Publ. Math. Debrecen<br>85/3-4 (2014), 489-501<br>DOI: 10.5486/PMD.2014.5962

## Common expansions in noninteger bases

By VILMOS KOMORNIK (Strasbourg) and ATTILA PETHŐ (Debrecen)

## Dedicated to Professor Zoltán Daróczy on his 75th birthday


#### Abstract

In this paper we study the existence of simultaneous representations of real numbers in bases $p>q>1$ with the digit set $A=\{-m, \ldots, 0, \ldots, m\}$. We prove among others that if $q<(1+\sqrt{8 m+1}) / 2$, then there is a continuum of sequences $\left(c_{i}\right) \in$ $A^{\infty}$ satisfying $\sum_{i=1}^{\infty} c_{i} q^{-i}=\sum_{i=1}^{\infty} c_{i} p^{-i}$. On the other hand, if $q \geq m+1+\sqrt{m(m+1)}$, then only the trivial sequence $\left(c_{i}\right)=0^{\infty}$ satisfies the former equality.


## 1. Introduction

Given a finite alphabet or digit set $A$ of real numbers and a real base $q>1$, by an expansion of a real number $x$ we mean a sequence $c=\left(c_{i}\right) \in A^{\infty}$ satisfying the equality

$$
\sum_{i=1}^{\infty} \frac{c_{i}}{q^{i}}=x .
$$

This concept was introduced by RÉNYI [10] as a generalization of the radix representation of integers.

Given two different bases $p, q$ we wonder whether there exist real numbers having the same expansions in both bases:

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{c_{i}}{q^{i}}=x=\sum_{i=1}^{\infty} \frac{c_{i}}{p^{i}} \tag{1}
\end{equation*}
$$

Mathematics Subject Classification: 11A63, 11B83.
Key words and phrases: simultaneous Rényi expansion, interval filling sequences.
The second author was partially supported by the OTKA grants No. 100339 and 104208.

In case $0 \in A$ a trivial example is $x=0$ with $\left(c_{i}\right)=0^{\infty}$. If the alphabet $A$ contains no pair of digits with opposite signs, then this is the only such example. Indeed, if for instance all digits are nonnegative and $0^{\infty} \neq\left(c_{i}\right) \in A^{\infty}$, then for $p>q$ we have

$$
\sum_{i=1}^{\infty} \frac{c_{i}}{p^{i}}<\sum_{i=1}^{\infty} \frac{c_{i}}{q^{i}}
$$

by an elementary monotonicity argument.
Even if the alphabet $A$ contains digits of opposite signs, the existence of common expansions (1) seems to be a rare event.

Similar phenomena appears with the common radix representation. InDLEKOFER, KÁtai and Racskó [4] called $\mathbf{a} \in \mathbb{Z}^{d}$ simultaneously representable by $\mathbf{q} \in \mathbb{Z}^{d}$, if there exist integers $0 \leq m_{0}, \ldots, m_{\ell}<Q:=\left|q_{1} \cdots q_{d}\right|$ such that

$$
a_{i}=\sum_{j=0}^{\ell} m_{j} q_{i}^{j}, \quad i=1, \ldots, d
$$

If $q_{1}, \ldots, q_{d}>0$ then apart from the zero vector no integer vectors are simultaneously representable by $\mathbf{q}$. If, however, some of the base numbers are negative, then simultaneous representations may appear. For example take $q_{1}=-2$ and $q_{2}=-3$ then we have $(101)_{10}=(1431335045)_{-2}=(1431335045)_{-3}$. Changing the sign of the "digits" with odd position we get a common representation of 101 in bases 2 and 3 with digits from $\{-6, \ldots, 0, \ldots, 6\}$. РетнŐ [8] gave a criterion of simultaneous representability on the one hand with the Chinese reminder theorem and, on the other hand with CNS polynomials. A similar result was proved by Kane [7].

