Hamostaseologie 2015; 35(02): 137-141
DOI: 10.5482/HAMO-14-11-0058
Review
Schattauer GmbH

Platelet-derived chemokines in atherosclerosis

Die Rolle thrombozytärer Chemokine in Atherosklerose
J. Duchene
1   Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Germany
,
P. von Hundelshausen
2   German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
› Author Affiliations
Further Information

Publication History

received: 05 November 2014

accepted in revised form: 22 January 2014

Publication Date:
28 December 2017 (online)

Summary

In atherosclerosis, activated platelets have been recently recognised not only to participate in thrombotic events but also to play an essential role in the development of atherosclerotic lesions. Upon their activation, platelets release several pro-inflammatory mediators including chemokines. Chemokines are key molecules in inflammation as they are able to recruit leukocytes, modulate their activation/differentiation and control their proliferation/apoptosis.

In this review we will discuss recent findings regarding the specific roles of chemokines released by platelets on leukocytes and their effects on atherosclerosis.

Zusammenfassung

Dass aktivierte Plättchen nicht nur entscheidend an thrombotischen Ereignissen beteiligt sind, sondern auch eine essenzielle Rolle bei der Ausbildung atherosklerotischer Plaques spielen ist eine Erkenntnis, die sich zunehmend durchsetzt. Nach Aktivierung, setzen Plättchen eine Reihe proinflammatorischer Mediatoren (z. B. Chemokine) frei. Chemokine sind für Entzündungsprozesse zentrale regulatorische Moleküle, da sie Leukozyten rekrutieren, differenzieren und ihre Proliferation und Apoptose beeinflussen.

In dieser Übersichtsarbeit behandeln wir aktuelle Erkenntnisse des Einflusses der von Plättchen freigesetzten Chemokine auf Leukozyten im Kontext von Atherosklerose.

