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Abstract. Let p be a prime and let g be a finite group with metacyclic Sylow

p-subgroups. In this paper, we give some structural properties of G when G/Op′p(G) is

of odd order. As a consequence, we show that g is p-supersoluble if its order is coprime

to p+1 and has very restricted structure in the case when p 6= 2 and its order is coprime

to p− 1.

1. Introduction

All groups considered in this paper are finite. In the sequel, p will denote a

prime number; p′ will be the set of all primes different from p.

The results of the present paper are further contributions to the project

which studies global properties of the groups that are determined by the structure

of their Sylow p-subgroups. One of the most classical results in this context

asserts that a group G is p-nilpotent, that is, G possesses a normal p-complement,

if p is the smallest prime dividing the order of G and the Sylow p-subgroups

of G are cyclic. This is a consequence of Burnside’s well-known p-nilpotency

criterion and can be found, e. g., in [H, IV, 2.8]. In fact the proof works whenever

(|G|, p − 1) = 1. The alternating group of degree 5 is a non-2-nilpotent group

with abelian metacyclic Sylow 2-subgroups. Hence the hypothesis on the Sylow

subgroups in the above result is essential. However, if (|G|, p2 − 1) = 1 and the

Sylow p-subgroups of G are metacyclic, then G is also p-nilpotent (see [H, IV,

5.10]).
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The case p = 2 was analysed in [CG]. It is proved there that a group G with

a metacyclic Sylow 2-subgroup S is soluble provided that S has a cyclic normal

subgroup T such that S/T is cyclic of order at least 4. Futhermore, results on

groups whose Sylow 2-subgroups have cyclic commutator groups where obtained

by Chabot in [C].

The results of this paper spring from these sources and deal with groups G

with metacyclic Sylow p-subgroups. We will show that some structural propeties

can be completely determined by some arithmetical ones.

As usual Op(G) (resp. Op′(G)) is the largest normal p-subgroup (resp. p′-

subgroup) of a group G ; Op′p(G) is the largest p-nilpotent normal subgroup

of G and Op′p(G)/Op′(G) = Op(G/Op′(G)); it is known that Op′p(G) is the

intersection of the centralisers of the chief factors of G whose orders are divisible

by p (see [DH, A, 13.8]).

Our main theorem gives a precise structure of a group with metacyclic Sylow

p-subgroups provided that G/Op′p(G) is of odd order.

Theorem A. Let G be a group with metacyclic Sylow p-subgroups. Suppose

that G/Op′p(G) is of odd order, and let G∗ = G/Op′(G). Then G∗ = P o (H1×
H2), where P is a Sylow p-subgroup of G∗, H1 is an abelian group of exponent

dividing p − 1, H2 is a cyclic group with exponent dividing p + 1. Moreover,

H1 ×H2 can be generated by two elements.

The following two corollaries are direct consequences of Theorem A.

Corollary 1. LetG be a group such thatG/Op′p(G) is of odd order. Assume

that a Sylow p-subgroup P of G is metacyclic. Then G′ is p-nilpotent.

Corollary 2. Let G be a group of odd order. If every Sylow subgroup of G

is metacyclic, then G′ is nilpotent. In particular, the Fitting length of G is at

most 2.

Let G be a group with metacyclic Sylow p-subgroups. In the following, we

apply Theorem A to obtain some results on the structure of G when |G| is coprime

with p + 1 or p − 1. Recall that a group G is said to be p-supersoluble if every

chief factor of G is either a cyclic group of order p or a p′-group.

Theorem B. Let G be a group with metacyclic Sylow p-subgroups. If

|G/Op′p(G)| and p+ 1 are coprime, then G is p-supersoluble.

The converse of Theorem B is not true: the symmetric group G of degree four

has cyclic Sylow 3-subgroups, G is 3-supersoluble and (|G/Op′p(G)|, 3 + 1) = 2.
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Suppose that G is a p-supersoluble group. Then G/CG(A/B) is a cyclic group

of exponent dividing p − 1, for each p-chief factor A/B of G. Hence G/Op′p(G)

is an abelian group of exponent dividing p − 1. Since (p − 1, p + 1) = 1 or 2, it

follows that (exp(G/Op′p(G)), p+ 1) = 1 or 2.