No results on simultaneous representability of real numbers in non-integer bases seem to have appeared in the literature. In this paper we start such a study by investigating the case of the special alphabets $A=\{-m, \ldots, 0, \ldots, m\}$ for some given integer $m \geq 1$. Let us denote by $C(p, q)$ the set of sequences $\left(c_{i}\right) \in A^{\infty}$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{c_{i}}{q^{i}}=\sum_{i=1}^{\infty} \frac{c_{i}}{p^{i}} . \tag{2}
\end{equation*}
$$

We call $C(p, q)$ trivial if its only element is the null sequence.
Our main result is the following:
Theorem 1. Let $p>q>1$.
(i) If $q<(1+\sqrt{8 m+1}) / 2$, then $C(p, q)$ has the power of continuum.
(ii) If $(1+\sqrt{8 m+1}) / 2 \leq q \leq m+1$, then $C(p, q)$ is infinite.
(iii) Let $m+1<q \leq 2 m+1$.
(a) If

$$
\begin{equation*}
p \leq \frac{(m+1)(q-1)}{q-m-1} \tag{3}
\end{equation*}
$$

then $C(p, q)$ is nontrivial.
(b) If

$$
\begin{equation*}
p>\frac{(m+1)(q-1)}{q-m-1} \tag{4}
\end{equation*}
$$

then $C(p, q)$ is trivial.
(iv) Let $2 m+1<q<m+1+\sqrt{m(m+1)}$.
(a) $C(p, q)$ is a finite set.
(b) There is a continuum of values $p>q$ for which $C(p, q)$ is nontrivial.
(c) If $p>q$ satisfies (4), then $C(p, q)$ is trivial.
(v) If $q \geq m+1+\sqrt{m(m+1)}$, then $C(p, q)$ is trivial.

Remark 2.
(i) The proof of (iii) (a) will also show that if $m+1<q \leq 2 m+1$, and

$$
\frac{1}{m} \leq \frac{1}{q-1}+\left(\frac{1}{q-1}-\frac{1}{p-1}\right) \frac{q^{n}}{p^{n}-q^{n}}
$$

for some positive integer $n$, then $C(p, q)$ has at least $n+1$ elements. For $n=1$ this condition reduces to (3).

Furthermore, we show in Remark 7 that the right side of this inequality is a decreasing function of $p$, so that the solutions $p$ of the inequality form a half-closed interval ( $q, p_{n}$ ]. (We have clearly $p_{1}>p_{2}>\cdots$.)
(ii) The proof of (iv) (a) will show more precisely that if $q>m+1$ and

$$
\frac{1}{2 m}>\frac{1}{q-1}+\left(\frac{1}{q-1}-\frac{1}{p-1}\right) \frac{q^{n}}{p^{n}-q^{n}}
$$

for some positive integer $n$, then $C(p, q)$ has at most $(2 m+1)^{n}$ elements.

## 2. Proofs

We begin by establishing some auxiliary results.
Interval filling sequences play an important role in establishing the existence of various kinds of representations of real numbers; see, e.g., DARÓczy, Járai and Kátai [1], Daróczy and Kátai [2]. We also need such a result here: a variant of a classical theorem of Kakeya [5], [6] (see also [9], Part 1, Exercise 131):

Proposition 3. Let $\sum_{k=1}^{\infty} r_{k}$ be a convergent series of positive numbers, satisfying the inequalities

$$
\begin{equation*}
r_{n} \leq 2 m \sum_{k=n+1}^{\infty} r_{k} \tag{5}
\end{equation*}
$$

for all $n=1,2, \ldots$ Then the sums

$$
\begin{equation*}
\sum_{k=1}^{\infty} c_{k} r_{k}, \quad\left(c_{k}\right) \in A^{\infty} \tag{6}
\end{equation*}
$$

fill the interval

$$
\begin{equation*}
\left[-m \sum_{k=1}^{\infty} r_{k}, m \sum_{k=1}^{\infty} r_{k}\right] . \tag{7}
\end{equation*}
$$

Proof. It is clear that all sums (6) belong to the interval (7). Conversely, for each given $x$ in this interval we define a sequence $\left(c_{k}\right) \in A^{\infty}$ by the following greedy algorithm. If $c_{1}, \ldots, c_{n-1}$ are already defined (no assumption if $n=1$ ), then let $c_{n}$ be the largest element of $A$ such that

$$
\left(\sum_{k=1}^{n} c_{k} r_{k}\right)-m\left(\sum_{k=n+1}^{\infty} r_{k}\right) \leq x .
$$

