak, with very 
low quality evidence to support it.7,20

To properly interpret the role of lactate in 

the complex scenario of sepsis, first of all, it is 
necessary to ask: Where does lactate come from? 
What is its role? Is it just a marker of hypoxia or 
is it a molecule with other biological properties? 
And, secondly, what is the clinical utility of its 
measurement? Should it condition hemodynamic 
recovery measures?

The objective of this review is to guide 
the answers to these questions, based on 
the scientif ic evidence that motivated the 
reinterpretation of classical physiological 
concepts, responsible for restricting lactate as 
only a marker of tissue hypoxia.

LACTATE PRODUCTION
General concepts and classical perspective

Glycolysis is the initial pathway of glucose 
catabolism and occurs in most cells in the body.23 
From an evolutionary stance, it is the oldest 
energy-producing mechanism, possibly present 
in the first microorganisms when the earth’s 
atmosphere was still devoid of O2. It is also an 
outstanding example of the unity of the biological 
kingdom; it functions in all living organisms, even 
those phylogenetically very distant, following 
exactly the same metabolic steps (Figure 1). 
The variation among organisms lies in the final 
destination of the pyruvate formed; for example, in 
anaerobic microorganisms, pyruvate results in the 
formation of lactate (lactic fermentation), whereas 
the final product in yeasts is ethanol together 
with carbon dioxide (alcoholic fermentation). 
Normally, during glycolysis, 2 moles of adenosine 
triphosphate (ATP) are obtained per mole of 
glucose metabolized.23,24

In aerobic organisms, such as humans, 
glycolysis is the first part of glucose catabolism.  
According to the classical paradigm, it provides 
the mi tochondr ia  w i th  pyruvate ,  i ts  end  
product under aerobic condi t ions. In the 
mitochondria, pyruvate is decarboxylated into  
acetyl-coenzyme A (acetyl-CoA) during oxidative 
decarboxylation (mediated by the pyruvate 
dehydrogenase complex), which then enters 
the tricarboxylic acid cycle (Krebs cycle) and, 
after transfer of the electrons obtained in 
the mitochondrial transport chain (oxidative 
phosphorylation), the maximum energy yield per 
mole of glucose (36–38 moles of ATP) is reached.23

The  r egu la t i on  o f  g l y co l ys i s  occu rs 
p r i m a r i l y  b y  a l l o s t e r i c  m o d u l a t i o n  o f 
phosphofructokinase 1 (PFK-1), the enzyme that 
catalyzes the third metabolic step (Figure 1); 
adenosine monophosphate (AMP) and adenosine 
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diphosphate (ADP) stimulate its function, while 
ATP, citrate, and fructose-2,6-bisphosphate inhibit 
it. Physiologically, the beta-adrenergic stimulus 
on the Na+/K+ ATPase pump is accompanied by 
the activation of glycolysis by supplying ADP to 
PFK-1.23 It also increases substrate availability by 
promoting glycogenolysis.

Moreover, glycolysis represents the main 
source of energy when tissue oxygenation 
is significantly compromised, for example, 
during severe hypovolemia. In this context,  
an intracel lular O2 pressure ≤ 0.5 mmHg 
(dysoxia) limits oxidative phosphorylation and, 
consequently, mitochondrial ATP production. 
According to the classical paradigm, under these 
circumstances, pyruvate is not metabolized 
in the mitochondria, but is reduced to lactate 
by cytoplasmic lactate dehydrogenase (LDH), 
which maintains the intracellular redox balance 
(simultaneously oxidizing nicotinamide adenine 
dinucleotide [NADH] to NAD+) (Figure 1) and,  
in turn, justifies the increase in circulating lactate.23

From this perspective, lactate is presented 
exclusively as a by-product of hypoxia or 

hypoperfusion, with potentially toxic biological 
properties (lactic acidosis, etc.) in complex 
pathophysiological settings.

