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Common expansions in noninteger bases
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Dedicated to Professor Zoltán Daróczy on his 75th birthday

Abstract. In this paper we study the existence of simultaneous representations of

real numbers in bases p > q > 1 with the digit set A = {−m, . . . , 0, . . . ,m}. We prove

among others that if q < (1+
√
8m+ 1)/2, then there is a continuum of sequences (ci) ∈

A∞ satisfying
∑∞

i=1 ciq
−i =

∑∞
i=1 cip

−i. On the other hand, if q ≥ m+1+
√

m(m+ 1),

then only the trivial sequence (ci) = 0∞ satisfies the former equality.

1. Introduction

Given a finite alphabet or digit set A of real numbers and a real base q > 1,

by an expansion of a real number x we mean a sequence c = (ci) ∈ A∞ satisfying

the equality
∞∑
i=1

ci
qi

= x.

This concept was introduced by Rényi [10] as a generalization of the radix rep-

resentation of integers.

Given two different bases p, q we wonder whether there exist real numbers

having the same expansions in both bases:
∞∑
i=1

ci
qi

= x =

∞∑
i=1

ci
pi
. (1)
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In case 0 ∈ A a trivial example is x = 0 with (ci) = 0∞. If the alphabet A

contains no pair of digits with opposite signs, then this is the only such example.

Indeed, if for instance all digits are nonnegative and 0∞ ̸= (ci) ∈ A∞, then for

p > q we have
∞∑
i=1

ci
pi

<
∞∑
i=1

ci
qi

by an elementary monotonicity argument.

Even if the alphabet A contains digits of opposite signs, the existence of

common expansions (1) seems to be a rare event.

Similar phenomena appears with the common radix representation. In-

dlekofer, Kátai and Racskó [4] called a ∈ Zd simultaneously representable

by q ∈ Zd, if there exist integers 0 ≤ m0, . . . ,mℓ < Q := |q1 · · · qd| such that

ai =
ℓ∑

j=0

mjq
j
i , i = 1, . . . , d.

If q1, . . . , qd > 0 then apart from the zero vector no integer vectors are simulta-

neously representable by q. If, however, some of the base numbers are negative,

then simultaneous representations may appear. For example take q1 = −2 and

q2 = −3 then we have (101)10 = (1431335045)−2 = (1431335045)−3. Changing

the sign of the “digits” with odd position we get a common representation of 101

in bases 2 and 3 with digits from {−6, . . . , 0, . . . , 6}. Pethő [8] gave a criterion

of simultaneous representability on the one hand with the Chinese reminder the-

orem and, on the other hand with CNS polynomials. A similar result was proved

by Kane [7].

No results on simultaneous representability of real numbers in non-integer

bases seem to have appeared in the literature. In this paper we start such a

study by investigating the case of the special alphabets A = {−m, . . . , 0, . . . ,m}
for some given integer m ≥ 1. Let us denote by C(p, q) the set of sequences

(ci) ∈ A∞ satisfying
∞∑
i=1

ci
qi

=
∞∑
i=1

ci
pi
. (2)

We call C(p, q) trivial if its only element is the null sequence.

Our main result is the following:

Theorem 1. Let p > q > 1.

(i) If q < (1 +
√
8m+ 1 )/2, then C(p, q) has the power of continuum.

(ii) If (1 +
√
8m+ 1 )/2 ≤ q ≤ m+ 1, then C(p, q) is infinite.
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(iii) Let m+ 1 < q ≤ 2m+ 1.

(a) If

p ≤ (m+ 1)(q − 1)

q −m− 1
, (3)

then C(p, q) is nontrivial.

(b) If

p >
(m+ 1)(q − 1)

q −m− 1
, (4)

then C(p, q) is trivial.

(iv) Let 2m+ 1 < q < m+ 1 +
√
m(m+ 1).

(a) C(p, q) is a finite set.

(b) There is a continuum of values p > q for which C(p, q) is nontrivial.

(c) If p > q satisfies (4), then C(p, q) is trivial.

(v) If q ≥ m+ 1 +
√

m(m+ 1), then C(p, q) is trivial.

Remark 2.