Letting $n \rightarrow \infty$ it follows that $\sum_{k=1}^{\infty} c_{k} r_{k} \leq x$. It remains to prove the converse inequality. This is obvious if $c_{k}=m$ for all $k \in \mathbb{N}$ because then

$$
\sum_{k=1}^{\infty} c_{k} r_{k}=m \sum_{k=1}^{\infty} r_{k} \geq x
$$

by the choice of $x$.
If $c_{n}<m$ for infinitely many indices, then

$$
\left(\sum_{k=1}^{n-1} c_{k} r_{k}\right)+m r_{n}-m\left(\sum_{k=n+1}^{\infty} r_{k}\right)>x
$$

for all such indices, and letting $n \rightarrow \infty$ we conclude that $\sum_{k=1}^{\infty} c_{k} r_{k} \geq x$.
The proof will be complete if we show that $\left(c_{k}\right)$ cannot have a last term $c_{n}<m$, i.e., an index $n$ such that $c_{n}=j<m$, and $c_{k}=m$ for all $k>n$. Assume on the contrary that there exists such an index $n$. Then we have

$$
\left(\sum_{k=1}^{n-1} c_{k} r_{k}\right)+j r_{n}+m\left(\sum_{k=n+1}^{\infty} r_{k}\right) \leq x
$$

and

$$
\left(\sum_{k=1}^{n-1} c_{k} r_{k}\right)+(j+1) r_{n}-m\left(\sum_{k=n+1}^{\infty} r_{k}\right)>x
$$

by construction. Hence

$$
r_{n}>2 m \sum_{k=n+1}^{\infty} r_{k}
$$

contradicting (5).
We also need two technical lemmas.
Lemma 4. If $1<q<(1+\sqrt{8 m+1}) / 2$ and $p>q$, then the sequence $\left(r_{k}\right):=\left(q^{-i}-p^{-i}\right)_{i \in \mathbb{N} \backslash n \mathbb{N}}$ satisfies (5) for all sufficiently large integers $n$.

Proof. Fix a sufficiently large integer $n$ such that

$$
\frac{1}{2 m}<\frac{1}{q(q-1)}-\frac{1}{q\left(q^{n}-1\right)}
$$

This is possible by our assumption on $q$, because we have the following equivalences for $m>0$ and $q>1$ :

$$
\begin{aligned}
\frac{1}{2 m}<\frac{1}{q(q-1)} & \Longleftrightarrow 4 q(q-1)<8 m \\
& \Longleftrightarrow(2 q-1)^{2}<8 m+1 \\
& \Longleftrightarrow 2 q-1<\sqrt{8 m+1} \\
& \Longleftrightarrow q<(1+\sqrt{8 m+1}) / 2
\end{aligned}
$$

Now, if

$$
r_{h^{\prime}}=q^{-h}-p^{-h}=q^{-h}\left(1-(q / p)^{h}\right)
$$

for some $h^{\prime} \geq 1$, then

$$
\sum_{k=h^{\prime}+1}^{\infty} r_{k}=\sum_{i \in \mathbb{N} \backslash n \mathbb{N}, i>h}\left(q^{-i}-p^{-i}\right)=\sum_{i \in \mathbb{N} \backslash n \mathbb{N}, i>h} q^{-i}\left(1-(q / p)^{i}\right) .
$$

Since $\left(1-(q / p)^{i}\right)>\left(1-(q / p)^{h}\right)$ for all $i>h$, it follows that (we use the choice of $n$ in the last step)

$$
\frac{\sum_{k=h^{\prime}+1}^{\infty} r_{k}}{r_{h^{\prime}}} \geq \sum_{i \in \mathbb{N} \backslash n \mathbb{N}, i>h} q^{h-i}=\left(\sum_{i=1}^{\infty} q^{-i}\right)-\left(\sum_{i>\frac{h}{n}} q^{h-i n}\right)
$$

$$
\begin{aligned}
& \geq\left(\sum_{i=1}^{\infty} q^{-i}\right)-\left(\sum_{i=0}^{\infty} q^{-1-i n}\right)=\left(\sum_{i=2}^{\infty} q^{-i}\right)-\left(\sum_{i=1}^{\infty} q^{-1-i n}\right) \\
& =\frac{1}{q(q-1)}-\frac{1}{q\left(q^{n}-1\right)}>\frac{1}{2 m}
\end{aligned}
$$