 
  • References

  • 1 Junt T, Schulze H, Chen Z. et al. Dynamic visualization of thrombopoiesis within bone marrow. Science 2007; 317: 1767-1770.
  • 2 Sachais BS, Turrentine T, Dawicki JMMcKenna. et al. Elimination of platelet factor 4 from platelets reduces atherosclerosis in C57Bl/6 and apoE-/mice. Thromb Haemost 2007; 98: 1108-1113.
  • 3 Koenen RR, von Hundelshausen P, Nesmelova IV. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med 2009; 15: 97-103.
  • 4 Huo Y, Schober A, Forlow SB. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003; 09: 61-67.
  • 5 Von Hundelshausen P, Weber KS, Huo Y. et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 2001; 103: 1772-1777.
  • 6 Schober A, Manka D, von Hundelshausen P. et al. Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury. Circulation 2002; 106: 1523-1529.
  • 7 Zernecke A, Liehn EA, Gao JL. et al. Deficiency in CCR5 but not CCR1 protects against neointima formation in atherosclerosis-prone mice: involvement of IL-10. Blood 2006; 107: 4240-4243.
  • 8 Braunersreuther V, Zernecke A, Arnaud C. et al. Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2007; 27: 373-379.
  • 9 Potteaux S, Combadiere C, Esposito B. et al. Chemokine receptor CCR1 disruption in bone marrow cells enhances atherosclerotic lesion development and inflammation in mice. Mol Med 2005; 11: 16-20.
  • 10 Von Hundelshausen P, Koenen RR, Sack M. et al. Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood 2005; 105: 924-930.
  • 11 Carlson J, Baxter SA, Dreau D, Nesmelova IV. The heterodimerization of platelet-derived chemokines. Biochim Biophys Acta 2013; 1834: 158-168.
  • 12 Ghasemzadeh M, Kaplan ZS, Alwis I. et al. The CXCR1/2 ligand NAP-2 promotes directed intravascular leukocyte migration through platelet thrombi. Blood 2013; 121: 4555-4566.
  • 13 Gerdes N, Zhu L, Ersoy M. et al. Platelets regulate CD4(+) T-cell differentiation via multiple chemokines in humans. Thromb Haemost 2011; 106: 353-362.
  • 14 Zhu L, Huang Z, Stalesen R. et al. Platelets provoke distinct dynamics of immune responses by differentially regulating CD4+ T-cell proliferation. J Thromb Haemost 2014; 12: 1156-1165.
  • 15 Shi G, Field DJ, Ko KA. et al. Platelet factor 4 limits Th17 differentiation and cardiac allograft rejection. J Clin Invest 2014; 124: 543-552.
  • 16 Ge S, Hertel B, Koltsova EK. et al. Increased atherosclerotic lesion formation and vascular leukocyte accumulation in renal impairment are mediated by interleukin-17A. Circ Res 2013; 113: 965-974.
  • 17 Madhur MS, Funt SA, Li L. et al. Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein E–deficient mice. Arterioscler Thromb Vasc Biol 2011; 31: 1565-1572.
  • 18 Lim H, Kim UYoung, Sun H. et al. Proatherogenic conditions promote autoimmune T helper 17 cell responses in vivo. Immunity 2014; 40: 153-165.
  • 19 Sachais BS, Kuo A, Nassar T. et al. Platelet factor 4 binds to low-density lipoprotein receptors and disrupts the endocytic machinery, resulting in retention of low-density lipoprotein on the cell surface. Blood 2002; 99: 3613-3622.
  • 20 Nassar T, Sachais BS, Akkawi S. et al. Platelet factor 4 enhances the binding of oxidized low-density lipoprotein to vascular wall cells. J Biol Chem 2003; 278: 6187-6193.
  • 21 Gleissner CA, Shaked I, Little KM, Ley K. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J Immunol 2010; 184: 4810-4818.
  • 22 Gleissner CA. Macrophage phenotype modulation by CXCL4 in atherosclerosis. Front Physiol 2012; 03: 1.
  • 23 Rousselle A, Qadri F, Leukel L. et al. CXCL5 limits macrophage foam cell formation in atherosclerosis. J Clin Invest 2013; 123: 1343-1347.
  • 24 Massberg S, Konrad I, Schurzinger K. et al. Platelets secrete stromal cell-derived factor 1alpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo. J Exp Med 2006; 203: 1221-1233.
  • 25 Seta N, Okazaki Y, Miyazaki H. et al. Platelet-derived stromal cell-derived factor-1 is required for the transformation of circulating monocytes into multipotential cells. PLoS One 2013; 08: e74246.
  • 26 Robbins CS, Hilgendorf I, Weber GF. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 2013; 19: 1166-1172.
  • 27 Bruns I, Lucas D, Pinho S. et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 2014; 20: 1315-1320.
  • 28 Murphy AJ, Akhtari M, Tolani S. et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin Invest 2011; 121: 4138-41249.
  • 29 Liu CY, Battaglia M, Lee SH. et al. Platelet factor 4 differentially modulates CD4+CD25+ (regulatory) versus CD4+CD25– (nonregulatory) T cells. J Immunol 2005; 174: 2680-2686.
  • 30 Pitsilos S, Hunt J, Mohler ER. et al. Platelet factor 4 localization in carotid atherosclerotic plaques: correlation with clinical parameters. Thromb Haemost 2003; 90: 1112-1120.
  • 31 Goldberg ID, Stemerman MB, Handin RI. Vascular permeation of platelet factor 4 after endothelial injury. Science 1980; 209: 611-612.
  • 32 Shi G, Field DJ, Long X. et al. Platelet factor 4 mediates vascular smooth muscle cell injury responses. Blood 2013; 1212: 4417-4427.
  • 33 Seimon T, Tabas I. Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J Lipid Res 2009; 50: S382-S387.
  • 34 Clarke MCH, Figg N, Maguire JJ. et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat Med 2006; 12: 1075-1080.
  • 35 Tyner JW, Uchida O, Kajiwara N. et al. CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nat Med 2005; 11: 1180-1187.
  • 36 Seong SY, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 2004; 04: 469-478.
  • 37 Clark SR, Ma AC, Tavener SA. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13: 463-469.
  • 38 Tiedt R, Schomber T, Hao-Shen H, Skoda RC. Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo. Blood 2007; 109: 1503-1506.
  • 39 Nowakowski A, Alonso-Martin S, Arias-Salgado EG. et al. Megakaryocyte gene targeting mediated by restricted expression of recombinase Cre. Thromb Haemost 2011; 105: 138-144.
  • 40 Karshovska E, Weber C, von Hundelshausen P. Platelet chemokines in health and disease. Thromb Haemost 2013; 110: 894-902.
  • 41 Burkhart JM, Vaudel M, Gambaryan S. et al. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways Blood. 2012; 120: e73-e82.