(i) The proof of (iii) (a) will also show that if m+ 1 < q ≤ 2m+ 1, and

1

m
≤ 1

q − 1
+

(
1

q − 1
− 1

p− 1

)
qn

pn − qn

for some positive integer n, then C(p, q) has at least n + 1 elements. For

n = 1 this condition reduces to (3).

Furthermore, we show in Remark 7 that the right side of this inequality

is a decreasing function of p, so that the solutions p of the inequality form a

half-closed interval (q, pn]. (We have clearly p1 > p2 > · · · .)
(ii) The proof of (iv) (a) will show more precisely that if q > m+ 1 and

1

2m
>

1

q − 1
+

(
1

q − 1
− 1

p− 1

)
qn

pn − qn

for some positive integer n, then C(p, q) has at most (2m+ 1)n elements.

2. Proofs

We begin by establishing some auxiliary results.

Interval filling sequences play an important role in establishing the existence

of various kinds of representations of real numbers; see, e.g., Daróczy, Járai and

Kátai [1], Daróczy and Kátai [2]. We also need such a result here: a variant

of a classical theorem of Kakeya [5], [6] (see also [9], Part 1, Exercise 131):
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Proposition 3. Let
∑∞

k=1 rk be a convergent series of positive numbers,

satisfying the inequalities

rn ≤ 2m
∞∑

k=n+1

rk (5)

for all n = 1, 2, . . . . Then the sums

∞∑
k=1

ckrk, (ck) ∈ A∞ (6)

fill the interval [
−m

∞∑
k=1

rk,m
∞∑
k=1

rk

]
. (7)

Proof. It is clear that all sums (6) belong to the interval (7). Conversely,

for each given x in this interval we define a sequence (ck) ∈ A∞ by the following

greedy algorithm. If c1, . . . , cn−1 are already defined (no assumption if n = 1),

then let cn be the largest element of A such that(
n∑

k=1

ckrk

)
−m

( ∞∑
k=n+1

rk

)
≤ x.

Letting n → ∞ it follows that
∑∞

k=1 ckrk ≤ x. It remains to prove the converse

inequality. This is obvious if ck = m for all k ∈ N because then

∞∑
k=1

ckrk = m
∞∑
k=1

rk ≥ x

by the choice of x.

If cn < m for infinitely many indices, then(
n−1∑
k=1

ckrk

)
+mrn −m

( ∞∑
k=n+1

rk

)
> x

for all such indices, and letting n → ∞ we conclude that
∑∞

k=1 ckrk ≥ x.

The proof will be complete if we show that (ck) cannot have a last term

cn < m, i.e., an index n such that cn = j < m, and ck = m for all k > n. Assume

on the contrary that there exists such an index n. Then we have(
n−1∑
k=1

ckrk

)
+ jrn +m

( ∞∑
k=n+1

rk

)
≤ x
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and (
n−1∑
k=1

ckrk

)
+ (j + 1)rn −m

( ∞∑
k=n+1

rk

)
> x

by construction. Hence

rn > 2m

∞∑
k=n+1

rk,

contradicting (5). �

We also need two technical lemmas.

Lemma 4. If 1 < q < (1 +
√
8m+ 1 )/2 and p > q, then the sequence

(rk) := (q−i − p−i)i∈N\nN satisfies (5) for all sufficiently large integers n.

Proof. Fix a sufficiently large integer n such that

1

2m
<

1

q(q − 1)
− 1

q(qn − 1)
.

This is possible by our assumption on q, because we have the following equiva-

lences for m > 0 and q > 1:

1

2m
<

1

q(q − 1)
⇐⇒ 4q(q − 1) < 8m

⇐⇒ (2q − 1)2 < 8m+ 1

⇐⇒ 2q − 1 <
√
8m+ 1

⇐⇒ q <
(
1 +

√
8m+ 1

)
/2.

Now, if

rh′ = q−h − p−h = q−h
(
1− (q/p)h

)
for some h′ ≥ 1, then

∞∑
k=h′+1

rk =
∑

i∈N\nN,i>h

(q−i − p−i) =
∑

i∈N\nN,i>h

q−i
(
1− (q/p)i

)
.