Lemma 5. Let $p>q>1$. The sequence

$$
\left(\frac{\sum_{i=n+1}^{\infty}\left(q^{-i}-p^{-i}\right)}{q^{-n}-p^{-n}}\right)_{n=1}^{\infty}
$$

is strictly decreasing, and tends to $1 /(q-1)$.
Proof. Since $1>(q / p)^{n} \searrow 0$, the results follow from the identity

$$
\begin{equation*}
\frac{\sum_{i=n+1}^{\infty}\left(q^{-i}-p^{-i}\right)}{q^{-n}-p^{-n}}=\frac{1}{q-1}+\frac{p-q}{(q-1)(p-1)} \frac{(q / p)^{n}}{1-(q / p)^{n}} \tag{8}
\end{equation*}
$$

Setting $x=q / p$ for brevity, the identity is proved as follows:

$$
\begin{aligned}
\frac{\sum_{i=n+1}^{\infty}\left(q^{-i}-p^{-i}\right)}{q^{-n}-p^{-n}} & =\frac{q^{-n}}{(q-1)\left(q^{-n}-p^{-n}\right)}-\frac{p^{-n}}{(p-1)\left(q^{-n}-p^{-n}\right)} \\
& =\frac{1}{(q-1)\left(1-x^{n}\right)}-\frac{x^{n}}{(p-1)\left(1-x^{n}\right)} \\
& =\frac{1-x^{n}+x^{n}}{(q-1)\left(1-x^{n}\right)}-\frac{x^{n}}{(p-1)\left(1-x^{n}\right)} \\
& =\frac{1}{q-1}+\frac{x^{n}}{1-x^{n}}\left(\frac{1}{q-1}-\frac{1}{p-1}\right) \\
& =\frac{1}{q-1}+\frac{p-q}{(q-1)(p-1)} \frac{x^{n}}{1-x^{n}} .
\end{aligned}
$$

Remark 6. Let us note for further reference the following equivalent form of (8), obtained during the proof:

$$
\begin{equation*}
\frac{\sum_{i=n+1}^{\infty}\left(q^{-i}-p^{-i}\right)}{q^{-n}-p^{-n}}=\frac{1}{q-1}+\left(\frac{1}{q-1}-\frac{1}{p-1}\right) \frac{q^{n}}{p^{n}-q^{n}} \tag{9}
\end{equation*}
$$

Now we are ready to prove our theorem.
Proof of Theorem 1 (i). We adapt the proof of Theorem 3 in [3], which states that if $1<q<(1+\sqrt{5}) / 2$, then every $q<x<1 /(q-1)$ has a continuum of expansions in base $q$ with digits 0 or 1 .

Applying Lemma 4 we fix a large positive integer $n$ such that the sequence $\left(r_{k}\right):=\left(q^{-i}-p^{-i}\right)_{i \in \mathbb{N} \backslash n \mathbb{N}}$ satisfies (5). Next we fix a large positive integer $N$ such that

$$
\begin{align*}
& {\left[-m \sum_{i=N}^{\infty}\left(q^{-i n}-p^{-i n}\right), m \sum_{i=N}^{\infty}\left(q^{-i n}-p^{-i n}\right)\right]} \\
& \subset\left[-m \sum_{i \in \mathbb{N} \backslash n \mathbb{N}}\left(q^{-i n}-p^{-i n}\right), m \sum_{i \in \mathbb{N} \backslash n \mathbb{N}}\left(q^{-i n}-p^{-i n}\right)\right] . \tag{10}
\end{align*}
$$

