Hamostaseologie 2015; 35(02): 142-150
DOI: 10.5482/HAMO-14-10-0051
Review
Schattauer GmbH

MicroRNAs and the response to injury in atherosclerosis

Mikro-RNAs regulieren die vaskuläre Wund -heilung in der Atherosklerose
L. Natarelli
1   Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany
,
A. Schober
1   Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany
2   Munich Heart Alliance, Munich, Germany
› Author Affiliations
Further Information

Publication History

received: 15 October 2014

accepted in revised form: 13 January 2015

Publication Date:
28 December 2017 (online)

Summary

Endothelial cells (ECs) at arterial branching points are physiologically subjected to chronic damage by disturbed blood flow, which triggers a vascular wound healing response. Additional damage by hyperlipid -aemia perturbs this delicate balance of en-dothelial injury and regeneration, and the progressive accumulation of noxious modified lipoproteins leads to macrophage death. Several miRNAs such as miR-92a and miR-712, which modulate EC proliferation and inflammation, are up-regulated by disturbed flow in ECs, and contribute to atherosclerosis. In addition, reduced endothelial levels of miR-126–5p limit the regenerative capacity of ECs, which becomes apparent by insufficient endothelial repair under hyperlipidemic stress. In macrophages, miR-342–5p induces the expression of miR-155 during the progression of atherosclerosis, which promotes inflammatory gene expression and inhibits efferocytosis by targeting Bcl6, thus contributing to necrotic core formation. Deciphering the complex cell- and context-specific effects of miRNAs during vascular wound healing appears essential for the development of miRNA-based therapies of atherosclerosis.

Zusammenfassung

Endothelzellen werden an der Verzweigung von Arterien physiologischerweise durch gestörte Blutflussverhältnisse chronisch geschä-digt, wodurch eine vaskuläre Wundheilungsreaktion initiiert wird. Eine zusätzliche Schädigung durch Hyperlipidämie stört das emp-findliche Gleichgewicht aus endothelialer Schädigung und Regeneration. In der Folge kommt es zu einer progredienten Akkumulation modifizierter Lipoproteine, die zum Zell-tod von Makrophagen führt. Verschiedene microRNAs, wie miR-92a und miR-712, welche die endotheliale Proliferation und Inflammation regulieren, werden durch gestörte Blutflussverhältnisse hochreguliert und verstärken die Atherosklerose. Ferner beeinträchtigt eine verminderte Expression der miR-126–5p die regenerative Kapazität von Endothelzellen mit der Folge einer unzureichenden endothelialen Regeneration unter hyperlipidämischem Stress. In Makrophagen induziert die miR-342–5p die Expression der miR-155 während der Progression der Atherosklerose. Die Hemmung der BCL6-Expressi-on durch miR-155 verstärkt die Expression inflammatorischer Gene und vermindert die Efferozytose, wodurch die Bildung eines nekrotischen Kerns in atherosklerotischen Plaques gefördert wird. Die Entschlüsselung der komplexen zell- und kontextspezifischen Effekte von miRNAs während der vaskulären Wundheilung ist für die Entwicklung miRNAbasierter Therapien der Atherosklerose elementar.