Since (1 − (q/p)i) > (1 − (q/p)h) for all i > h, it follows that (we use the choice

of n in the last step)∑∞
k=h′+1 rk

rh′
≥

∑
i∈N\nN,i>h

qh−i =

( ∞∑
i=1

q−i

)
−

(∑
i> h

n

qh−in

)
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≥

( ∞∑
i=1

q−i

)
−

( ∞∑
i=0

q−1−in

)
=

( ∞∑
i=2

q−i

)
−

( ∞∑
i=1

q−1−in

)

=
1

q(q − 1)
− 1

q(qn − 1)
>

1

2m
. �

Lemma 5. Let p > q > 1. The sequence(∑∞
i=n+1(q

−i − p−i)

q−n − p−n

)∞

n=1

is strictly decreasing, and tends to 1/(q − 1).

Proof. Since 1 > (q/p)n ↘ 0, the results follow from the identity∑∞
i=n+1(q

−i − p−i)

q−n − p−n
=

1

q − 1
+

p− q

(q − 1)(p− 1)

(q/p)n

1− (q/p)n
. (8)

Setting x = q/p for brevity, the identity is proved as follows:∑∞
i=n+1(q

−i − p−i)

q−n − p−n
=

q−n

(q − 1)(q−n − p−n)
− p−n

(p− 1)(q−n − p−n)

=
1

(q − 1) (1− xn)
− xn

(p− 1) (1− xn)

=
1− xn + xn

(q − 1) (1− xn)
− xn

(p− 1) (1− xn)

=
1

q − 1
+

xn

1− xn

(
1

q − 1
− 1

p− 1

)
=

1

q − 1
+

p− q

(q − 1)(p− 1)

xn

1− xn
. �

Remark 6. Let us note for further reference the following equivalent form

of (8), obtained during the proof:∑∞
i=n+1(q

−i − p−i)

q−n − p−n
=

1

q − 1
+

(
1

q − 1
− 1

p− 1

)
qn

pn − qn
. (9)

Now we are ready to prove our theorem.

Proof of Theorem 1 (i). We adapt the proof of Theorem 3 in [3], which

states that if 1 < q < (1 +
√
5 )/2, then every q < x < 1/(q − 1) has a continuum

of expansions in base q with digits 0 or 1.
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Applying Lemma 4 we fix a large positive integer n such that the sequence

(rk) := (q−i−p−i)i∈N\nN satisfies (5). Next we fix a large positive integer N such

that[
−m

∞∑
i=N

(q−in − p−in),m

∞∑
i=N

(q−in − p−in)

]
⊂
[
−m

∑
i∈N\nN

(q−in − p−in),m
∑

i∈N\nN

(q−in − p−in)

]
. (10)

This is possible because the right side interval contains 0 in its interior. The sets

B := N \ nN,

C := {in : i = N,N + 1, . . .} ,

D := {in : i = 1, . . . , N − 1}

form a partition of N.
Choose an arbitrary sequence (ci)i∈C ∈ AC ; there is a continuum of such

sequences because C is an infinite set. Since

−
∑
i∈C

ci(q
−i − p−i)

belongs to the left side interval in (10), applying Proposition 3 there exists a

sequence (ci)i∈B ∈ AB such that∑
i∈B∪C

ci(q
−i − p−i) = 0.

Setting ci = 0 for i ∈ D we obtain a sequence (ci)i∈N ∈ C(p, q). �

Proof of Theorem 1 (ii). We show that for each positive integer n there

exists a sequence (ci) ∈ C(p, q), beginning with c1 = · · · = cn−1 = 0 and cn = −1.

Indeed, since q ≤ m+ 1, by Lemma 5 we have

0 < q−n − p−n < (q − 1)
∞∑

i=n+1

(q−i − p−i) ≤ m
∞∑

i=n+1

(q−i − p−i).

Since q ≤ 2m + 1, Lemma 5 also shows that the condition (5) of Proposition 3

is satisfied for the alphabet A = {−m, · · · ,m} and the sequence rk := q−k−n −
p−k−n, k = 1, 2, . . . . Hence there exists a sequence (ci)

∞
i=n+1 ∈ A∞ satisfying

q−n − p−n =
∞∑

i=n+1

ci(q
−i − p−i);

setting c1 = · · · = cn−1 = 0 and cn = −1 this yields (2). �
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Proof of Theorem 1 (iii) (a). We show that there is a sequence (ci) ∈
C(p, q), beginning with c1 = −1. Since q ≤ 2m+1, by Proposition 3 and Lemma 5

it is sufficient to show that

(0 <)q−1 − p−1 ≤ m
∞∑
i=2

(q−i − p−i).