This is possible because the right side interval contains 0 in its interior. The sets

$$
\begin{aligned}
& B:=\mathbb{N} \backslash n \mathbb{N}, \\
& C:=\{i n: i=N, N+1, \ldots\}, \\
& D:=\{i n: i=1, \ldots, N-1\}
\end{aligned}
$$

form a partition of $\mathbb{N}$.
Choose an arbitrary sequence $\left(c_{i}\right)_{i \in C} \in A^{C}$; there is a continuum of such sequences because $C$ is an infinite set. Since

$$
-\sum_{i \in C} c_{i}\left(q^{-i}-p^{-i}\right)
$$

belongs to the left side interval in (10), applying Proposition 3 there exists a sequence $\left(c_{i}\right)_{i \in B} \in A^{B}$ such that

$$
\sum_{i \in B \cup C} c_{i}\left(q^{-i}-p^{-i}\right)=0
$$

Setting $c_{i}=0$ for $i \in D$ we obtain a sequence $\left(c_{i}\right)_{i \in \mathbb{N}} \in C(p, q)$.
Proof of Theorem 1 (it). We show that for each positive integer $n$ there exists a sequence $\left(c_{i}\right) \in C(p, q)$, beginning with $c_{1}=\cdots=c_{n-1}=0$ and $c_{n}=-1$. Indeed, since $q \leq m+1$, by Lemma 5 we have

$$
0<q^{-n}-p^{-n}<(q-1) \sum_{i=n+1}^{\infty}\left(q^{-i}-p^{-i}\right) \leq m \sum_{i=n+1}^{\infty}\left(q^{-i}-p^{-i}\right)
$$

Since $q \leq 2 m+1$, Lemma 5 also shows that the condition (5) of Proposition 3 is satisfied for the alphabet $A=\{-m, \cdots, m\}$ and the sequence $r_{k}:=q^{-k-n}-$ $p^{-k-n}, k=1,2, \ldots$. Hence there exists a sequence $\left(c_{i}\right)_{i=n+1}^{\infty} \in A^{\infty}$ satisfying

$$
q^{-n}-p^{-n}=\sum_{i=n+1}^{\infty} c_{i}\left(q^{-i}-p^{-i}\right)
$$

setting $c_{1}=\cdots=c_{n-1}=0$ and $c_{n}=-1$ this yields (2).

Proof of Theorem 1 (iit) (A). We show that there is a sequence $\left(c_{i}\right) \in$ $C(p, q)$, beginning with $c_{1}=-1$. Since $q \leq 2 m+1$, by Proposition 3 and Lemma 5 it is sufficient to show that

$$
(0<) q^{-1}-p^{-1} \leq m \sum_{i=2}^{\infty}\left(q^{-i}-p^{-i}\right)
$$

By (8) this is equivalent to the inequality

$$
\frac{1}{m} \leq \frac{1}{q-1}+\frac{p-q}{(p-1)(q-1)} \frac{\frac{q}{p}}{1-\frac{q}{p}}=\frac{1}{q-1}+\frac{q}{(p-1)(q-1)}
$$

i.e., to $p \leq(m+1)(q-1) /(q-m-1)$. Indeed, since $m>0, q>1$ and $p>m+1$, we have

$$
\begin{aligned}
\frac{1}{m} \leq \frac{1}{q-1}+\frac{q}{(p-1)(q-1)} & \Longleftrightarrow(p-1)(q-1) \leq m(p-1)+m q \\
& \Longleftrightarrow p(q-m-1) \leq(m+1)(q-1) \\
& \Longleftrightarrow p \leq \frac{(m+1)(q-1)}{q-m-1}
\end{aligned}
$$

Remark 7. Now we prove our statement in Remark 2 (i). If $m+1<q \leq 2 m+1$ and $p>q$ is closer to $q$ so that

$$
(0<) q^{-n}-p^{-n} \leq m \sum_{i=n+1}^{\infty}\left(q^{-i}-p^{-i}\right)
$$

or equivalently (see (9))

$$
\frac{1}{m} \leq \frac{1}{q-1}+\left(\frac{1}{q-1}-\frac{1}{p-1}\right) \frac{q^{n}}{p^{n}-q^{n}}
$$

for some positive integer $n$, then the adaptation of the preceding proof shows that for each $k=1, \ldots, n$ there exists a sequence $\left(c_{i}\right) \in C(p, q)$, beginning with $c_{1}=\cdots=c_{k-1}=0$ and $c_{k}=-1$.