Current paradigm
Although glycolysis and its regulation are 

still valid, the apothegm that assimilated lactate 
as a mere indicator of hypoxia, strongly rooted 
in the medical community, led to a series of 
confusing interpretations that, at times, motivated 
clinical decisions that were not entirely correct.25 
Although lactate elevation under conditions of 
dysoxia is well established,23,25,26 this situation 
is the exception rather than the rule. Indeed, 
lactate is always the end product of glycolysis, 
regardless of the extent of tissue oxygenation.26 
This concept began to be overlooked in the mid 
to late past century in typical studies of exercise 
physiology (skeletal muscle is glycolytically a 
very active tissue), where the permanent efflux 
of lactate during muscle contraction, in the clear 
absence of dysoxia (intracellular O2 pressures 
> 2–3 mmHg), was documented by different 
methods.27,28 Moreover, lactate may be taken 

Figure 1. Glycolytic pathway

Source: Developed by the author.
ATP: adenosine triphosphate; AMP: adenosine monophosphate; ADP: adenosine diphosphate; NAD: nicotinamide adenine 
dinucleotide.
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up by the liver and kidney to produce glucose 
(gluconeogenesis) or be used by other muscle 
fibers and different tissues as metabolic fuel.29 
Later, studies on brain metabolism described 
similar findings, which were also observed in other 
parenchyma;25,30–32 which progressively led to a 
paradigm shift.25,26,33

The biochemical principles that support these 
findings are based on the following:
1.	 The reaction catalyzed by cytoplasmic LDH 

is bidirectional (Figure 2) and exergonic  
( i t  re leases f ree energy,  so i t  occurs 
spontaneously), and its equilibrium constant 
is strongly biased toward lactate production 
(1.62 × 1011 M-1).23,26 This normally maintains 
a lactate/pyruvate ratio of ~10/1. Furthermore, 
its activity is much higher than that of the 
enzymes that regulate glycolysis and it 
produces NAD+, an electron acceptor that 
ensures the continuity of the pathway. 
Therefore, as long as glycolysis is active, 
pyruvate will be reduced to lactate, regardless 
of the extent of tissue oxygenation.

2.	 The resulting lactate enters the mitochondria 
b y  f a c i l i t a t e d  d i f f u s i o n  t h r o u g h  t h e 
monocarboxylate transporter-1 (MCT1).34 
In the intermembrane space, it is oxidized 
to pyruvate by mitochondrial LDH, which is 
part of the mitochondrial lactate oxidation 
complex (mLOC) anchored to the inner 
mitochondrial membrane35 (Figure 3). Pyruvate 
is then transported to the mitochondrial 
matr ix (via the mitochondrial  pyruvate 
carrier [MPC]), which functions as a “sink” 
for pyruvate, where it is converted into  
acetyl-CoA to enter the tricarboxylic acid 
cycle.35 Simultaneously, the mitochondrial 
LDH reaction generates NADH + H+, whose 
electrons are “launched” into the mitochondrial 
matrix by the malate-aspartate transporter and 
the glycerol phosphate transporter (Figure 3),26  
an event that contributes to the Krebs cycle.

It is worth explaining that the production of 
lactate is not synonymous with an accumulation 
or increase in its circulating levels. Normally, 
lactate finds a steady state between entry into the 
mitochondria, exit from the cells, and peripheral 
utilization,36 as long as the rate of production, 
i.e., glycolytic activity, resembles the rate of 
mitochondrial oxidation (metabolic coupling).  
In these conditions, its plasma level remains 
within the normal range, with a resting rate of 
production varying between 0.9 and 1.0 mmol/
kg/h.37 If oxidative phosphorylation is inhibited 
(dysoxia), the rate of lactate production exceeds 
the mitochondrial capacity to oxidize pyruvate 
and NADH, thereby increasing intracellular 
lactate and its outflow across the membrane  
(via MCT4). Even with adequate O2 supply, 
i f  g lycoly t ic  act iv i ty  is  s t imulated above 
mitochondrial oxidative capacity (high intensity 
exercise, sustained beta-adrenergic stimulation) 
or if mitochondrial activity is inhibited (cytopathic 
hypoxia), metabolic uncoupling occurs which,  
if not buffered, justifies the development of 
hyperlactatemia.25,26

Normal ly,  the main sources of  lactate 
are skeletal muscle (25%), skin (25%), brain 
parenchyma (20%), gastrointestinal tract, and 
red blood cells. It is metabolized mainly by 
the liver (50–60%) and the kidney (~30%), via 
oxidation and gluconeogenesis and, to a lesser 
extent, by the myocardium and other tissues.36 
However, during intense exercise, skeletal muscle 
is both the site of maximum production and 
consumption (~70%).38 In the case of sepsis and 
septic shock, lactate is the main oxidative source 
in the myocardium (60-70%);8 its oxidation is also 
increased in the brain and various tissues, where 
it acts as an additional metabolic substrate.