Combining the above fact with Theorem B, we have:

Corollary 3. Suppose G is a group of odd order with metacyclic Sylow p-

subgroups. Then G is p-supersoluble if and only if |G/Op′p(G)| and p + 1 are

coprime.

The following result, due to Berkovich [B], was recently extended by Asaad

and Monakhov [AM, 1.1].

Corollary 4. Let the group G = AB be the product of the subgroups A and

B. If G is of odd order and the Sylow p-subgroups of A and B are cyclic, then G

is p-supersoluble.

Next, we consider what happens if G is a group with metacyclic Sylow

p-subgroups such that (|G|, p − 1) = 1. In this case, G is not necessarily p-

supersoluble as the following example shows:

Example. Let p, q be two primes such that 2 < q divides p + 1. Let C be a

cyclic group of order q and let V be an irreducible and faithful C-module over

the finite field of p-elements. Then V is an elementary abelian group of order p2.

Let G = V o C be the corresponding semidirect product. Then G is a non p-

supersoluble group with a metacyclic Sylow p-subgroup such that (|G|, p−1) = 1.

As a consequence of Theorem A, we have

Theorem C. Let p be an odd prime and let G be a group with metacyclic

Sylow p-subgroups. Set G∗ = G/Op′(G). Then (|G/Op′p(G)|, p − 1) = 1 if and

only if G∗ satisfies the following properties:

(1) A Sylow p-subgroup of G∗ is normal in G∗.

(2) The Hall p′-subgroups of G∗ are cyclic groups of odd order dividing p+ 1.

Remark. The alternating group of degree 5 is an example of how the case

p = 2 can differ from the case when p is an odd prime.

2. Proof of the main results

We mention that if some group G has metacyclic Sylow p-subgroups, then

the same is true for every homomorphic image of G. In particular, the hypotheses
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of our main results are inherited by factor groups. This fact will be used in the

sequel without any further reference.

Before we can begin with the proofs of our main theorems, we need two

preliminary results. The first of these is a fairly technical lemma about the general

linear group GL(2, p).

Lemma 2.1. Let M be a subgroup of GL(2, p) of odd order. Then there

exist subgroups A and B of GL(2, p) satisfying:

(1) A is in the center of GL(2, p) and B is isomorphic to a subgroup of PSL(2, p).

(2) π(M) = π(A) ∪ π(B).

(3) M is a subgroup of AB.

Proof. Write Z = Z(GL(2, p)) and S = SL(2, p). Then M is a subgroup of

O2(Z)S = O2(Z)× S. Let A and B be the images of M of the projections of M

into O2(Z) and S respectively. Then M is a subgroup of AB, π(M) = π(A)∪π(B)

and B ∩ (Z ∩ S) = 1. Hence B ∼= [B(Z ∩ S)]/(Z ∩ S), which is isomorphic to a

subgroup of PSL(2, p). �

Lemma 2.2. Let p be an odd prime. Suppose that G is a p-soluble group

with metacyclic Sylow p-subgroups. Then the p-length of G is at most one.

Proof. Let P be a Sylow p-subgroup of G. Then, by [S, 2.3.4], P is a

modular group, that is, every two subgroups of P are permutable in P . It then

follows from [SW, Corollary 4.2] that the p-length of G is at most one. �

Proof of Theorem A. We first show that the p-length of G is at most

one. Clearly G is p-soluble. If p 6= 2, then the p-length of G is at most one by

Lemma 2.2. If p = 2, then the hypothesis that G/Op′p(G) is of odd order yields

that the Sylow p-subgroups of G are contained in Op′p(G). In this case we also

have the p-length of G is at most one.

Clearly Op′(G
∗) = 1. Since the p-length of G is at most one, the Sylow p-

subgroup P of G∗ is normal in G∗. By [H, VI, 6.5], CG∗(P ) ≤ P . Let H be a Hall

p′-subgroup of G∗. Then CH(P ) = H ∩CG∗(P ) = 1. By [G, 5, Theorem 1.4], we

know that CH(P/Φ(P )) = CH(P ) = 1.

Assume that P is cyclic. Then H = H/CH(P/Φ(P )) is a group of automor-

phisms of a cyclic group of prime order. In this case H is a cyclic group of order

dividing p− 1 and thus the theorem holds.