The right side of the above inequality is a decreasing function of $p$ because the function

$$
f(p):=\left(\frac{1}{q-1}-\frac{1}{p-1}\right) \frac{1}{p^{n}-q^{n}}
$$

has a negative derivative for all $p>q$.

Indeed, we have

$$
f^{\prime}(p)=\frac{1}{(p-1)^{2}\left(p^{n}-q^{n}\right)}-\left(\frac{1}{q-1}-\frac{1}{p-1}\right) \frac{n p^{n-1}}{\left(p^{n}-q^{n}\right)^{2}}
$$

whence

$$
\frac{(p-1)^{2}\left(p^{n}-q^{n}\right)^{2}}{p-q} f^{\prime}(p)=\frac{p^{n}-q^{n}}{p-q}-n p^{n-1} \frac{p-1}{q-1}<\frac{p^{n}-q^{n}}{p-q}-n p^{n-1}
$$

We conclude by noticing that $\frac{p^{n}-q^{n}}{p-q}=n r^{n-1}$ by the Lagrange mean value theorem for some $q<r<p$ and therefore

$$
\frac{p^{n}-q^{n}}{p-q}-n p^{n-1}=n\left(r^{n-1}-p^{n-1}\right) \leq 0
$$

Proof of Theorem 1 (iv) (A). Since $1 /(q-1)<1 / 2 m$, by Lemma 5 we have

$$
q^{-n}-p^{-n}>2 m \sum_{i=n+1}^{\infty}\left(q^{-i}-p^{-i}\right)
$$

for all sufficiently large integers $n$, say for all $n>N .{ }^{1}$ This implies that if two different sequences $\left(c_{i}\right),\left(c_{i}^{\prime}\right) \in A^{\infty}$ satisfy $c_{i}=c_{i}^{\prime}$ for $i=1, \ldots, N$, then

$$
\sum_{i=1}^{\infty} c_{i}\left(q^{-i}-p^{-i}\right) \neq \sum_{i=1}^{\infty} c_{i}^{\prime}\left(q^{-i}-p^{-i}\right)
$$

Indeed, if $n$ is the first index for which $c_{n} \neq c_{n}^{\prime}$, then $n>N$, and therefore

$$
\begin{gathered}
\left|\sum_{i=1}^{\infty}\left(c_{i}-c_{i}^{\prime}\right)\left(q^{-i}-p^{-i}\right)\right| \geq\left|c_{n}-c_{n}^{\prime}\right|\left(q^{-n}-p^{-n}\right)-\sum_{i=n+1}^{\infty}\left|c_{i}-c_{i}^{\prime}\right|\left(q^{-i}-p^{-i}\right) \\
\geq\left(q^{-n}-p^{-n}\right)-2 m \sum_{i=n+1}^{\infty}\left(q^{-i}-p^{-i}\right)>0
\end{gathered}
$$

It follows that if two different sequences $\left(c_{i}\right),\left(c_{i}^{\prime}\right) \in A^{\infty}$ satisfy

$$
\sum_{i=1}^{\infty} \frac{c_{i}}{q^{i}}-\sum_{i=1}^{\infty} \frac{c_{i}}{p^{i}}=\sum_{i=1}^{\infty} \frac{c_{i}^{\prime}}{q^{i}}-\sum_{i=1}^{\infty} \frac{c_{i}^{\prime}}{p^{i}}=0
$$

then already their beginning words $c_{1} \ldots c_{N}$ and $c_{1}^{\prime} \ldots c_{N}^{\prime}$ must differ. We conclude that there are at most $(2 m+1)^{N}$ sequences $\left(c_{i}\right) \in A^{\infty}$ satisfying (2).

[^0]Proof of Theorem 1 (Iv) (B). Thanks to (a) it is sufficient to exhibit a continuum of sequences $\left(c_{i}\right) \in A^{\infty}$ such that each sequence satisfies (2) for at least one base $p>q$.