By (8) this is equivalent to the inequality

1

m
≤ 1

q − 1
+

p− q

(p− 1)(q − 1)

q
p

1− q
p

=
1

q − 1
+

q

(p− 1)(q − 1)
,

i.e., to p ≤ (m+1)(q−1)/(q−m−1). Indeed, since m > 0, q > 1 and p > m+1,

we have

1

m
≤ 1

q − 1
+

q

(p− 1)(q − 1)
⇐⇒ (p− 1)(q − 1) ≤ m(p− 1) +mq

⇐⇒ p(q −m− 1) ≤ (m+ 1)(q − 1)

⇐⇒ p ≤ (m+ 1)(q − 1)

q −m− 1
. �

Remark 7. Now we prove our statement in Remark 2 (i). Ifm+1 < q ≤ 2m+1

and p > q is closer to q so that

(0 <)q−n − p−n ≤ m
∞∑

i=n+1

(q−i − p−i)

or equivalently (see (9))

1

m
≤ 1

q − 1
+

(
1

q − 1
− 1

p− 1

)
qn

pn − qn

for some positive integer n, then the adaptation of the preceding proof shows

that for each k = 1, . . . , n there exists a sequence (ci) ∈ C(p, q), beginning with

c1 = · · · = ck−1 = 0 and ck = −1.

The right side of the above inequality is a decreasing function of p because

the function

f(p) :=

(
1

q − 1
− 1

p− 1

)
1

pn − qn

has a negative derivative for all p > q.
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Indeed, we have

f ′(p) =
1

(p− 1)2(pn − qn)
−
(

1

q − 1
− 1

p− 1

)
npn−1

(pn − qn)2
,

whence

(p− 1)2(pn − qn)2

p− q
f ′(p) =

pn − qn

p− q
− npn−1 p− 1

q − 1
<

pn − qn

p− q
− npn−1.

We conclude by noticing that pn−qn

p−q = nrn−1 by the Lagrange mean value theo-

rem for some q < r < p and therefore

pn − qn

p− q
− npn−1 = n

(
rn−1 − pn−1

)
≤ 0.

Proof of Theorem 1 (iv) (a). Since 1/(q − 1) < 1/2m, by Lemma 5 we

have

q−n − p−n > 2m

∞∑
i=n+1

(q−i − p−i)

for all sufficiently large integers n, say for all n > N .1 This implies that if two

different sequences (ci), (c
′
i) ∈ A∞ satisfy ci = c′i for i = 1, . . . , N , then

∞∑
i=1

ci(q
−i − p−i) ̸=

∞∑
i=1

c′i(q
−i − p−i).

Indeed, if n is the first index for which cn ̸= c′n, then n > N , and therefore∣∣∣∣∣
∞∑
i=1

(ci − c′i)(q
−i − p−i)

∣∣∣∣∣ ≥ |cn − c′n| (q−n − p−n)−
∞∑

i=n+1

|ci − c′i| (q−i − p−i)

≥ (q−n − p−n)− 2m

∞∑
i=n+1

(q−i − p−i) > 0.

It follows that if two different sequences (ci), (c
′
i) ∈ A∞ satisfy

∞∑
i=1

ci
qi

−
∞∑
i=1

ci
pi

=
∞∑
i=1

c′i
qi

−
∞∑
i=1

c′i
pi

= 0,

then already their beginning words c1 . . . cN and c′1 . . . c
′
N must differ. We conclude

that there are at most (2m+ 1)N sequences (ci) ∈ A∞ satisfying (2). �

1If this inequality holds for some n, then it also holds for all larger integers by the monotonicity

property of Lemma 5.
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Proof of Theorem 1 (iv) (b). Thanks to (a) it is sufficient to exhibit a

continuum of sequences (ci) ∈ A∞ such that each sequence satisfies (2) for at

least one base p > q.