 
  • References

  • 1 Hansson GK, Schwartz SM. Evidence for cell death in the vascular endothelium in vivo and in vitro. Am J Pathol 1983; 112: 278-286.
  • 2 Foteinos G, Hu Y, Xiao Q. et al. Rapid endothelial turnover in atherosclerosisprone areas coincides with stem cell repair in apolipoprotein E-deficient mice. Circulation 2008; 117: 1856-1863.
  • 3 Zeng L, Zampetaki A, Margariti A. et al. Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow. Proc Natl Acad Sci USA 2009; 106: 8326-8331.
  • 4 Carmeliet P, Lampugnani MG, Moons L. et al. Targeted deficiency or cytosolic truncation of the VEcadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 1999; 98: 147-157.
  • 5 Shay-Salit A, Shushy M, Wolfovitz E. et al. VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc Natl Acad Sci USA 2002; 99: 9462-9467.
  • 6 Fernandez-Hernando C, Ackah E, Yu J. et al. Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease. Cell Metab 2007; 06: 446-457.
  • 7 Grazia MLampugnani, Zanetti A, Corada M. et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J Cell Biol 2003; 161: 793-804.
  • 8 Sakao S, Taraseviciene-Stewart L, Lee JD. et al. Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. FASEB J 2005; 19: 1178-1180.
  • 9 Jongstra-Bilen J, Haidari M, Zhu SN. et al. Lowgrade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J Exp Med 2006; 203: 2073-2083.
  • 10 Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 2013; 13: 709-721.
  • 11 Breitschopf K, Zeiher AM, Dimmeler S. Pro-atherogenic factors induce telomerase inactivation in endothelial cells through an Akt-dependent mechanism. FEBS Lett 2001; 493: 21-25.
  • 12 Jurk D, Wilson C, Passos JF, Oakley F. et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Comm 2014; 02: 4172.
  • 13 Warboys CM, de Luca A, Amini N. et al. Disturbed flow promotes endothelial senescence via a p53-dependent pathway. Arterioscler Thromb Vasc Biol 2014; 34: 985-995.
  • 14 Kovacic JC, Moreno P, Hachinski V. et al. Cellular senescence, vascular disease, and aging: part 1 of a 2-part review. Circulation 2011; 123: 1650-1660.
  • 15 Hasegawa Y, Saito T, Ogihara T. et al. Blockade of the nuclear factor-kappaB pathway in the endothelium prevents insulin resistance and prolongs life spans. Circulation 2012; 125: 1122-1133.
  • 16 Gareus R, Kotsaki E, Xanthoulea S. et al. Endothelial cell-specific NF-kappaB inhibition protects mice from atherosclerosis. Cell Metab 2008; 08: 372-383.
  • 17 Hamilton TA, Ma GP, Chisolm GM. Oxidized low density lipoprotein suppresses the expression of tumor necrosis factor-alpha mRNA in stimulated murine peritoneal macrophages. J Immunol 1990; 144: 2343-2350.
  • 18 Chinetti G, Lestavel S, Bocher V. et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001; 07: 53-58.
  • 19 Ricote M, Li AC, Willson TM. et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998; 391: 79-82.
  • 20 Huang SC-C, Everts B, Ivanova Y. et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 2014; 15: 846-855.
  • 21 Robbins CS, Hilgendorf I, Weber GF. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 2013; 19: 1166-1172.
  • 22 Tabas I. The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res 2010; 107: 839-850.
  • 23 Seimon TA, Nadolski MJ, Liao X. et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab 2010; 12: 467-482.
  • 24 Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 2010; 10: 36-46.
  • 25 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-297.
  • 26 Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell 2008; 132: 9-14.
  • 27 Wei Y, Nazari-Jahantigh M, Neth P. et al. MicroRNA-126, -145, and -155: a therapeutic triad in atherosclerosis?. Arterioscler Thromb Vasc Biol 2013; 33: 449-454.
  • 28 Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 2012; 13: 271-282.
  • 29 Nazari-Jahantigh M, Wei Y, Schober A. The role of microRNAs in arterial remodelling. Thromb Haemost 2012; 107: 611-618.
  • 30 Kumar S, Kim CW, Simmons RD, Jo H. Role of Flow-Sensitive microRNAs in Endothelial Dysfunction and Atherosclerosis: Mechanosensitive Athero-miRs. Arterioscler Thromb Vasc Biol 2014; 34: 2206-2216.
  • 31 Kuhnert F, Mancuso MR, Hampton J, Stankunas K, Asano T, Chen C-Z. et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development 2008; 135: 3989-3993.
  • 32 Dang LT, Lawson ND, Fish JE. MicroRNA control of vascular endothelial growth factor signaling output during vascular development. Arterioscler Thromb Vasc Biol 2013; 33: 193-200.
  • 33 Schober A, Nazari-Jahantigh M, Wei Y. et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 2014; 20: 368-376.
  • 34 Rodriguez P, Higueras MA, Gonzalez-Rajal A. et al. The non-canonical NOTCH ligand DLK1 exhibits a novel vascular role as a strong inhibitor of angiogenesis. Cardiovasc Res 2012; 93: 232-241.
  • 35 Zernecke A, Bidzhekov K, Noels H. et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009; 02: ra81.
  • 36 Noels H, Zhou B, Tilstam PV. et al. Deficiency of endothelial CXCR4 reduces reendothelialization and enhances neointimal hyperplasia after vascular injury in atherosclerosis-prone mice. Arterioscler Thromb Vasc Biol 2014; 34: 1209-1220.
  • 37 Akhtar S, Gremse F, Kiessling F. et al. Stabilization of atherosclerotic plaques by CXCL12-induced mobilization of smooth muscle progenitor cells. J Vasc Res 2011; 48: 286.