Our assumption $q<m+1+\sqrt{m(m+1)}$ implies the inequality

$$
\begin{equation*}
\frac{1}{q^{2}}<m \sum_{i=2}^{\infty} \frac{i}{q^{i+1}} \tag{11}
\end{equation*}
$$

Indeed, differentiating the identity

$$
\sum_{i=1}^{\infty} \frac{1}{q^{i}}=\frac{1}{q-1}
$$

we get

$$
\sum_{i=1}^{\infty} \frac{i}{q^{i+1}}=\frac{1}{(q-1)^{2}}
$$

so that, since $m>0$ and $q>1$, (11) is equivalent to

$$
\frac{m+1}{q^{2}}<\frac{m}{(q-1)^{2}}
$$

This inequality can be rewritten as

$$
\begin{equation*}
q^{2}-2 q(m+1)+m+1<0 \tag{12}
\end{equation*}
$$

The polynomial $x^{2}-2 x(m+1)+m+1$ has exactly one root, which is larger than one, namely $x=m+1+\sqrt{m(m+1)}$. Thus (11) holds if and only if $q<m+1+\sqrt{m(m+1)}$.

In view of (11) we may choose a sufficiently large positive integer $N$ such that

$$
\begin{equation*}
\frac{1}{q^{2}}<m \sum_{i=2}^{N} \frac{i}{q^{i+1}} \tag{13}
\end{equation*}
$$

Now fix an arbitrary sequence $\left(c_{i}\right) \in A^{\infty}$ satisfying

$$
\begin{equation*}
c_{1}=-1, \quad c_{2}=\cdots=c_{N}=m \quad \text { and } \quad c_{i} \geq 0 \text { for all } i>N . \tag{14}
\end{equation*}
$$

(There is a continuum of such sequences.) We are going to prove that (2) holds for at least one base $p>q$.

It is sufficient to show that

$$
\sum_{i=1}^{\infty} c_{i}\left(q^{-i}-p^{-i}\right)<0
$$

if $p>q$ is large enough, and

$$
\sum_{i=1}^{\infty} c_{i}\left(q^{-i}-p^{-i}\right)>0
$$

if $p>q$ is close enough to $q$. Indeed, then we will have equality for some intermediate value of $p$ by continuity.

The first property will follow from the stronger relation

$$
\lim _{p \rightarrow \infty} \sum_{i=1}^{\infty} c_{i}\left(q^{-i}-p^{-i}\right)<0, \quad \text { i.e., } \quad \sum_{i=1}^{\infty} \frac{c_{i}}{q^{i}}<0
$$

The proof is straightforward: since $c_{1}=-1$ and $q>m+1$, we have

$$
\sum_{i=1}^{\infty} \frac{c_{i}}{q^{i}} \leq \frac{-1}{q}+\sum_{i=2}^{\infty} \frac{m}{q^{i}}=\frac{-1}{q}+\frac{m}{q(q-1)}<\frac{-1}{q}+\frac{1}{q}=0
$$

Since $c_{i} \geq 0$ for all $i>N$, the second property is weaker than the inequality

$$
\sum_{i=1}^{N} c_{i}\left(q^{-i}-p^{-i}\right)>0
$$

for all $p$ with $p>q$ that are close enough, and this is weaker than the relation

$$
\lim _{p \rightarrow q} \frac{1}{p-q} \sum_{i=1}^{N} c_{i}\left(q^{-i}-p^{-i}\right)>0
$$

The last property follows by using (13) and (14):

$$
\lim _{p \rightarrow q} \frac{1}{p-q} \sum_{i=1}^{N} c_{i}\left(q^{-i}-p^{-i}\right)=\sum_{i=1}^{N} \frac{i c_{i}}{q^{i+1}}=-\frac{1}{q^{2}}+m \sum_{i=2}^{N} \frac{i}{q^{i+1}}>0
$$

Proof of Theorem 1 (iit) (B), (Iv) (c) and (v). If $p>q>m+1$ satisfy (4), then the proof of (iii) (a) shows that

$$
q^{-1}-p^{-1}>m \sum_{i=2}^{\infty}\left(q^{-i}-p^{-i}\right)
$$

Then by Lemma 5 we also have, more generally,

$$
q^{-n}-p^{-n}>m \sum_{i=n+1}^{\infty}\left(q^{-i}-p^{-i}\right)
$$

for all positive integers $n$.