Our assumption q < m+ 1 +
√
m(m+ 1) implies the inequality

1

q2
< m

∞∑
i=2

i

qi+1
. (11)

Indeed, differentiating the identity

∞∑
i=1

1

qi
=

1

q − 1

we get
∞∑
i=1

i

qi+1
=

1

(q − 1)2
,

so that, since m > 0 and q > 1, (11) is equivalent to

m+ 1

q2
<

m

(q − 1)2
.

This inequality can be rewritten as

q2 − 2q(m+ 1) +m+ 1 < 0. (12)

The polynomial x2 − 2x(m + 1) + m + 1 has exactly one root, which is larger

than one, namely x = m + 1 +
√
m(m+ 1). Thus (11) holds if and only if

q < m+ 1 +
√
m(m+ 1).

In view of (11) we may choose a sufficiently large positive integer N such

that

1

q2
< m

N∑
i=2

i

qi+1
. (13)

Now fix an arbitrary sequence (ci) ∈ A∞ satisfying

c1 = −1, c2 = · · · = cN = m and ci ≥ 0 for all i > N. (14)

(There is a continuum of such sequences.) We are going to prove that (2) holds

for at least one base p > q.

It is sufficient to show that

∞∑
i=1

ci(q
−i − p−i) < 0
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if p > q is large enough, and

∞∑
i=1

ci(q
−i − p−i) > 0

if p > q is close enough to q. Indeed, then we will have equality for some inter-

mediate value of p by continuity.

The first property will follow from the stronger relation

lim
p→∞

∞∑
i=1

ci(q
−i − p−i) < 0, i.e.,

∞∑
i=1

ci
qi

< 0.

The proof is straightforward: since c1 = −1 and q > m+ 1, we have

∞∑
i=1

ci
qi

≤ −1

q
+

∞∑
i=2

m

qi
=

−1

q
+

m

q(q − 1)
<

−1

q
+

1

q
= 0.

Since ci ≥ 0 for all i > N , the second property is weaker than the inequality

N∑
i=1

ci(q
−i − p−i) > 0

for all p with p > q that are close enough, and this is weaker than the relation

lim
p→q

1

p− q

N∑
i=1

ci(q
−i − p−i) > 0.

The last property follows by using (13) and (14):

lim
p→q

1

p− q

N∑
i=1

ci(q
−i − p−i) =

N∑
i=1

ici
qi+1

= − 1

q2
+m

N∑
i=2

i

qi+1
> 0. �

Proof of Theorem 1 (iii) (b), (iv) (c) and (v). If p > q > m + 1 sat-

isfy (4), then the proof of (iii) (a) shows that

q−1 − p−1 > m

∞∑
i=2

(q−i − p−i).

Then by Lemma 5 we also have, more generally,

q−n − p−n > m
∞∑

i=n+1

(q−i − p−i)

for all positive integers n.



500 Vilmos Komornik and Attila Pethő

Now if a sequence (ci) ∈ A∞ has a first nonzero term cn, then∣∣∣∣∣
∞∑

i=n+1

ci(q
−i − p−i)

∣∣∣∣∣ ≤
∞∑

i=n+1

m(q−i − p−i) < q−n − p−n ≤
∣∣cn(q−n − p−n)

∣∣ ,
so that (2) cannot hold. This completes the proof of (iii) (b) and (iv) (c).

For the proof of (v) it remains to check that in case q ≥ m+1+
√
m(m+ 1)

the condition (4) holds for all p > q. This is equivalent to

q ≥ (m+ 1)(q − 1)

q −m− 1
,

which can be rewritten as

q2 − 2q(m+ 1) +m+ 1 ≥ 0.

By our observation after (12) this inequality holds if and only if q ≥ m + 1 +√
m(m+ 1). �

3. Open questions

(1) Find the optimal conditions on p and q in Theorem 1. In particular,

(a) Can C(p, q) be infinite for some p > q > m+ 1?

(b) In case 2m + 1 < q < m + 1 +
√
m(m+ 1) is C(p, q) nontrivial for all

p > q sufficiently close to q?

(2) Construct an alphabet and three (or more) different bases such that a con-

tinuum of (or infinitely many) real numbers have identical expansions in all

three bases.

(3) Given two bases p > q > 1 investigate the set of points of the form

∞∑
i=1

ci(p
−i − q−i), (ci) ∈ A∞.
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