BIOLOGICAL PROPERTIES
As observed, lactate is a ubiquitous molecule 

that functions as an energy intermediate within 

Figure 2. Reaction catalyzed by lactate dehydrogenase

Source: Developed by the author.
LDH: lactate dehydrogenase; NAD: nicotinamide adenine dinucleotide.

Pyruvate- + NADH + H+ Lactate- + NAD+
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and among cells.25,36 The 2 molecules formed 
during glycolysis possess 93% of the energy 
contained in glucose (686 kcal/mol), which is used 
in mitochondrial oxidation to obtain the maximum 
yield of ATP.

It is also the quantitatively most important 
precursor of liver and kidney gluconeogenesis, 
which decreases glycogen utilization; it is also 
an additional source of energy during metabolic 
stress and functions as a lipolysis inhibitor and 
glucose saver.25

In addition, it is able to promote its own 
metabolism and efflux from cells by stimulating the 
expression of hypoxia-inducible factor-1α (HIF-
1α), a transcription factor that, among other 
functions, stimulates cellular glucose transport, 
glycolysis enzymes, lactate oxidation, and MCT4 
expression.25,39,40

LACTATE IN SEPSIS
Where does it come from?

Several pathophysiological mechanisms 
explain the increase in lactate levels in sepsis.2,3  
The complexity involved in its metabolism, 
especially in patients with sepsis, often hinders 
the clinical interpretation of hyperlactatemia.

In addition to microcirculatory disorders, 
which may severely compromise tissue perfusion 
(dysoxia),8,41 other metabolic circumstances 
may increase circulating lactate levels. The 
hyperadrenergic state that characterizes sepsis 
is a permanent stimulus for glycolysis, lactate 
formation, and aerobic energy uptake (by the 
beta-adrenergic effect on the Na+/K+ ATPase 
pump, glycogenolysis, and glycolysis) (Figure 4); 
this implies an adaptive change in the metabolic 
profile, which may overcome the mitochondrial 

Figure 3. Generation of lactate, transfer to the intermembrane space, oxidation to pyruvate, transfer to the 
mitochondrial matrix, oxidative decarboxylation, and entry into the tricarboxylic acid cycle

Source: Developed by the author.
TCA: tricarboxylic acids; cLDH: cytoplasmic lactate dehydrogenase; MCT1: monocarboxylate transporter 1; mLDH: mitochondrial 
lactate dehydrogenase; mLOC: mitochondrial lactate oxidation complex; MPC: mitochondrial pyruvate carrier; PDH: pyruvate 
dehydrogenase complex; GP & Mal-Asp: glycerol-phosphate and malate-aspartate transporters; FAD: flavin adenine dinucleotide.
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capacity to metabolize pyruvate and, by the law of 
mass action, increase lactate levels (Figure 4).8,42–

44 In a study conducted in adults, stimulation of 
glycolysis and lactate production after adrenaline 
infusion improved the prognosis of septic shock, 
which may suggest that this mechanism involves 
an adaptive response.45 Likewise, during sepsis, 
50-60% of the lactate produced is oxidized by 
different tissues and up to 30% enters liver and 
kidney gluconeogenesis, favoring glycogen 
synthesis;8 this reinforces the hypothesis of 
metabolic adaptation to stress.

In addition, proinflammatory cytokines, nitric 
oxide, and lipopolysaccharide from gram-negative 
bacteria may result in mitochondrial dysfunction and 

cytopathic hypoxia during sepsis.3 Dysfunction of 
the pyruvate dehydrogenase complex, responsible 
for the oxidative decarboxylation of pyruvate to 
acetyl-CoA, is associated with an increase in 
circulating lactate levels.44,46

In addition, ischemic hepatitis and other 
mechanisms that cause liver dysfunction in sepsis 
and shock may compromise lactate metabolism, 
increasing its circulating levels.3,44,47

Based on the above, 4 possible origins of 
hyperlactatemia in sepsis have been described:
•	 Territories with marked hypoperfusion, 

particularly where severe microcirculatory 
disturbances (dysoxia) develop.