Now if a sequence $\left(c_{i}\right) \in A^{\infty}$ has a first nonzero term $c_{n}$, then

$$
\left|\sum_{i=n+1}^{\infty} c_{i}\left(q^{-i}-p^{-i}\right)\right| \leq \sum_{i=n+1}^{\infty} m\left(q^{-i}-p^{-i}\right)<q^{-n}-p^{-n} \leq\left|c_{n}\left(q^{-n}-p^{-n}\right)\right|
$$

so that (2) cannot hold. This completes the proof of (iii) (b) and (iv) (c).
For the proof of (v) it remains to check that in case $q \geq m+1+\sqrt{m(m+1)}$ the condition (4) holds for all $p>q$. This is equivalent to

$$
q \geq \frac{(m+1)(q-1)}{q-m-1}
$$

which can be rewritten as

$$
q^{2}-2 q(m+1)+m+1 \geq 0
$$

By our observation after (12) this inequality holds if and only if $q \geq m+1+$ $\sqrt{m(m+1)}$.

## 3. Open questions

(1) Find the optimal conditions on $p$ and $q$ in Theorem 1. In particular,
(a) Can $C(p, q)$ be infinite for some $p>q>m+1$ ?
(b) In case $2 m+1<q<m+1+\sqrt{m(m+1)}$ is $C(p, q)$ nontrivial for all $p>q$ sufficiently close to $q$ ?
(2) Construct an alphabet and three (or more) different bases such that a continuum of (or infinitely many) real numbers have identical expansions in all three bases.
(3) Given two bases $p>q>1$ investigate the set of points of the form

$$
\sum_{i=1}^{\infty} c_{i}\left(p^{-i}-q^{-i}\right), \quad\left(c_{i}\right) \in A^{\infty}
$$

Acknowledgement The authors thank the referees for their suggestions to improve the presentation of the paper.

## References

[1] Z. Daróczy, A. JÁrai and I. Kátai, Intervallfüllende Folgen und volladditive Funktionen, Acta Sci. Math. (Szeged) 50 (1986), 337-350.
[2] Z. Daróczy and I. Kátai, On functions additive with respect to interval filling sequences, Acta Math. Hungar. 51 (1988), 185-200.
[3] P. Erdős, I. Joó and V. Komornik, Characterization of the unique expansions $1=\sum q^{-n_{i}}$ and related problems, Bull. Soc. Math. France 118 (1990), 377-390.
[4] K.-H. Indlekofer, I. Kátai and P. Racskó, Number systems and fractal geometry, Probability theory and applications, Essays to the Mem. of J. Mogyoródi, Math. Appl. 80 (1992), 319-334.
[5] S. Kakeya, On the set of partial sums of an infinite series, Proc. Tokyo Math.-Phys. Soc 7 (1914), 250-251.
[6] S. Kakeya, On the partial sums of an infinite series, Tohoku Sc. Rep. 3 (1915), 159-163.
[7] D. M. Kane, Generalized base representations, J. Number Theory 120 (2006), 92-100.
[8] A. Рethö, Notes on CNS polynomials and integral interpolation, In: More Sets, Graphs and Numbers, Bolyai Soc. Math. Stud., 15, (E. Győry, G. O. H. Katona and L. Lovász, eds.), Springer, Berlin, 2006.
[9] G. Pólya and G. Szegő, Problems and Exercises in Analysis, Vol. I, Springer-Verlag, Berlin, New York, 1972.
[10] A. RÉnyı, Representations for real numbers and their ergodic properties, Acta Math. Hungar. 8 (1957), 477-493.

VILMOS KOMORNIK
DÉPARTEMENT DE MATHÉMATIQUE
UNIVERSITÉ DE STRASBOURG
7 RUE RENÉ DESCARTES
67084 STRASBOURG CEDEX
FRANCE
E-mail: vilmos.komornik@math.unistra.fr
ATTILA PETHŐ
UNIVERSITY OF DEBRECEN
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF DEBRECEN
H-4010 DEBRECEN P.O. BOX 12
HUNGARY
E-mail: petho.attila@inf.unideb.hu
(Received September 9, 2013; October 4, 2014)


[^0]:    ${ }^{1}$ If this inequality holds for some $n$, then it also holds for all larger integers by the monotonicity property of Lemma 5 .