  • 38 Jansen F, Yang X, Hoelscher M. et al. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 2013; 128: 2026-2038.
  • 39 Zampetaki A, Kiechl S, Drozdov I. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 2010; 107: 810-817.
  • 40 De Rosa S, Fichtlscherer S, Lehmann R. et al. Transcoronary concentration gradients of circulating microRNAs. Circulation 2011; 124: 1936-1944.
  • 41 Finn NA, Eapen D, Manocha P. et al. Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport. FEBS Lett 2013; 587: 3456-3463.
  • 42 Fichtlscherer S, De Rosa S, Fox H. et al. Circulating microRNAs in patients with coronary artery disease. Circ Res 2010; 107: 677-684.
  • 43 Jansen F, Yang X, Proebsting S. et al. MicroRNA Expression in Circulating Microvesicles Predicts Cardiovascular Events in Patients With Coronary Artery Disease. J Am Heart Assoc 2014; 03: e001249.
  • 44 Ren J, Zhang J, Xu N. et al. Signature of circulating microRNAs as potential biomarkers in vulnerable coronary artery disease. PloS One 2013; 08: e80738.
  • 45 Bronze-da-Rocha E. MicroRNAs expression profiles in cardiovascular diseases. BioMed Res Int 2014; 2014: 985408.
  • 46 Hergenreider E, Heydt S, Treguer K. et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 2012; 14: 249-256.
  • 47 Zhou J, Li YS, Nguyen P. et al. Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress. Circ Res 2013; 113: 40-51.
  • 48 Harris TA, Yamakuchi M, Ferlito M. et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 2008; 105: 1516-21.
  • 49 Poissonnier L, Villain G, Soncin F, Mattot V. miR126-5p repression of ALCAM and SetD5 in endothelial cells regulates leucocyte adhesion and transmigration. Cardiovasc Res 2014; 102: 436-447.
  • 50 Zhang Y, Yang P, Sun T. et al. miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol 2013; 15: 284-294.
  • 51 Fang Y, Shi C, Manduchi E. et al. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci USA 2010; 107: 13450-13455.
  • 52 Wang KC, Garmire LX, Young A. et al. Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth. Proc Natl Acad Sci USA 2010; 107: 3234-3239.
  • 53 Loyer X, Potteaux S, Vion AC. et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res 2014; 114: 434-443.
  • 54 Fang Y, Davies PF. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 2012; 32: 979-987.
  • 55 Diehl P, Fricke A, Sander L. et al. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res 2012; 93: 633-644.
  • 56 Daniel J-M, Penzkofer D, Teske R. et al. Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury. Cardiovasc Res 2014; 103: 564-572.
  • 57 Atkins GB, Jain MK. Role of Kruppel-like transcription factors in endothelial biology. Circ Res 2007; 100: 1686-1695.
  • 58 Sun X, Icli B, Wara AK. et al. MicroRNA-181b regulates NF-kappaB-mediated vascular inflammation. J Clin Invest 2012; 122: 1973-1990.
  • 59 Sun X, He S, Wara AK. et al. Systemic delivery of microRNA-181b inhibits nuclear factor-kappaB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circ Res 2014; 114: 32-40.
  • 60 Son DJ, Kumar S, Takabe W. et al. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat Commun 2013; 04: 3000.
  • 61 Kim CW, Kumar S, Son DJ. et al. Prevention of abdominal aortic aneurysm by anti-microRNA-712 or anti-microRNA-205 in angiotensin II-infused mice. Arterioscler Thromb Vasc Biol 2014; 34: 1412-1421.
  • 62 Wang K-C, Garmire LX, Young A. et al. Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth. Proc Natl Acad Sci 2010; 107: 3234-3239.
  • 63 Wang KC, Nguyen P, Weiss A. et al. MicroRNA-23b regulates cyclin-dependent kinase-activating kinase complex through cyclin H repression to modulate endothelial transcription and growth under flow. Arterioscler Thromb Vasc Biol 2014; 34: 1437-1445.
  • 64 Qin X, Wang X, Wang Y, Tang Z, Cui Q, Xi J. et al. MicroRNA-19a mediates the suppressive effect of laminar flow on cyclin D1 expression in human umbilical vein endothelial cells. Proc Natl Acad Sci USA 2010; 107: 3240-3244.
  • 65 Neth P, Nazari-Jahantigh M, Schober A, Weber C. MicroRNAs in flow-dependent vascular remodelling. Cardiovasc Res 2013; 99: 294-303.
  • 66 Graff JW, Dickson AM, Clay G. et al. Identifying functional microRNAs in macrophages with polarized phenotypes. J Biol Chem 2012; 287: 21816-21825.
  • 67 Nazari-Jahantigh M, Wei Y, Noels H. et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest 2012; 122: 4190-4202.
  • 68 Du F, Yu F, Wang Y. et al. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2014; 34: 759-767.
  • 69 Tian FJ, An LN, Wang GK. et al. Elevated microRNA-155 promotes foam cell formation by targeting HBP1 in atherogenesis. Cardiovasc Res 2014; 103: 100-110.
  • 70 Wei Y, Nazari-Jahantigh M, Chan L. et al. The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis. Circulation 2013; 127: 1609-1619.
  • 71 Donners MM, Wolfs IM, Stoger LJ. et al. Hematopoietic miR155 deficiency enhances atherosclerosis and decreases plaque stability in hyperlipidemic mice. PloS One 2012; 07: e35877.
  • 72 Diez-Roux G, Lang RA. Macrophages induce apoptosis in normal cells in vivo. Development 1997; 124: 3633-3638.
  • 73 Koch AE, Polverini PJ, Kunkel SL. et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 1992; 258: 1798-1801.