Now assume that P is not cyclic, then P/Φ(P ) is an elementary abelian

group of order p2, since P is metacyclic. In this case H = H/CH(P/Φ(P )) is a

subgroup of GL(2, p). Since H ∼= G/Op′p(G), H is of odd order. By Lemma 2.1,
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H ≤ AB, where A and B are subgroups of GL(2, p) satisfying the properties

(1)–(3) of Lemma 2.1. By (1) and (2) of Lemma 2.1, B is a subgroup of PSL(2, p)

and B is a p′-group of odd order. By [H, II, 8.27], B must be a cyclic group with

exponent dividing p− 1 or p+ 1. Since A ≤ Z(GL(2, p)), H ≤ AB is an abelian

group with exponent dividing p2 − 1. Since (p + 1, p − 1) = 2 and 2 /∈ π(H),

H = H1 ×H2, where the exponent of H1 divides p − 1 and the exponent of H2

divides p+1. Since (|H2|, |A|) = 1, H2 ≤ B is a cyclic group. Moreover, since AB

is an abelian group of rank at most two, it follows that H can be generated by

two elements. �

Proof of Corollary 4. G is soluble by the Feit–Thompson odd order

theorem. Applying [AFG, 1.3.3], there exist Sylow p-subgroups Gp, Ap and Bp of

G, A and B respectively, such that Gp = ApBp. According to [H, III, 11.5], Gp is

metacyclic. Since the class of all p-supersoluble groups is a saturated formation

([H, VI, §9]), it suffices to prove that every primitive epimorphic image of G is

p-supersoluble ([DH, A, 15.9]). Note that the hypotheses of the corollary hold in

every factor group ofG. Therefore, arguing by induction on the order ofG, we may

assume that G is primitive. According to [DH, A, 15.2], G has a unique minimal

normal subgroup N such that CG(N) = N = Op′p(G) which is an elementary

abelian p-group. By Theorem A, Gp = N is the Sylow p-subgroup of G. Assume

that Ap = 1. Then N is cyclic of order p and G is p-supersoluble. Hence we may

assume that Ap 6= 1, Bp 6= 1 are of order p and |N | = p2. Assume there exists

a prime q dividing |G/N | and p + 1. Without loss of generality we may assume

that q divides |A|. Let a ∈ A be an element of order q and Z = 〈a〉. Then, N as

a Z = 〈a〉-module, is factorised as N = Ap × L with |Ap| = |L| = p. This means

that Z/CZ(N) = Z is abelian of exponent dividing p − 1, which contradicts the

fact (p− 1, p+ 1) = 2. Consequently, (|G/N |, p+ 1) = 1 and G is p-supersoluble

by Corollary 3. �

Proof of Theorem B. Assume that |G/Op′p(G)|, p + 1) = 1. If p = 2,

then G is p-nilpotent by [H, IV, 5.10]. So we may assume that p 6= 2. It is clear

that G/Op′p(G) is of odd order, since |G/Op′p(G)| and p+ 1 are coprime.

Let G∗ = G/Op′(G). By Theorem A, G∗ = P o (H1 × H2), where P is a

Sylow p-subgroup of G∗, H1 is an abelian group of exponent dividing p − 1, H2

is a cyclic group with exponent dividing p + 1. Since |G/Op′p(G)| = |H1 ×H2|
and p+ 1 are coprime, we have H2 = 1 and thus G∗ = P oH1.

Let H/K be any chief factor of G∗ whose order is divisible by p. Since G∗ is

soluble, H/K is a p-group. Then Op(G∗/CG∗(H/K)) = 1. Since P is a normal

Sylow p-subgroup of G∗, P ≤ CG∗(H/K). It follows that G∗/CG∗(H/K) is
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isomophic to a subgroup of H1 and so it is an abelian group of exponent dividing

p− 1. By [DH, B, 9.8], |H/K| = p. Therefore G∗ = G/Op′(G) is p-supersoluble,

and so is G. �

Proof of Theorem C. Suppose (|G∗|, p−1) = 1. Since p is an odd prime,

G/Op′p(G) is of odd order. Now properties (1) and (2) follow directly from

Theorem A.

Conversely, suppose G satisfies properties (1) and (2). Let H be a Hall p′-

subgroup of G∗. Since H is a cyclic group of odd order of exponent dividing p+1

and (p− 1, p+ 1) = 2, we have (|G/Op′p(G)|, p− 1) = (|H|, p− 1) = 1. �
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