•	 Sustained beta-adrenergic stimulation, 

Figure 4. Activation of cellular metabolism by catecholamines

By acting on beta-2-adrenergic receptors, adrenaline stimulates the development of cyclic adenosine monophosphate (cAMP). 
This compound is able to activate glycogenolysis, glycolysis, and the activity of the Na+/K+ ATPase pump. ATP consumption by 
this pump produces ADP, which reactivates glycolysis and lactate production. Oxidation of lactate to pyruvate, its decarboxylation 
to acetyl-CoA, and entry into the tricarboxylic acid (TCA) cycle occur within the mitochondrion. If lactate production exceeds the 
mitochondrial oxidative rate, its intracellular level and output through monocarboxylate transporter-4 (MCT4) increase.
cLDH: cytoplasmic lactate dehydrogenase; ATP: adenosine triphosphate; ADP: adenosine diphosphate.
Source: Developed by the author, modified from: Dartiguelongue JB, Cheistwer A, Montero D. Medicina interna pediátrica. City of 
Buenos Aires: Journal; 2023.
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which activates the glycolytic rate above the 
mitochondrial oxidative capacity.

•	 Mitochondrial dysfunction due to involvement 
of the pyruvate dehydrogenase complex,  
the electron transport system, or altered 
mitochondrial ultrastructure (cytopathic 
hypoxia).

•	 Compromised l iver metabol ism due to 
multifactorial parenchymal and microcirculatory 
disturbances.
Technically, it is difficult to determine the exact 

sites of lactate production during sepsis; however, 
the lung and skeletal muscle appear to be its main 
sources,8,25 in addition to sources of infection and 
inflammation.

What is the clinical utility of determining 
lactate levels?

In the case of sepsis, hyperlactatemia is 
an indicator of severity and its persistence is 
a predictor of mortality. While there is limited 
evidence to support this assertion in pediatrics,10–19 
it is consistent in adults.48

Whenever accompanied by clinical findings 
of  hemodynamic compromise, increased 
lactate levels should alert to the presence 
of hypoperfusion; in this setting, a vigorous 
restoration of an effective blood volume markedly 
improves prognosis.7,20,44 However, in the absence 
of clinical indicators of hypoperfusion, it should 
not motivate the implementation of resuscitative 
measures.7,20 Likewise, if lactate levels remain 
elevated after hemodynamic recovery, i.e., after 
restitution of capillary refill, pulses, diuresis, 
consciousness, and skin temperature, it is 
unlikely to be a marker of low perfusion and 
is possibly due to another of its causes (for 
example, sustained beta-adrenergic stimulation). 
The paradigm of “hidden hypoperfusion,” which 
assimilated isolated hyperlactatemia as evidence 
of low tissue perfusion, seems to be incorrect and 
motivated the implementation of unnecessary 
measures, which may cause toxicity due to 
excessive resuscitation.44,49,50 Therefore, the 
restoration of clinical parameters is above the 
lowering of lactate levels in terms of hemodynamic 
recovery goals.7,21,44 It should also be mentioned 
that, in order to adequately determine lactate 
variations, lactate levels should be determined 
every 1–2 hours.9

Possibly, persistent hyperlactatemia is related 
to the magnitude of the metabolic response to 
stress and the extent of compromise of body 
homeostasis, which affects the severity of the 

condition and its prognosis.7,8,20 This hypothesis 
is supported by the fact that early lactate 
normalization was shown to be associated with 
better results.19

The dynamism of such a complex scenario 
as sepsis may justify that several causes of 
hyperlactatemia are present in the same patient 
at the same time (for example, dysoxia and 
metabolic adaptation to stress), and that these 
causes vary with treatment and the course 
of disease. This demonstrates the metabolic 
complexity of lactate and the clinical challenge of 
correctly interpreting its extent and implications.

CONCLUSIONS
•	 Lactate is a ubiquitous molecule, the end 

product of glycolysis, which functions as an 
energy intermediate within and among cells.

•	 It is the main gluconeogenic substrate and an 
additional source of energy during metabolic 
stress.

•	 Lactate levels increase when there is a 
decoupl ing among lactate product ion, 
oxidative rate, and its tissue metabolization.

•	 In the case of sepsis, hyperlactatemia is 
a marker of severity and its persistence 
increases mortality. When accompanied 
by cl in ical  indicators of  hemodynamic 
compromise, it reinforces the decision to 
implement resuscitative measures.

•	 In  the absence of  c l in ica l  f ind ings o f 
hypoperfusion, isolated hyperlactatemia 
should not prompt hemodynamic recovery 
strategies. n
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